
Analyzing simplified Geister using DREAM
Lucien TROILLET

Graduate School of Engineering
Kochi University of Technology

Kami, Japan
246005s@gs.kochi-tech.ac.jp

Kiminori MATSUZAKI
School of Information

Kochi University of Technology
Kami, Japan

matsuzaki.kiminori@kochi-tech.ac.jp

Abstract—Geister is a board imperfect information game
created in Germany and presenting an interesting challenge for
the field of artificial intelligence. In this study we apply DREAM
(Deep Regret Minimization with Advantage Baselines and Model-
free Learning), a neural-network variation of Counterfactual
Regret Minimization developed by Steinberger et al., to multiple
variants of Geister. This paper shows a methodological approach
of evaluating game strategies on different variants of Geister and
illustrates the possible generalizability of the DREAM algorithm
on other board games.

Index Terms—Geister, Imperfect Information Games,
DREAM, CFR

I. INTRODUCTION

Geister, also called Ghosts, is a Board Imperfect Information
Game (IIG) from Germany [1]. Research on IIGs so far has
been focused on card and video games [2] [3] [4] [5] [6]
[7] but not much on board games despite them presenting
different challenges, specifically, they have bigger input and
action spaces, they require spatial awareness and, in many
cases, they contain possible reoccurring states which can lead
to infinite games lengths. Additionally, Geister is a non random
game, its gameplay is very similar to that of some solved
Perfect Information Games like Chess and it has multiple win
conditions that a player must consider to be efficient.

While several studies on IIGs use multiple games as training
and testing environments to improve and create better algo-
rithms, they mostly do not analyze the games themselves. As
far as the authors know, only a few studies did an attempt of
analyzing games as in [8] where multiple players were used to
gather information about game complexity on different game
variants.

In this paper we propose a different approach to analyzing
games through advanced players trained on game variants. We
demonstrate our approach by using reduced variants of Geister
similar to the one used in [9]. Geister has the advantage of
being easily modified by increasing or decreasing its board
size without needing to change any core rules of the game.
These modifications do however change the strategies a player
must employ to be effective. We take inspiration from [10] and
use a CFR variation called DREAM to train efficient players
on each Geister variant. We analyze how the trained players

This work is partially supported by JSPS KAKENHI Grant Number
JP20K12124.
978-1-6654-3886-5/21/$31.00 ©2021 IEEE

change their behaviors to better suit the different environment
in which they evolve.

In section II we present the game of Geister and its
simplified variants. In section III we briefly introduce the
DREAM algorithm. We present our methodology in section
IV then show the results in section V and discuss them in
section VI. We conclude that the smallest variants of Geister
are mostly random but that playing intelligently is rewarded
once each player has at least three pieces and a board size big
enough to accommodate them and that some game variants
reward baiting and avoiding, some reward aggressive captures
and some reward escaping.

II. GEISTER

A. Full Geister

Geister is played on a square board with 6 rows and 6
columns. Both players control eight pawns/ghosts, four of
them are red/evil and four are blue/good. Each player sets
their ghosts as they wish in a given space at the start of the
game. They can’t see the layout of the opponent’s ghosts. Fig.
1 shows an example starting board. Sente, the first player,
starts by moving one of their ghosts by one square in any
straight direction. If a ghost moves to an opponent’s ghost’s
square, the opponent’s ghost is captured and its color revealed.
Then Gote, the second player, can do the same. They continue

Fig. 1. Example starting board from Sente’s point of view. Purple ghosts’
true blue/red colors are hidden.

(1) (2) (3)

Fig. 2. Geister win conditions. Purple ghosts’ true blue/red colors are hidden.

alternating until the end of the game without passes. The game
ends when a player fulfills one of the following win conditions
(Fig.2).

1) Blue capture: A player captures all opponent’s blue
ghosts.

2) Red capture: A player gets all their own red ghosts
captured by the opponent.

3) Escape: A player manages to bring one of their blue
pawns to one of the corners on the opponent’s side and
makes it move out of the board.

