
Validating the plot of Interactive Narrative games
Carolina Veloso

INESC-ID
Instituto Superior Técnico,

Universidade de Lisboa
Lisboa, Portugal

carolina.veloso@tecnico.ulisboa.pt

Rui Prada
INESC-ID

Instituto Superior Técnico,
Universidade de Lisboa

Lisboa, Portugal
rui.prada@tecnico.ulisboa.pt

Abstract—The authoring of interactive dialogues in video
games is an overwhelming and complex task for game writers.
Developing an Interactive Narrative that balances authorial
intent and players’ agency requires frequent in-depth testing. The
limited range of tools to assist authors in verifying their story can
limit the creation of more complex narratives. In this paper, we
discuss the challenges of Interactive Story design and provide
a model consisting of a set of metrics for testing interactive
dialogues. Using this model, we developed a prototype for the
Story Validator tool. This debugging tool allows game writers to
experiment with different hypotheses and narrative properties
in order to identify inconsistencies in the authored narrative
and predict the output of different playthroughs with visual
representation support. We conducted a series of user tests, Using
the Story Validator, to investigate whether the tool adequately
helps users identify problems that appear in the game’s story. The
results showed that the tool enables content creators to easily test
their stories, setting our model as a good step towards automated
verification for assistance of authoring interactive narratives.

Index Terms—Interactive Narratives, Authoring Systems, Ver-
ification, Automated Playtesting

I. INTRODUCTION

The presence of an immersive story in video games is often
a central part of game experience and, consequently, a concern
of design [1] [2]. Such games combine interactivity and
storytelling as an Interactive Narrative (IN), often nonlinear,
that allows the player’s actions to alter the course of the story
[3] [4]. At the core, IN functions similarly to the Choose-Your-
Own-Adventure storybooks [5], where the reader is faced with
various decision points at which they must make a choice,
branching the story in different directions, often leading to
different outcomes.

Deploying IN in games has enormous potential for enabling
the creation of interactive systems that combine player interac-
tion and dynamic plots, however, authors face many challenges
when writing this type of stories [6]. Developing an IN where
players can feel immersed and engaged involves making the
player’s actions and choices have a powerful influence on the
narrative’s direction, making it challenging for the author to

This work was supported by the iv4XR (Intelligent Verification/Validation
for Extended Reality Based Systems) project, EU H2020-ICT-2018-
2020/856716, and by the National Funds Through FCT, Fundação para a
Ciência e a Tecnologia, under project UIDB/50021/2020.

guarantee a well-formed story. Each branch in the story has to
be carefully tailored by the game’s writer, who consequentially
has to predict the different possible player’s behaviours that
can affect the story at various states so that they can present
those choices to the player.

Most traditional approaches rely on extensive and rigor-
ous playtesting to obtain information on how the players
experience the narrative and what might need improvement.
Playtesting provides insightful information that is not antici-
pated during development, helping authors ensure that both
the game’s narrative and the player’s behaviour are well-
balanced [7] [8]. However, obtaining quality feedback for a
detailed analysis can be challenging, expensive, and time-
consuming [9]. Various works have offered different solutions
to handle narrative conflicts caused by user behaviour in-game.
However, hardly any works have focused on letting the author
simulate and question their narrative during development.
Instead, they opt for online AI approaches (such as drama
managers [10]) that, during gameplay, provide ways to dy-
namically adapt the narrative and resolve conflicts created by
unintended player’s actions. These approaches create changes
to the narrative that the author might not have intended, leading
them to lose control over their story.

On the other hand, most authoring tools, such as Twine [11]
and Ren’Py [12], while they facilitate the creation of IN, they
lack the proper tools to identify possible continuity errors, to
keep track of specific narrative properties and to envision the
output of playthroughs prior to human playtesting. Instead,
these tools rely heavily on the author’s intuition to foresee
these challenges or on an exhaustive number of later playtests.

This work outlines the development of a tool that supports
game writers in creating IN whilst maintaining the human
author’s directorial control. Essentially, we strive to main-
tain the idea of authorial intent [13] and develop a system
that allows human authors to express their artistic intentions
without feeling constrained. As a product of this work, we
have designed, developed, and tested a prototype for the Story
Validator, which traverses all possible narrative paths of a IN
and provides insightful data on different story metrics and
design issues encountered via visual representations.978-1-6654-3886-5/21/$31.00 ©2021 IEEE

II. AUTHORING INTERACTIVE NARRATIVES

The authoring of interactive stories in video games is an
overwhelming and complex task for game writers, both in
narrative design and implementation. We identified four main
challenges pertaining to the development of IN:

1) Authorial intent vs player agency. One of the most
challenging problems with IN is the necessity to balance
authorial intent and player agency in the context of
storytelling [14]. According to Riedl, authorial intent is
the trajectory that the game writer wishes the player
to follow, regardless of how the player acts during the
game. Because IN allows the user to interact freely
within the story world, users often have the power to
behave in ways that are inconsistent with the plot. This
can either prevent the plot from advancing or make the
player experience the story in ways that the creator did
not intend.

