
Adversarial Behaviour Debugging
in a Two Button Fighting Game

Nathan John and Jeremy Gow
Game AI Research Group

School of Electronic Engineering & Computer Science
Queen Mary University of London, UK

{n.m.john-mcdougall, jeremy.gow}@qmul.ac.uk

Abstract—We introduce the concept of Adversarial Behaviour
Debugging (ABD), using intelligent agents to assist in the debug-
ging of human-authored game AI systems, and Bonobo, an ABD
system for Unity. To investigate the differences between ABD and
traditional playtesting, we collected gameplay data from Bonobo
agents and human testers playing against a buggy AI opponent.
We present a comparison of the differences in gameplay and
an online study on whether these differences affect observers
perceptions of the AI opponent. We found that while there were
clear differences, ABD compares favourably to human testing
and has the potential to offer a distinct perspective.

Index Terms—Games development, debugging, game AI, bugs,
testing, neuroevolution

I. INTRODUCTION

AI agents acting as opponents and NPCs are common
in modern video games, with behaviours crafted by the
developers using techniques such as behaviour trees, utility,
and planning [1]. The more complicated the game, the more
sophisticated these authored agents must be in order to deliver
the required player experience. And the more sophisticated the
authored agent, the more time and effort developers typically
must dedicate to debugging its behaviour [2].

The standard approach to debugging agent behaviour is to
use human playtesters: observing and analysing people playing
the game to identify bugs — where the agent doesn’t work as
intended or doesn’t meet technical criteria — or exploits —
where the agent may work as intended but detracts from the
experience. This is a relatively expensive process which must
be repeated throughout development [3].

In this paper, we propose Adversarial Behaviour Debugging
(ABD) as an alternative approach. ABD is a form of semi-
automated testing where a developer uses other intelligent
agents to gain insights into the behaviour of a game’s AI
systems. While this is unlikely to replace the need for human
testers, we examine whether ABD can provide an additional
source of insight for developers and hence help them identify
bugs and exploits before expensive human testing.

In Section III we describe ABD as a general approach
to game development. Section IV puts the case for using
neuroevolution in ABD, while Section V introduces Bonobo,
a neuroevolution-based ABD system for Unity. The rest of the
paper looks at how ABD compares to human playtesting in
the context of DropFeet, a simple two button fighting game.

We developed a challenging but exploitable AI opponent
for DropFeet and collected playthrough data from tests with
human players, Bonobo’s adversarial agents, and a random test
agent. We present two views of these playthroughs and their
relative usefulness for debugging: an analysis of the objective
differences in test gameplay (Section VI), and a study of
observers’ perceptions of the authored agent (Section VII). We
find that playthroughs generated by ABD perform comparably
to human replays for gaining insights into an authored agent,
providing potential for further exploration.

II. RELATED WORK

A. Debugging and Software Engineering

In 1997, Lieberman described debugging as the “dirty little
secret of computer science” [4], and observed that debugging
is primarily done through trial and error, a fact that has
not changed since thirty years prior. Beller et al. [5] found
that twenty years later the methods used by programmers to
debug had not changed much. Their study of programmers’
debugging habits found that print statements more used than
in-built debugging features and more powerful tools. While
unable to give a conclusive answer as to why, Beller et al.
was able to establish that programmers were aware of these
alternatives. One explanation for these practices is the lack
of immediacy provided by debugging tools [6]. Alternatively,
it could be that tools and techniques have not kept up with
changes in the software engineering landscape [7].

Search-Based Software Engineering (SBSE) [8] suggests
that aspects of software engineering can be considered an
optimisation problem, and encourages the use of search tech-
niques. A common area of interest in SBSE is testing and
debugging, with Nguyen et al.’s test case generation through
neuroevolution being relevant here [9].

There are some unique considerations when the piece of
software being debugged is a computer game. Functionality is
more likely to change during development compared to tradi-
tional software, so technical infrastructure needs to support fast
prototyping [10]. Traditional automated testing methods can be
too rigid for use in game development. Murphy-Hill et al. [11]
posit writing automated tests for games can be difficult partly
because “it is harder to explore the state space in games”. This
could explain industry reliance on human testers, which is also
cheaper and more flexible than test engineers. When automated

978-1-6654-3886-5/21/$31.00 c©2021 IEEE

tests suites are developed for games, the tests must deal with
the idiosyncrasies of game development, as documented in
case studies from Riot Games [12] and Electronic Arts [13].

The specific problem of debugging the AI systems of
computer games presents yet another set of unique challenges.
In a previous study, we found that the three primary reasons
that AI programmers found debugging game AI agents difficult
were that AI bugs are difficult to identify; reliably reproducing
bugs in the AI can be difficult and that AI systems are con-
ceptually complex [2]. A 2017 GDC panel on game AI testing
highlighted the conceptual complexity of debugging and the
interconnected nature of game systems: one must consider
“how the AI is going to change the game-state, and then how
the AI is going to react to that because you could put in a new
feature that breaks something else, somewhere else because it’s
changing game-state now that you weren’t prepared for” [14].
Hence developers have adopted AI architectures to reduce the
mental load to debug [15, 16] as well as specialised debugging
tools [17, 18]. Even so, the process of debugging game AI can
be extremely time consuming [19].

B. Playtesting with intelligent agents

The use of intelligent agents as a tool for playtesting games
is an area of active research. There are two related kinds of
testing that works generally apply to. One is finding/detecting
defects in the game which relates to bug-hunting and help-
ing the programmers. The other is play-testing the game,
relating to aiding with the design of the game, which is
more commonly explored[20, 21, 22]. While ABD focuses on
the former, both branches of literature contain some relevant
insights. For example Keehl et al.’s work on Monster Carlo is
framed within the context of game design, however a similar
framework could be effective for debugging.