B. Simplified Geister

We focus on simplified variants of Geister. The original size
of Geister is modified by shrinking the board width and height,
and by reducing the number of ghosts. The different board
sizes and number of ghosts we use in our experiments are
shown in table I. Our first design forced an even number of
ghosts but we decided to include two cases, x3y3g3Rb0 and
x3y3g3Bb0, where the number of ghosts is uneven to examine
how an excess of red or blue ghosts might influence the game.

TABLE I
GEISTER VARIANTS

Board Board Board Ghosts Buffer
Identifier width height columns

x6y6g8b1a 6 6 8 1
x2y3g2b0 2 3 2 0
x2y4g2b0 2 4 2 0
x4y2g2b0 4 2 2 0
x3y3g2b0 3 3 2b 0

x3y3g3Rb0 3 3 3 (2 Red) 0
x3y3g3Bb0 3 3 3 (2 Blue) 0
x4y3g2b1 4 3 2 1
x4y3g4b0 4 3 4 0
x4y4g2b1 4 4 2 1
x4y4g4b0 4 4 4 0
x4y4g4b1 4 4 4 1
aDefault Geister
bMiddle column left empty

Fig. 3. Example Geister x3y3g3Bb0 starting board

The last setting we adapt is the number of columns left free
of ghosts on each side of the board at the start of the game. We
refer to them as buffer columns or simply buffer. The default
Geister board has one buffer column but most of the variants
we analyze do not have any.

Winning conditions stay the same for every variant.

III. DREAM

DREAM(Deep Regret Minimization with Advantage Base-
lines and Model-free Learning) is a regret-based deep rein-
forcement learning algorithm developed for Poker [11]. It is
the latest variation of the basic CFR algorithm.

CFR and its multiple improvements serve as a basis for
DREAM.

The original CFR algorithm [12] [13] iteratively calculates
the regrets of not taking an action compared to usual gameplay
and averages them across all iterations to create a policy.

Improving upon this, Linear CFR [14] weighs each itera-
tion’s regret update by the iteration number to accelerate the
training process.

Monte Carlo CFR [15] additionally allows the regret up-
dates to work without exploring the whole field of possibilities
of the game. It uses sampling for a single agent at a time and
only updates regrets along the explored agent’s trajectories. It
samples according to a combination of the latest calculated
agent policies and some element of randomness to maintain
exploration of new trajectories.

Variance-Reduced Outcome Sampling with Baselines’ [16]
[17] variant of CFR adds a user given baseline function to
reduce the variance of sampled values by estimating them
automatically on a given state.

Deep CFR and Single Deep CFR [18] add the use of a
neural network to predict values of unseen states and then
uses the network to sample further in a repeating loop.

Finally, DREAM uses and builds upon all these previous
algorithms by also training a network to serve as a baseline
function instead of having a user defined one. Thus, it trains
two networks per player even though only one is used post
learning process. It has already been applied to the game of
Geister [10] with good results.

IV. EXPERIMENT

A. Adaptations

As explained in Sections I and II, Geister can go on for
an infinite number of turns and requires strategy before even
starting the game to place ghosts in an optimal manner. Others
dealt with these issues by using multiple different techniques
[10]. While some of them are also adapted to the simplified
Geister variant we use here, some are not or are not used for
the same reason. In the following sub-section we briefly go
over game adaptations and how they are applied in this study.

Abstraction: CFR algorithms normally have access to the
full infoset of a game. However, using only the latest turn’s
game state has been shown to work and results in players
deemed acceptable [19].

Length limitation: Avoiding endless games is an important
consideration to prevent training from being slowed down by
playouts with excessive length. In our experiments we set a
turn limit at 100. Any game reaching that point is considered
a draw during training and experiments.

Random initialization: Given the very low number of
possible starting boards for the simplified Geister variants,
generating starting boards randomly will rapidly cover all
possible scenarios and allow the network to adapt to each of
them.