2) Narrative exponential growth. As the plot grows in
complexity and the number of decision points increases,
the authoring experience will often require substantial
changes to keep the narrative coherent, which can be-
come overwhelming for the author [15]. Not to mention
that the impact a choice has may end up only revealing
itself in future states of the story, which is not always
easy to predict.

3) Gameplay variables that affect the story. Besides what
choices the player makes, the story’s development can be
based on different variables and status that are updated
throughout to game. A common example is the “karma
systems”, which consider the player’s good and evil
deeds and shape the world around them as they progress.
In more complex narratives, game variables can become
challenging to keep track of, and their consequences
may only unravel in later states in the game, which
is not always easy for the author to foresee during
development.

4) Measuring the impact on user’s experience. The
player play-styles are reflected not only in how they
interact with the narrative but also in how they expect the
story to unfold [16]. Due to the complex nature of IN, it
is difficult for the author to predict the player’s behaviour
and overall emotional experience. This is challenging to
predict without prior human playtesting, as it is hard to
ensure during development.

III. LITERATURE REVIEW

A. Interactive Drama

In order to maintain narrative coherency even when the
player has freedom of choice, some past approaches have
focused on the idea of integrating real-time Artificial Intel-
ligence (AI) methods to shape the narrative, allowing players
to interact with the game freely but, at the same time, making
sure the narrative still follows a coherent structure. A popular
example, first proposed by Bates [17], is the use of a drama
manager. A Drama Manager (DM) is an omniscient agent that

monitors the game world and guides the player’s experience
through the story by searching for possible future plot points
based on the evaluation of the current game world while still
allowing the players to interact freely.

For instance, one of the most famous examples of the
implementation of a DM is the Mateas and Stern interactive
drama Façade [18]. Façade uses its DM to monitor and update
the simulation in real-time in response to text the user inputs
by selecting the next story beat.

Like in Façade, Riedl et al. presented the prototype for
INTALE [19], in which the agents are directed by a DM called
Automated Story Director. The Automated Story Director
handles user interactions by maintaining a script of expected
events and planning out new narrative follow-ups to respond
to the player’s actions and achieve all concrete narrative goals
pre-defined by the author.

The studies mentioned above show that online AI ap-
proaches, particularly drama managers, are a popular solution
to guarantee narrative coherence while allowing the player
to interact with the game freely. Unfortunately, there has
been hardly any work done regarding off-line approaches
that attempt to identify possible narrative problems during
development and allow the author to validate their narrative
with different story metrics and predict different playthroughs’
output.

B. Authoring Tools

Since the authoring process remains one of the most sig-
nificant challenges in the development of interactive stories,
there is a need for tools, toolkits and authoring systems that
assist game writers in creating their content. Authoring tools
for IN provide different visual representations and structural
elements that allow authors to write their creative works.

With this in mind, we explored some of the existing
authoring tools currently available for creating IN and their
limitations, namely Tinderbox [20], Ren’Py [12], FAtiMA
Toolkit [21] and Twine [11]. Our findings revealed that these
authoring systems lacked the proper tools to analyse important
narrative metrics and identify possible continuity errors. While
these tools were designed to facilitate the authoring process,
they nevertheless rely heavily on the author’s diligent and
methodical eye to predict all gameplay scenarios and possi-
ble complications that might arise, making story creation a
wearing, expensive, and time-consuming process.

Nonetheless, due to its wide adoption and easy to work
architecture, we concluded that Twine was the most promising
candidate for the incorporation of our model, which we will
describe in the next section.

Twine is a hypertext-based authoring tool designed to
facilitate the creation of interactive stories with branching
narratives. The creation of games with Twine requires only
two elements: Passages and Links. Passage is the Twine’s
terminology for the nodes on the story graph that players
navigate through. Each Passage contains a block of text that
is shown to the player when they reach that Passage during
gameplay. Additionally, Passages can also possess one or more

Fig. 1. A bird’s-eye view of a storyboard in Twine.

tags, which function as labels that add information to the
Passage but are not visible on the published version of the
story.