Finishing move assistance: The DREAM agents should
naturally learn to perform escape actions when possible and
random agents are used as an illustration of a non-strategic
player. Thus we do not use such an assistance.

B. Encoding

A simple encoding of any board with three layers of
matrices allows to describe the board state perceived by each
player. One layer accounts for the position of a player’s blue
ghosts, another accounts for the same player’s red ghosts, and
the last one is used to track all opponent ghost positions. This
is illustrated in Table II.

However, Geister has other attributes that do not reside
on the board. These meta-attributes are the number of blue
ghosts a player has captured, the number of red ghosts they
captured, the turn number and a boolean value indicating if it
is that player’s turn to move. We encode this information in a
separate, four dimensional, vector detailed in Table III.

TABLE II
BOARD ENCODING

Encoding layer Cell information
1 Player’s blue ghosts
2 Player’s red ghosts
3 Opponent’s ghosts

TABLE III
META ENCODING

Encoding dimension Meta Information
1 Captured blue pieces
2 Captured red pieces
3 Current turn
4 Is next player

C. Networks

As a board game, Geister lends itself well to the use of
convolutional networks. However the meta-attributes are not
well suited to convolution without some adaption. In [19], this
issue is worked around by inserting the meta-information into
the board encoding allowing for a pure convolutional network.
However, we choose to combine the use of convolutional
layers for the board encoding and fully connected layers for
the meta information. We then flatten the convolutional layer
outputs, concatenate them with the fully connected layer ones
and feed them to a new set of fully connected layers, which
we call combined layers for ease of distinction with the first
set of fully connected layers. All layers in our networks are
activated by a ReLU function.

Both the Baseline and Advantage Network follow this
structure. The difference between the two is that the layer
structure before concatenation is duplicated in the Baseline
network to receive both Sente and Gote’s infosets. Then, both
flattened convolutional layer outputs and both fully connected
layer outputs are concatenated and forwarded to the combined
layers.

The network structure we use is made to scale seamlessly
with the size of the board. This is done to simplify the creation
of different experiments with different board sizes. To do so,
we define the number of channels for each convolution layer
output and the number of neurons in each fully connected
layer and combined layer. The convolution process is always
performed using 3x3 kernels and a padding value of one. These
parameters allow any board to be used as input for the network
and have a constant size through all convolution layers. It has
the advantage of having the network adapt its size to different
board types.

The fully connected layers and combined layers of the
network mostly do not scale with board size. The output layer
is the only exception. It contains four times the number of
squares on the board. Each output neuron corresponds to one
movement direction associated to one square. Border squares
are also given four corresponding neurons even though some
of the corresponding directions are not possible to move into.
These impossible directions are filtered out from the output
afterwards.

Convolution layers

3×2×16

F
latten

Board

3×3×k

3×2×3

Kernels

3×2×32 3×2×16

Captured Blue

Captured Red

Turn

To move

F
u

lly
 c

o
n

n
e
c
te

d

la
y
e
r

F
u

lly
 c

o
n

n
e
c
te

d

la
y
e
r

C
oncate nate

F
u

lly
 c

o
n

n
e
c
te

d
 la

y
e
r

F
u

lly
 c

o
n

n
e
c
te

d
 la

y
e
r

O
u

tp
u

t la
y
e
r

Meta 8 16

64 64 24

Fig. 4. Advantage Network with an x2y3g2b0 variant board

The three convolutional layers use 16, 32 and 16 channels,
the fully connected layers have 8 and 16 neurons, and the
combined layers have 64 and 64 neurons. Fig. 4 illustrates the
network structure using a board example from the x2y3g2b0
game variant. During the learning process, a total of four
networks are trained. One baseline and one advantage network
for each player.

D. Experimental Parameters

Our code implementation was run on different machines that
do not all support the same hardware. In the interest of brevity,
we only present the results obtained on one type of machines
equipped with an AMD Ryzen 7 3800X CPU and a NVIDIA
RTX 2060 SUPER GPU using python 3.7.10, pytorch 1.8.0
and cudatoolkit 11.1.1. Performing the same experiments on
different hardware did not change results significantly.