Similar to branching narratives, where arcs connect nodes to
each other, Passages are connected through Links, represented
by an arrow on Twine’s storyboard. To the player, these are
displayed as points of interaction or decision points. The Links
can be guarded by variables. Twine has a <<if>> macro,
which is used to test the current value of the story’s variables.
These macros will influence the flow of the story since certain
Links will only be available to the player if the conditions of
the <<if>> macros are true.

Because Twine is designed to develop and publish inter-
active stories on the Web, all its data is encoded in a single
HTML file. However, while HTML is the default hypertext
output for Twine, we found that exporting Twine’s internal
XML data in a JSON format would be an added value for
reasons of simplicity and easier processing. This JSON file
contains each Passage’s data, including the Passages’ text,
name, id, Links, and position on Twine’s storyboard.

IV. A MODEL TO TEST INTERACTIVE NARRATIVES

We sought out to develop a tool that supports game writers
in the creation of IN in stages before human playtesting
by letting the author explicitly test different hypotheses and
narrative properties to identify possible design mistakes. To
be useful to authors, such a tool needs to provide insightful
data on different story metrics and identify design issues that
a player could encounter during gameplay.

We take the assumption that the story space can be repre-
sented by a traversable graph with nodes (Passages) and edges
(Links) that can be guarded by variables, and that the tool
uses a Depth-First Search (DFS) based algorithm to traverse
all possible narrative paths to gather data. With this in mind,
we defined the following as useful narrative metrics:

• Number of paths. Enumeration of all possible traversals
of the story graph, including the Passages the player visits
on each narrative path. As a result with get the number of
visits to each Passage as well and get an idea about which
parts of the story are probably more often experienced
by the players. When searching the graph, the algorithm
begins at the starting node (obtained from the JSON data)
and explores one Link at a time, adding each Passage

visited to a stack. When it reaches an ending, the total
number of paths is increased by one, the elements in
the stack are saved as a path sequence, and we begin
popping nodes from the stack until we find a node with
an unvisited Link.

• Endings Hit Percentage. At the end of the game, the
story reaches different endings, depending on the play-
ers’ choices and state variables. The distribution of the
endings players reach is often a concern of the design. As
the search algorithm traverses all the paths, it keeps count
of how many paths reach each ending. It then calculates
the corresponding hit percentage. To ensure that, the story
ending nodes need to to be identified. For example, by
using the Twine tag system and adding an ENDING-
POINT tag to the Passages that are defined as an ending
(see Fig. 2).

Fig. 2. Example of an ENDING-POINT tag in Twine.

• Stroke Points. Whenever the search algorithm reaches an
ending, we compare the current path sequence with the
previous one, intersecting their values to find common
nodes in all paths. Eventually, we can identify which
Passages are visited in all narrative paths. We named
these Passages, Stroke Points. These can be part of the
designer goals, as they can be useful to ensure some parts
of the story is always conveyed to the player. However,
it may happen that the author does not want to withdraw
the player’s ability to choose, in which case Stroke Points
may become a problem.

• Lost Plot. Identifies narrative sections that, although in-
cluded in the story by the author, are never reached in an
actual playthrough due to some design or implementation
error, for example, the conditions set in the <<if>>
macros are never met. Ideally, in a well-constructed inter-
active story, all Passages should be visited at least once,
and all paths should reach an ending. As the algorithm
traverses the story, it keeps track of the Passages visited.
Eventually, it can identify the existence of Passages
that are never reached by any possible narrative path.
Additionally, the iteration of the search may end in Dead-
End, as it stops once it reaches a node without any edges
(i.e., a Passage without any possible Links). Normally,
this node is expected to be an ending, but it can also be
a Dead-End — a non-ending Passage that impedes the
player from progressing. Therefore, if the end Passage
does not have an ENDING-POINT tag, it is identified a
Dead-End.

• Evolution of Variables. A branching narrative might

contain different variables that the author needs to mon-
itor. As the algorithm visits each Passage, it keeps track
and updates those variables. This is used in the tool to
display the values of the variables in a given path and to
trace a timeline of the variable variations through a given
playthrough.

The above-mentioned metrics were defined based on our
personal experience as developers of interactive stories using
Twine and based on a reflection to address the authoring
problems discussed in section II. The same challenges were
later reported by the user study’s participants in section VI-D,
which corroborated our ideas.

V. STORY VALIDATOR PROTOTYPE

The implementation of the Story Validator tool follows
the architecture presented in Figure 3. It is able to load an
interactive story (in JavaScript Object Notation (JSON) for-
mat) created using Twine’s authoring environment. It creates a
representation of the story as a branching tree that is traversed
by a Depth-First Search (DPS) based algorithm. It uses a DFS
algorithm to be greedy in the exploration to explore a given
story path until the end, as a human player would experience
the story (i.e., starting at the root Passage and traversing
through several Passages until reaching an ending point). The
information collected is presented to the user through the use
of a graphical interface (GUI), depicted in in Figure 4.

Fig. 3. The general architecture of the Story Validator tool.

The prototype was built in Python 3 using tkinter for
the Graphical User Interface (GUI)1. The tool’s GUI was
developed following the conceptual organisation presented in
Figure 52.

Using the Story Validator’s GUI, the user selects (1) a JSON
story file to be analysed by the tool. For this analysis, the
user picks one or more options from a selection of analysis
conditions (2), based on the metrics defined in section IV

1The source code can be found at https://github.com/iv4xr-project/
in-story-validator

2Note that elements 4, 9 and 10 were added only after Phase 1 of user
testing.

Fig. 4. The Story Validator prototype GUI.

Fig. 5. The Story Validator GUI conceptual structure.

(see Fig. 6). Each one of these conditions will influence
different visual aspects of the Dialog Trees (5 and 7) and what
information is shown on the Log Reports (6 and 8).

Fig. 6. The panel of analysis conditions.

Additionally, the user can select a story path to analyse in
detail which will appear on the Path Dialog Tree (7) area.

As stated previously, this work’s main objective is to support
game writers by evaluating their game’s narrative and working
as a debugging tool. Next we will present how we envision
authors using our prototype tool to identify and solve problems
present their IN.

• Keeping track of Passages visited. Often during the
creation of IN, there is the need to add, change and
remove Passages and this process can quickly impact the

https://github.com/iv4xr-project/in-story-validator
https://github.com/iv4xr-project/in-story-validator

dynamic of the story. However, this is not always easy to
predict as the impact of a Passage can reveal itself only
in future states.
Furthermore, a branching narrative will often have several
narrative paths that the player can take, resulting from
their choices. For that reason, as the number of possible
narrative paths grows, it becomes tougher for the author
to keep track of the Passages that are visited.
The tool’s algorithm runs through the story by selecting
different options until it reaches an ending. Then it starts
a new playthrough and repeats, choosing other options.
In the end, the Main Dialog Tree (5) displays a tree with
all the narrative paths that the player can take, giving the
author a general idea of how the story flows. In order
to make a more in-depth assessment, the Main Report
Log (6) displays which Passages are visited in each path.
Additionally, the user can pick a path to analyse in detail
(3), which is displayed on the Path Dialog Tree (7).

• Keep track of endings’ reachability. Depending on the
choices in dialogue made, the player is led to different
endings. However, it is difficult for the author to predict
and monitor the endings’ distribution without it being a
laborious and time-consuming task. As a design objective,
the author may want to create certain restrictions on the
distribution of the endings, such as having an ending
that is more common to obtain or an ending with only
one possible path. If the analysis condition Endings Hit
Percentage is selected, the Main Report Log (6) then
provides the author with percentages on the likelihood
of reaching each ending. Besides, on the Main Dialog
Tree (5), the user can observe the paths’ distribution if
the analysis condition Number of Paths is selected.

• Keep track of the story’s variables. In IN, the path
in which the narrative develops can be dependent on
different game’s variables. Having variables updating
depending on the characters or plot state can make the
interactive story more interesting for the player; however,
it is difficult for the author to keep track and control those
values over multiple interactions. The tool can identify
and keep track of all variables defined by the author
and their values throughout each path. The user can
also select which variables they wish to analyse (up to
three). By selecting the analysis condition Variables Value
Evolution, the user can observe the value changes of each
variable. By selecting the analysis condition Variables
value inside Threshold, the tool highlights the Passages
where the variables have a value between the MIN and
MAX values, both defined by the user. The story variables
are also presented in a dotted chart (4), displaying the
value’s changes throughout the story.

• Avoiding Dead-Ends and losing plot. Dead-Ends typi-
cally happen due to an error in defining the Passages that
should come afterwards, meaning they have “entering”
conditions that are impossible to meet or if the path is an
“endless” path. The designer must identify these cases,
as they abruptly stop the player from continuing playing.