Through prior trials, we tested a variety of different hy-
perparameters on the simplest Geister variant used in our
experiments, x2y3g2b0. The smallest variant is inherently the
most random as there is almost no space on the board for a
player to get past its opponent’s ghosts and manage to win
by escape and because any capture of a ghost ends the game
immediately. Having too small hyperparameters for this variant
of the game results in very unstable losses through the training
process. We used this to scale hyper parameters up until losses
were more stable while still having a reasonable experiment
duration.

The batch size was selected to match the GPU cuda core
count which is 2176 for the RTX2060S. The buffer capacity
was 1280000 and was originally chosen to be 500 times the
batch size of the RTX2070 SUPER on which we experimented
in early tests. This capacity was then kept the same for all other
experiments to have the same number of samples the networks

could train with in all runs. The training lasted 1000 iterations.
For each iteration the game was traversed 4096 times using 4
samplers. Alternating iterations were used to train alternating
players. Half were updating the network for Sente and half for
Gote.

Both Baseline and Advantage networks were tuned using
the Adam optimizer with a learning rate of 0.001 and a mean
square error Loss function. To have the sampled losses of later
iterations be more relevant, they were weighted by the iteration
they were sampled at.

Once the training is finished, the resulting DREAM players
are compared to random players by having them play 100
games. For each game, the starting board is generated ran-
domly and the agents play the game twice, once as Sente and
once as Gote.

This testing process is repeated every ten iterations of the
learning process using the generated networks to dictate which
move the DREAM player chooses.

V. RESULTS

A. Loss

There are significant differences among loss behaviors of
different variants of the game. The advantage loss scales
with the number of iterations so it is not possible to see a
stabilization by observing it. However, the baseline network
loss has a more stable behavior so we can use it to have an
insight in the learning progression.

Fig. 5 graphs the baseline network loss for Sente and Gote
with varying board sizes. A decrease of loss can be seen with
increased board sizes. The 4x4 board size delivering the lowest
losses for Sente and Gote among the graphed boards. It also
has the most flat loss curves. The x2y3 board has the most

Fig. 5. Baseline network loss progress for varying board sizes (2 ghosts)

Fig. 6. Baseline network loss with x4y3 board and varying number of ghosts

high and unstable losses. Both x2y4 and x4y3 boards achieve
similar loss progressions.

Fig. 6 illustrates how different number of ghosts also result
in different loss behaviors. Going from 2 to 4 ghosts per player
with the same board size of x4y3 generates a more stable loss
progression and causes sente and gote to have closer losses.

B. First move color

Table IV is composed of basic DREAM player statistics
we tracked for each session of 100 battles between it and the
Random player over all iterations.

The DREAM player has a disproportionate tendency to
move a red ghost first across all iterations in almost all boards.
This is even true for boards with an uneven number of blue and
red pieces: the x3y3g3 variants also have a disproportionate
amount of red first moves relative to their proportion of red
ghosts.

However this tendency becomes less visible with bigger
boards. The x4y4g4b0 board variant even has a statistical tie
with regards to the first move preference. Figures 7 and 8 show
the progression of the tendency over all iterations for a smaller
and bigger variant and reinforce that bigger boards and higher
number of ghosts make the preference disappear. The shift to
more neutral first moves with increasing number of ghosts is
disputable looking at the data from Table IV, more experiment
runs would be needed to ensure the statistical significance of
this observed trend.

Fig. 7. Color of first piece moved as Sente in x2y3g2b0 variant

Fig. 8. Color of first piece moved as Sente in x4y4g4b0 variant

There is one case where the DREAM player has a pref-
erence to move a blue ghost first. It is the x4y2g2b1 variant
where it starts playing with a blue ghost move almost two
thirds of the time.

Looking at Fig. 7 it is also apparent that the red move first
bias is stronger in early stages up to around the 100th iteration.
As observable in Fig. 9, this coincides with a higher number
of wins when playing as Sente at the same range of iterations.