However, doing so is difficult due to the combinatorial
nature of the exploration of the story. Furthermore, it is
also essential to identify if there are sections in the story
that are never visited, at the risk of losing important parts
of the plot. If the user selects the analysis condition Lost
Plot, the Main Report Log (6) will print out the Passages
that were never visited and display which paths were not
able to reach an ending. Additionally, on the Main Dialog
Tree (5), Passages that are never visited will appear as
single nodes with no edges connected to them, and on
the Dialog Trees (5 and 7), Dead-End nodes will take on
a rectangular shape in oppose to its regular round shape,
so they are easier to identify for the user.

A. Emulating personas and playstyles

As mentioned in section II, the players’ play-styles are
reflected not only in how they act within the plot, but also
on how they expect the story to respond to their actions.

The author may want to guarantee that some types of players
follows a particular trajectory. Therefore, our intent was to
develop an agent that simulates various playthroughs of the
game, emulating the behaviour of different players, in order
to predict user experience and study the story’s output.

In their work, Stahlke et al. [23] developed a framework,
named PathOS, that simulates human testing sessions using
intelligent agents. These agents mimic the behaviour of hu-
man players by following a set of heuristics (e.g., curiosity,
aggression, and completion), that are configured to reflect
different play-styles. Our work proposes a similar approach,
by letting the author assign different weights to each of
the story variables to create different personas that represent
different playstyles. These personas will have a tendency to
favour options in the story that have stronger impact in certain
variables.

For this, we use an informed Greedy search (see Algorithm
1) using as heuristic based on the defined weights for the
“persona” under test. Each story has a set of variables V =
(v1, v2, ..., vn), where n is the total of story variables, and to
each of these variables V, the writer assigns weights W =
(w1, w2, ..., wn). The heuristic then drives the playthrough of
the story to give preferences to Links that raise the value of
variables it gives higher weight.

For example, if we treat the variables as “emotional states”,
the author may study how the story unfolds given the behavior
of a more aggressive type of player in their game scenario.
They can give greater weight to an “angry” variable that de-
picts the emotion of a character in the story and, consequently,
drive the algorithm to choose the options that lead to higher
value to that emotion. By specifying different weights to each
story variable (e.g., 75% fear, 15% confusion, 5% angry), the
author creates agents with distinct preferences that play the
game in different ways.

It is important to note that since the greedy algorithm does
not consider the overall problem and always makes a locally-
optimal choice at each step based on the information it has,
it often does not produce the most optimal solution. However,

Algorithm 1: Greedy search using heuristic based on
the defined weights.

Function Greedy_step(hightest total, passage,
V , W):

/* gather all the passage’s links */
links = passage.get(”links”)

for l in links do
/* see that vnl is the value update */
/* of the variable n on link l */
totall = v1l ∗ w1 + v2l ∗ w2 + . . . + vnl ∗ wn

end
/* chose link that maximizes the total value */
/* assume x is the total number of links */
chosen link = max(totalla, totallb, . . . , totallx)

/* update highest total value */
highest total = highest total + chosen link

/* chose link with highest value to visit */
next passage = lmax

/* move to next iteration */
Greedy step(highest total, next passage, V,W)

we need to remember that, in most cases, the human player
is also unaware of the overall game-space during gameplay
and, therefore, makes the choices they believe to be the most
optimal at each step, based on the information they currently
have and their player profile. Thus, we believe that a greedy
algorithm best emulates the human behavior in this scenario.

VI. EXPERIMENTAL RESULTS

The following section presents the methods and results of
two user studies that were conducted with the intent of: finding
out if the tool adequately helps the users identify problems in
the game story, and determining whether users can operate the
tool with ease and identify usability issues.

A. The Scenario

For the tests we used Twine’s authoring tool to create an
interactive story, which we named “The Murder Case”.

The story has the following setting: the player plays a
detective tasked with solving a murder. The detective’s main
suspect is brought to the police station for questioning and,
since existing evidence is not sufficient, the player will need
a confession. However, there is a catch: the suspect NPC is a
very wealthy man and upsetting him during questioning will
lead him to ask for his lawyer and the detective to lose the
case. Depending on the dialogue choices made when talking
with the suspect, the player is led to different endings that
reflect their crime-solving skills. To stipulate the effect the
player’s choices have in the narrative’s unfolding, we attach
(and update) variables to each dialogue option. These variables
represent the different emotional states of the suspect NPC:
anger, confusion, and fear.