C. Win rate

The win rates for Sente and Gote are presented in Table IV.
The win rate as Gote for the smallest variant of the game is
statistically random. The difference in number of wins when
playing as Sente or Gote becomes much smaller as the game
size increases.

Regarding the win rate, the highest performances of the
DREAM player against the Random player is achieved in
variants x4y3g4b0 and x4y4g4b0. The two following best
performances both come from the x3y3g3b0 variants of the
game.

D. Win type

Since the first move tendencies disappear in bigger variants
of the game, we decided to run a new set of battle experiments
using the same networks and added tracking of what win
condition players fulfilled in each game.

Figures 10 and 11 illustrate this ratio of win types over all
100 played games in DREAM Sente vs. Random Gote and

TABLE IV
GEISTER VARIANTS STATISTICSa

Board First move First move Wins as Wins as Total
Identifier Blue Red Sente Gote Wins
x2y3g2b0 0.33 — 0.33 (0.08) 0.67 — 0.67 (0.08) 62 — 61.35 (6.33) 52 — 52.27 (4.56) 113 — 113.63 (7.45)
x3y3g2b0 0.4 — 0.39 (0.09) 0.6 — 0.61 (0.09) 61 — 62.03 (4.64) 58 — 57.8 (4.76) 119 — 119.83 (6.9)

x3y3g3Rb0 0.08 — 0.09 (0.05) 0.92 — 0.91 (0.05) 69 — 68.57 (4.71) 65 — 64.79 (4.95) 134 — 133.35 (7.78)
x3y3g3Bb0 0.6 — 0.6 (0.07) 0.4 — 0.4 (0.07) 66 — 65.9 (4.88) 64 — 64 (4.97) 130 — 129.9 (7.14)
x2y4g2b0 0.36 — 0.36 (0.07) 0.64 — 0.64 (0.07) 62 — 62.49 (5.3) 59 — 58.98 (5.05) 122 — 121.47 (7.18)
x4y2g2b1 0.62 — 0.63 (0.08) 0.38 — 0.37 (0.08) 63 — 63 (5.14) 53 — 53.41 (5.27) 116 — 116.41 (7.43)
x4y3g2b1 0.41 — 0.41 (0.08) 0.59 — 0.59 (0.08) 66 — 65.85 (5.53) 63 — 62.89 (4.99) 128 — 128.74 (8.1)
x4y3g4b0 0.34 — 0.34 (0.07) 0.66 — 0.66 (0.07) 77 — 76.69 (5) 76 — 75.76 (6.19) 153 — 152.44 (9.08)
x4y4g2b1 0.45 — 0.44 (0.08) 0.55 — 0.56 (0.08) 65 — 65.19 (5.48) 64 — 64.51 (5.35) 131 — 129.7 (8.01)
x4y4g4b0 0.49 — 0.49 (0.05) 0.51 — 0.51 (0.05) 73 — 72.67 (5.55) 71 — 70.34 (6.83) 145 — 143.01 (10.16)
x4y4g4b1 0.55 — 0.55 (0.06) 0.45 — 0.45 (0.06) 66 — 64.82 (6.97) 62 — 61.99 (6.27) 129 — 126.81 (10.25)
a Median — Average (Standard deviation)

Fig. 9. Number of wins against random player over 100 games in x2y3g2b0
variant

Fig. 10. Win type progress with DREAM as Sente in x2y3g2b0 variant

DREAM Gote vs. Random Sente configurations respectively.
In both cases there is an extremely low number of wins by
escaping the board. When the DREAM Player is in the Gote
position, most wins come from having its opponent capture its
red ghost and most of the random player’s wins come from
capturing the DREAM agent’s blue ghost.

In stark contrast to the smallest variant of Geister, the
x4y3g4b0 variant, already shown to be the one with the highest
win rate for the DREAM agent is also the one with the most
wins by escape, as shown in Fig. 12. In this case, the DREAM
agent has a strong preference for wins by escape.

The two x3y3 variants of the game show contrasting be-

Fig. 11. Win type progress with DREAM as Gote in x2y3g2b0 variant

Fig. 12. Win type progress with DREAM as Sente in x4y3g4b0 variant

haviors. Fig. 13 has a very high fraction of wins achieved by
capturing a blue ghost.

Fig. 14 shows the opposite behavior emerging. The majority
of the DREAM agent’s wins are the result of the Random agent
capturing its red ghost.

VI. ANALYSIS

A. Red baiting

The observed tendency of the red ghost to be moved first,
especially in smaller games, points to the DREAM agent
attempting to bait the other player into capturing their red
ghost by making it more easily accessible. The only case
with a strong blue first move preference can also be seen
to reinforce this baiting strategy hypothesis. In the x4y2g2b1

Fig. 13. Win type progress with DREAM as Sente in x3y3g3Rb0 variant

Fig. 14. Win type progress with DREAM as Sente in x3y3g3Bb0 variant

board, where the height is only 2 squares, Sente and Gote’s
ghosts start right in front of each other. It makes sense that the
DREAM player would develop a tendency to move the blue
ghost first as it allows to shift it sideways, out of immediate
risk of being taken by Gote’s first move, this leaves the red
ghost in Gote’s range and brings its blue ghost closer to
escaping.

The red baiting strategy idea is reinforced by the correlation
between red first move and win percentage in early iterations
in the x2y3g2b0 board. It is likely a sign that, early in its
training process, the DREAM player finds out that it can get
a lot of wins by increasing the likelihood of its red ghost to be
captured by placing it in front of enemy pieces. This is a good
strategy against the random player which has a 50% chance to
capture the ghost on such a small board. However the decline
of this tendency versus the random player seemingly indicates
the DREAM player learns not to overexploit this strategy once
its opponent starts adapting to it.

The last strong evidence for the red baiting strategy in
smaller boards is the high proportion of games ending with
the random player capturing a ghost when the DREAM player
is Gote, proving that the game almost always ends with a
capture move from the random player. Thus, the DREAM
player actively avoids capturing the opponent’s ghost at
least during its first turn and attempts to end the game by
baiting with its red ghost. This is visible when the DREAM
agent plays as Sente too but to a lesser degree.

B. Asymmetrical gameplay

The loss figures seem to show that bigger boards result in
smaller losses. This is probably due to bigger boards allowing
players to use more strategy in movements as opposed to
playing purely reactively to the opponent’s movements. This
reactive gameplay seems especially significant for Gote who,
in smaller boards, never achieves losses similar to Sente’s.

The stronger red baiting presence and the high loss differ-
ence between Sente and Gote on smaller boards points to the
gameplay for Gote being highly reactive. I.e. smaller Geister
variants are not games where each player is free to use a
strategy. Sente can behave as they wish and Gote must adapt
hence creating a one-sided game.

Further reinforcing the idea of a one-sided game with
smaller variants are the win rates for Sente and Gote presented
in Table IV. The statistically random win rate as Gote for the
smallest variant of the game shows how much that variant’s
gameplay is dictated by Sente’s actions. The difference in
number of wins when playing as Sente or Gote becomes much
smaller as the game size increases. This can also be seen in
the win type tables where, when the DREAM agent plays
as Gote, despite it visibly avoiding capture moves to bait a
red capture, it doesn’t manage to get a significant advantage.
However, the win rate of the DREAM player not being much
higher when playing as Sente also indicates that, despite the
first player advantage, the smallest game variant remains
very random and hard to strategize efficiently for.

C. Number of Ghosts

Having an increase in number of ghosts seems to modify
the loss behavior. It should be pointed out that going from 2 to
4 ghosts removes the ”sudden death” component of a capture.
Multiple ghosts of the same color allow to capture and then
adapt. The stabler loss behavior is probably due to this change.