The scenario contains 3 different endings (“Good detective”,
“Lawyered” and “Not enough evidence”), 14 Passages and 20
possible narrative paths players can take.

Additionally, we created an alternative version of the story
with added issues to be used in the User Test 2. This version,
named “TMC - failed version”, includes 2 Passages that are
never visited and 3 Dead-Ends.

B. User Study 1

In the first study, we examined how the users feel about
the tool’s design and checked its usability. The study was
conducted with 5 users (3 female and 2 male), ages between 18
and 24. Most participants admitted they played games either
regularly (40%) or every day (40%), with some (60%) enjoy-
ing games with interactive stories and branching narratives.
Out of the 5 participants, 3 stated they had knowledge in game
development, manly working as a Game Programmer and/or
Game Writer.

The participants were asked to perform 10 tasks using the
Story Validator and “The Murder Case” scenario. These tasks
included calculating the total number of paths, finding the
endings’ distribution, studying the story variables’ evolution
in each path, among others. This version only allowed users
to test one story variable at a time.

While the participants completed the tasks, we observed
their performance and took notes. We used the think-aloud
method, where participants used the system while continuously
verbalising their thoughts.

In general, the participants were able to complete the tasks,
but some difficulties were found in the tasks that required
checking the values of variables. For example, two participants
did not complete a task that involved counting the number of
paths that reached an ending with a variable “anger” = 0,
while one was not able to find Passages in which the variable
“anger” had values between -4 and -2.

The participants found the Story Validator tool straightfor-
ward and easy to use, giving it an average score of 83.5 (SD
= 9.45) in the System Usability Scale (SUS). According to a
study made by Bangor, Kortum, and Miller [22], these results
suggest that tool has “passable” overall usability.

In the study, participants also proposed different suggestions
regarding the tools’ usability, for example:

1) Help understanding how the tool works. Some users
noted that the quantity of features was a bit intim-
idating (“[the tool] is very overwhelming at first”).
It was suggested some form of assistance to explain
the tool’s functionality (“Once you start clicking some
checkboxes, you learn pretty quickly how it works [...]
but having a help button or something similar would
have helped a lot.”).

2) Easier to read log report. In cases where multiple
analysis conditions were selected, users had issues while
navigating through the log report box and often had to
keep scrolling up and down to locate what they were
seeking. Participants noted that if the box was larger it
would be easier to navigate.

3) Ability to analyse more than one variable. One of
the users reported the desire to analyse more than one
variable at a time. While this did not hinder their ability
to complete the tasks, their suggestion was noted down.

Based on the feedback gathered, we improved the prototype
and added some new features, including:

• The option to test more than one variable simultaneously.
• A “Toggle Tooltips” button, which allows the user to

hover different elements on the tool’s menu to display
a short message detailing how each works.

• A “Print Report” button, which creates a full pdf report
of the story analysis that the user can access outside the
tool’s workspace.

• A dotted chart graph, which displays a timeline with the
changes in the values of each story variable select for
analysis throughout the story path selected.

C. User Study 2

For the second user study we used an improved version of
the Story Validator that addressed the usability issues found
in the first study and included a few extra features.

The goal of this study was to test if users were able to use
the Story Validator to identify problems and various design
issues in the interactive story (the “TMC - failed version”),
and suggest possible solutions to the problems they find.

We conducted the test with 20 participants (8 female and
12 male). Except for one participant, all others admitted they
played video games either every day (35%) or regularly (60%).
Nine of the twenty participants said to have some knowledge in
game development (as Game Programmers, Game Designers
or Game Writers). Five of those participants were familiar
with Twine’s authoring tool prior to the test and considered
themselves to have “Intermediate” expertise.

The scenario that participants tested had the following
issues:

• Problem 1: The Path #7 does not reach an Ending.
• Problem 2: The Path #8 does not reach an Ending.
• Problem 3: The Path #14 does not reach an Ending.
• Problem 4: The Passage “Ending 1” is never visited.
• Problem 5: The Passage “Choice 6” is never visited.

All the previous problems can be identified in the Story
Validator under the Analysis Condition “Lost Plot”, which
reveals Passages that can not be visited and Paths that do not
reach an ending, if existent.

Fig. 7. Analysis Condition “Lost Plot” for the “TMC - failed version”.

However, the reasoning behind each of these problems is
unique, and the user needs to make use of the tool in order to
grasp what exactly is causing each of these issues.

For example, problems 1 and 3 have a similar cause: both
reach a Dead-End at the Passage “Choice 5”. Using the Story
Validator, the user will realize that during the story’s creation,
the writer did not add any Links leaving Passage “Choice 5”
and, consequently, the play-through stops abruptly there.

Fig. 8. Analysing problems 1 and 3.

In general, the participants were able to identify the prob-
lems, except for three who could not identify problem 2. We
believe that the reason for the misidentifying of this problem
was that instead of using the Analysis Condition “Lost Plot”
to identify the issues within the story, they found them by
observing the tree displaying the in tool directly. While this
method is legitimate, none of these 3 participants were able
to identify and solve problem 2.

Additionally, two users (10%) could not find a solution for
problems 1 and 3. In turn, problem 5 seemed to be the one that
was harder to solve for at least five of the participants (25%).
For all the other problems, the completion rate is 100%.

According to the average participant, the task of identifying
the problems within the narrative was considered relatively
easier than trying to propose a solution. The results also show
the time it took users to identify all the problems was 52.3 sec.
(SD = 22.66), while proposing a solution took, on average,
146.2 sec. (SD = 31.84). Overall, the time values for both
finding and solving problems prove that the tool is efficient and
that, with a bit of experience with the tool, users can quickly
use the tool to pinpoint and repair errors in their interactive
stories.

In the end, participants gave the Story Validator tool an
average SUS score of 92.4 (SD = 4.76). These results suggest
that our system is considered a “truly superior product” [22].

D. Additional results

Before each experiment, we asked the participants, together
with the demographics questionnaire, their preferred tool to
write stories for games, and what problems they usually face
in the task.

The most preferred authoring tool to write stories for games
was a basic word processing tool (76%), such as Microsoft
Word, Google Docs or LibreOffice Writer, but some had
experience using Twine (24%). The users also reported the
following problems when using their preferred authoring tool
for writing IN:

• Difficulty keeping track of game variables and/or objects;
• Difficulty identifying “Dead-Ends”, meaning moments in

the game that prevent the player from continuing playing;
• Difficulty keeping track plot moments in the game that

the player skips unintentionally, losing the plot coherence;
• The lack of ability to keep track of user experience

(before playtesting).

These findings are aligned with the metrics we propose in
section IV.

VII. CONCLUSION

In this paper, we have underlined some of the current chal-
lenges concerning the authoring process of IN. We addressed
the lack of tools that provided ways for the authors to test
their narrative while considering the player’s agency, during
the game’s developmental stage, without requiring playtesting.
More often than not, these works opt for online AI approaches
that, during gameplay, dynamically adapt the narrative and
resolve conflicts created by unintended player’s actions. This
might lead to situations where the system takes control of the
story, replacing human authorship.

With this work, we set ourselves to develop a tool for
testing interactive dialogues for video games. With such tool,
we believe that authors gain some control that enables them
to define more complex narratives to express their artistic
intentions without feeling constrained. This approach has been
designed to facilitate the development of IN in stages before
human playtesting by letting the author explicitly test different
hypotheses and narrative properties to identify possible design
mistakes. The tool’s GUI allows for a clearer picture of the
IN authoring process, by providing a visual representation
of the narrative structure through the use of tree structures,
that run through different test conditions. The two studies
we conducted show some good sign for the approach and
tool proposed. As several participants confirmed (“I would
definitely use this tool to test my stories”, “[the tool] really
helps give the designer an idea of how their narrative works”,
“using [the tool] would save game developers so much time”)
the tool proves to be an essential asset for the creation of IN.

Overall, we believe that, as a first approach to this type
of systems, our prototype managed to achieve the proposed
objectives.

ACKNOWLEDGMENTS

We gratefully acknowledge the assistance and support pro-
vided by the colleagues of project iv4XR at INESC-ID. We
would also like to thank all those who participated in the user
studies; their feedback was extremely helpful.

REFERENCES

[1] E. Aarseth, “A narrative theory of games,” in Proceedings of the
international conference on the foundations of digital Games, 2012, pp.
129–133.

[2] H. Qin, P.-L. Patrick Rau, and G. Salvendy, “Measuring player immer-
sion in the computer game narrative,” Intl. Journal of Human– Computer
Interaction, vol. 25, no. 2, pp. 107–133, 2009.

[3] M. O. Riedl and V. Bulitko, “Interactive narrative: An intelligent systems
approach,” Ai Magazine, vol. 34, no. 1, pp. 67–67, 2013.