The highest win rates being achieved in the only variants
of Geister to use 4 ghosts per player is a strong indication
that the added number of pieces is an important element to
have in order to allow an agent to benefit from a strategy. The
second highest win rates being achieved on the boards with the
second highest number of pieces despite a smaller board size
further reinforces that the number of ghosts has a bigger
impact on how efficient a strategy can be than the size of
the board. This is probably also why loses with bigger game
variants tend to be better and more stable.

Analyzing the most common types of wins in different
variants of the game also reinforces how having a higher
number of pieces influences the behavior of a player.
This is especially visible in the x3y3g3Rb0 and x3y3g3Bb0
variants of the game. In the x3y3g3Rb0 variant, the DREAM
player visibly becomes much more aggressive with regards
to capturing other ghosts. The reason for this is probably that
the DREAM player tries to capture a piece as soon as possible
knowing it will always survive this first capture and can still
adapt its strategy if this first capture does not result in a win. It
probably also allows it to be less restricted in its movements by
the enemy ghosts. This is reversed in the x3y3g3Bb0 variant:

the DREAM agent seems to be attempting to bait the other
player into capturing its only red ghost.

Going back to the 4 ghosts variants of the game, they show
the highest percentage of wins by escaping. In these variants,
the DREAM agent seems to prefer the strategy least reliant
on randomness as escaping is the only win type not reliant on
hidden information.

VII. CONCLUSION

In this paper we presented the game of Geister, its rules and
the modified variants we created. We explained the challenges
of Board IIGs and the more specific challenges of Geister.
We briefly explained the DREAM algorithm and used it to
generate intelligent players for each Geister variant we studied.
We then compared their performance to random players by
having them play against each other throughout the training
of the DREAM agents.

Over all tested variants, the DREAM player favors strategies
that reduce the influence of imperfect information. Intelligent
agents prefer avoidance strategies in smaller variants, escape
strategies in bigger variants and capture strategies only when
they are low risk high reward.

An intelligent player’s performance in the smallest variants
of Geister is limited by the inherent randomness of having
too few ghosts and forced reactionary gameplay. Having at
least three ghosts per player and a board size allowing them
to move more freely allows intelligent strategies to give them
a true advantage and mitigates the impact of the luck inherent
to trying to capture an opposing ghost.

While we saw more complex behaviors emerging with
bigger Geister variants, we have not yet properly tested our
implementation up to the default Geister game. There might be
more interesting things to observe when scaling up but bigger
networks and hyperparameters will probably be needed to
capture the increased complexity. Our future work will analyze
the game’s bigger variants. Applying similar experiments to
other games might also yield interesting insights.

ACKNOWLEDGMENT

We would like to thank Chen and Kaneko for the help they
gave us by providing much welcomed aid in understanding
the DREAM algorithm and giving us access to their basic
implementations of the algorithm for Kuhn Poker which we
used as a basis to develop our own experiments.

REFERENCES

[1] “Top | Geister Online.” [Online]. Available: https://geister.tetsis.com/
[2] int8, “Counterfactual Regret Minimization - the core of Poker AI beating

professional players,” Sep. 2018.
[3] R. G. Gibson, “Regret minimization in games and the development of

champion multiplayer computer poker-playing agents,” Ph.D. disserta-
tion, Department of Computing Science, University of Alberta, 2014.

[4] M. Bowling, N. Burch, M. Johanson, and O. Tammelin, “Heads-up limit
hold’em poker is solved,” Science, vol. 347, no. 6218, pp. 145–149, Jan.
2015.

[5] N. Brown and T. Sandholm, “Superhuman AI for multiplayer poker,”
Science, vol. 365, no. 6456, pp. 885–890, Aug. 2019.

[6] N. Bard, J. N. Foerster, S. Chandar, N. Burch, M. Lanctot, H. F.
Song, E. Parisotto, V. Dumoulin, S. Moitra, E. Hughes, I. Dunning,
S. Mourad, H. Larochelle, M. G. Bellemare, and M. Bowling, “The
Hanabi challenge: A new frontier for AI research,” Artificial Intelligence,
vol. 280, p. 103216, Mar. 2020.

[7] O. Vinyals, I. Babuschkin, J. Chung, M. Mathieu, M. Jaderberg,
W. M. Czarnecki, A. Dudzik, A. Huang, P. Georgiev, R. Powell,
T. Ewalds, D. Horgan, M. Kroiss, I. Danihelka, J. Agapiou, J. Oh,
V. Dalibard, D. Choi, L. Sifre, Y. Sulsky, S. Vezhnevets, J. Mol-
loy, T. Cai, D. Budden, T. Paine, C. Gulcehre, Z. Wang, T. Pfaff,
T. Pohlen, Y. Wu, D. Yogatama, J. Cohen, K. McKinney, O. Smith,
T. Schaul, T. Lillicrap, C. Apps, K. Kavukcuoglu, D. Hassabis,
and D. Silver, “AlphaStar: Mastering the real-time strategy game
StarCraft II,” https://deepmind.com/blog/alphastar-mastering-real-time-
strategy-game-starcraft-ii/, 2019.

[8] M. Wakatsuki, Y. Kado, Y. Takeuchi, S. Okubo, and T. Nishino, “What
are the Characteristics of the Card Game Daihinmin?” in 2019 8th
International Congress on Advanced Applied Informatics (IIAI-AAI), Jul.
2019, pp. 587–592.

[9] C. Chen and T. Kaneko, “Counterfactual regret minimization for the
board game Geister,” in Proceedings of the Game Programming Work-
shop (GPW 2018), nov 2018, pp. 137–144.

[10] ——, “Application of DREAM to the board game Geister,” in Proceed-
ings of the Game Programming workshop (GPW 2020), nov 2020, pp.
111–117.

[11] E. Steinberger, A. Lerer, and N. Brown, “DREAM: Deep Regret
minimization with Advantage baselines and Model-free learning,” arXiv,
vol. 2006.10410 [cs, stat], Nov. 2020.

[12] M. Bowling, M. Johanson, M. Zinkevich, and C. Piccione, “Regret
minimization in games with incomplete information,” in NIPS’07:
Proceedings of the 20th International Conference on Neural Information
Processing Systems, 2007, pp. 1729–1736.

[13] T. W. Neller and M. Lanctot, “An introduction to counterfactual regret
minimization,” in Proceedings of Model AI Assignments, The Fourth
Symposium on Educational Advances in Artificial Intelligence (EAAI-
2013), 2013.

[14] N. Brown and T. Sandholm, “Solving imperfect-information games via
discounted regret minimization,” in The Thirty-Third AAAI Conference
on Artificial Intelligence, AAAI 2019, 2019, pp. 2157–2164.

[15] M. Lanctot, K. Waugh, M. Zinkevich, and M. Bowling, “Monte Carlo
Sampling for Regret Minimization in Extensive Games,” Advances in
Neural Information Processing Systems, vol. 22, pp. 1078–1086, 2009.

[16] M. Schmid, N. Burch, M. Lanctot, M. Moravcik, R. Kadlec, and
M. Bowling, “Variance Reduction in Monte Carlo Counterfactual Regret
Minimization (VR-MCCFR) for Extensive Form Games using Base-
lines,” arXiv, vol. 1809.03057 [cs], Sep. 2018.

[17] T. Davis, M. Schmid, and M. Bowling, “Low-variance and zero-variance
baselines for extensive-form games,” arXiv, vol. 1907.09633 [cs], Jul.
2019.

[18] N. Brown, A. Lerer, S. Gross, and T. Sandholm, “Deep counterfactual
regret minimization,” in Proceedings of the 36th International Confer-
ence on Machine Learning, ICML 2019, 2019, pp. 793–802.

[19] C. Chen and T. Kaneko, “Acquiring strategies for the board game
Geister by regret minimization,” in 2019 International Conference on
Technologies and Applications of Artificial Intelligence (TAAI), Nov.
2019, pp. 1–6.