[4] S. Dinehart, “Dramatic play,” 2009, online; Retrived 5-November-
2020. [Online]. Available: http://www.gamasutra.com/view/feature/
4061/dramaticplay.php

[5] B. Books, Choose Your Own Adventure Book Series. Bantam Books:
NYC, 1979 - 1998.

[6] M. Mateas, “The authoring challenge in interactive storytelling,” in Joint
International Conference on Interactive Digital Storytelling. Springer,
2010

[7] P. Mirza-Babaei, N. Moosajee, and B. Drenikow, “Playtesting for indie
studios,” in Proceedings of the 20th International Academic Mindtrek
Conference, 2016, pp. 366–374.

[8] P. Mirza-Babaei, V. Zammitto, J. Niesenhaus, M. Sangin, and L. Nacke,
“Games user research: practice, methods, and applications,” in CHI’13
Extended Abstracts on Human Factors in Computing Systems, 2013, pp.
3219–3222.

[9] N. Moosajee and P. Mirza-Babaei, “Games user research (gur) for indie
studios,” in Proceedings of the 2016 CHI Conference Extended Abstracts
on Human Factors in Computing Systems, 2016, pp. 3159– 3165.

[10] J. Bates, “Virtual reality, art, and entertainment,” Presence: Teleoperators
and Virtual Environments, vol. 1, no. 1, pp. 133–138, 1992.

[11] C. Klimas, “Twine - an open-source tool for telling interactive, nonlinear
stories,” 2020, online; Retrived 5-January-2020. [Online]. Available:
https://twinery.org/

[12] T. Rothamel, “The ren’py visual novel engine,” 2020, online; Retrieved
16-November-2020. [Online]. Available: https://www.renpy.org/

[13] M. O. Riedl, “Incorporating authorial intent into generative narrative sys-
tems.” in AAAI Spring Symposium: Intelligent Narrative Technologies
II, 2009, pp. 91–94.

[14] R. Aylett, “Emergent narrative, social immersion and “storification”,”
in Proceedings of the 1st International Workshop on Narrative and
Interactive Learning Environments, 2000, pp. 35–44.

[15] E. Adams, Fundamentals of game design. Pearson Education, 2014, pp.
172–173.

[16] S. Dow, B. MacIntyre, and M. Mateas, “Styles of play in immersive and
interactive story: case studies from a gallery installation of ar façade,”
in Proceedings of the 2008 International Conference on Advances in
Computer Entertainment Technology, 2008, pp. 373–380

[17] J. Bates, “Virtual reality, art, and entertainment,” Presence: Teleoperators
and Virtual Environments, vol. 1, no. 1, pp. 133–138, 1992.

[18] Mateas, Michael, and Andrew Stern. “Façade: An experiment in building
a fully-realized interactive drama.” Game developers conference. Vol. 2.
2003.

[19] M. O. Riedl and A. Stern, “Believable agents and intelligent story
adaptation for interactive storytelling,” in International Conference on
Technologies for Interactive Digital Storytelling and Entertainment.
Springer, 2006, pp. 1–12.

[20] M. Bernstein, “Collage, composites, construction,” in Proceedings of
the fourteenth ACM conference on Hypertext and hypermedia, 2003,
pp. 122–123.

[21] S. Mascarenhas, M. Guimarães, R. Prada, J. Dias, P. A. Santos, K.
Star, B. Hirsh, E. Spice, and R. Kommeren, “A virtual agent toolkit for
serious games developers,” in 2018 IEEE Conference on Computational
Intelligence and Games (CIG). IEEE, 2018, pp. 1–7.

[22] A. Bangor, P. T. Kortum, and J. T. Miller, “An empirical evaluation of the
system usability scale,” Intl. Journal of Human–Computer Interaction,
vol. 24, no. 6, pp. 574–594, 2008.

[23] Stahlke, Samantha, Atiya Nova, and Pejman Mirza-Babaei. “Artificial
Players in the Design Process: Developing an Automated Testing Tool
for Game Level and World Design.” Proceedings of the Annual Sym-
posium on Computer-Human Interaction in Play. 2020.

http://www.gamasutra.com/view/feature/4061/dramatic play.php
http://www.gamasutra.com/view/feature/4061/dramatic play.php

	Introduction
	Authoring Interactive Narratives
	Literature Review
	Interactive Drama
	Authoring Tools

	A Model to Test Interactive Narratives
	Story Validator prototype
	Emulating personas and playstyles

	Experimental Results
	The Scenario
	User Study 1
	User Study 2
	Additional results

	Conclusion
	References