The most relevant work is Machado et al’s Cicero[23],
a mixed initiative system that provides AI assisted debug-
ging including heat-maps, game agents playing using Monte-
Carlo Tree Search (MCTS) [24], and a replay analysis tool
— SeekWhence [25]. Here the authors acknowledge that a
shortcoming of many AI-assisted game design tools are that
they are often closely tied to the implementation of the specific
game they’re being used for, and for this reason it “becomes
difficult when a developer wants to apply the same techniques
to another project without re-implementing.” Ariyurek et al.
also used MCTS as the intelligent agent of choice, exploring
the use of human-like agents as QA testers. They found that
these human-like agents found a comparable amount of the
bugs to the human testers.

C. Neuroevolution

Neuroevolution is a hybrid machine learning algorithm that
applies evolutionary algorithms to artificial neural networks,
instead of backpropagation [26]. A population of networks
is instead evaluated by a fitness function and the highest
performing are bred together to create a new generation of
networks, with this cycle repeating hundreds or thousands of

times. Various approaches have been proposed to encoding
and breeding networks [27].

NEAT is a popular neuroevolution algorithm where both
the weights and the topology of the ANN is evolved, which
outperforms evolving the weights alone [28]. NEAT also
maintains a good level of diversity within the population via
speciation, which helps avoid local maxima. NEAT has had
success in multiple domains [29, 30], including video game
playing agents [31].

There has been a variety of research into the application of
neuroevolution to video games [26], including game-playing
agents, content generation and player behaviour modelling.
However, Risi and Togelius [26] notes that there have been
no notable examples of neuroevolution in the game industry
for playing agents, with game developers citing lack of control
and clarity as issues when working with neural networks.

III. ADVERSARIAL BEHAVIOUR DEBUGGING

We define Adversarial Behaviour Debugging (ABD) as the
use of intelligent agents to play against human-authored AI
behaviours, in order to aid the developer in debugging those
behaviours. As there are two distinct kinds of AI agent in
ABD, we will use the term authored agents to refer to the
game systems crafted by the developers and adversarial agents
to refer to the external systems used to test authored agents.

We propose ABD as an approach to debugging behaviours
before the game is sent to Quality Assurance (QA) or playtest-
ing. By observing the adversarial agents interacting with the
authored agent, a developer is able to gain insights into the
behaviour of their authored agent, and use those insights to
make improvements.

It is important to note that these adversarial agents do not
need to be good players of the game, nor to play in a human-
like manner. Instead, the adversarial agents are primarily
looking to explore the behaviour of the authored agent and
reveal its flaws in such a way that gives a debugging developer
insights into how to repair them.

ABD is a general approach to software engineering in
games, which does not depend on any particular details of the
game or adversarial agents. For example, it does not assume
the game has a particular kind of environment or action space,
or the presence of a forward model, although a developer could
exploit these in ABD. For the adversarial agents, it does not
assume how their behaviour is defined or generated, only that
they sufficiently explore the authored agents’ behaviour.

Adversarial agents could be implemented in a variety of
ways, depending on the tools and resources available to the
developer. Various AI methods could be applied, whether that
be a suite of MCTS agents with varying personas similar
to Holmgård’s procedural personas [20], a population of
agents evolved with neuroevolution (explored below), or —
if the developer has a glut of compute resources available
to them — agents trained using deep reinforcement learning.
Alternatively, the adversarial agents could simply make use of
the authored agents, with tweaks to emphasise the exploration
of behaviour rather than playing the game well.

Considering how ABD could be adopted in game develop-
ment, there are three core components that developers would
need to provide: a test environment, a control interface, and
some form of behaviour visualisation.

a) Test Environment: An environment where adversarial
and authored agents can interact. For small games this could
be the entire game, e.g. DropFeet described in Section VI-A.
For larger games, this could be a scaled-down white-box area
where the authored behaviour could be explored. Multiple
test environments could be used, each acting as a separate
automated test case.

b) Control Interface: An API for the adversarial agent
to perceive and control the game. Adversarial agent inputs
provide some representation of the current game state, and
a driver translates the agent’s output into game actions. In
some projects, it may be possible to use sensory data that
is provided for the authored AI, and game metrics that are
already implemented as inputs.

c) Behaviour visualisation: One of the benefits of ABD
is being able to observe the adversarial agents as they interact
with the authored agent. By observing these interactions a
developer is given the opportunity to make insights of the
behaviour of their authored agents. As such, and implementa-
tion requires some method of displaying the behaviour of the
adversarial agents, while the process is running.

IV. ABD AND NEUROEVOLUTION

While the adversarial agents used in ABD could be imple-
mented with a variety of techniques our initial approach uses
neuroevolution, and specifically NEAT. Statistical Forward
Planning techniques such as MCTS could also be used as
adversarial agents, however these requires the developer to
implement a forward model into their game, which is an as-
sumption that machine learning methods do not require. When
comparing machine learning methods for suitability as ad-
versarial agents, reinforcement learning techniques generally
require large amounts of data and computation in order to learn
even simple behaviours, whereas neuroevolution has shown
itself to often solve problems faster and more efficiently.

Looking specifically at NEAT, its speciation encourages a
range of agent behaviours, acting as a broad exploration of the
behaviour space. And as different species generally represent
different behaviours, a user can look at a representative from
each species to get an idea of the behaviours that exist in the
system, without having to exhaustively observe every member
of the population.

One cost of neuroevolution is the specification of a fitness
function to evaluate the adversarial agents. However, pro-
vided developers can craft numerical definitions of interest
and potential bugginess specific to their game, they are a
fairly friendly interface which ignores the underlying learning
model. Additionally, interactive evolution is a fairly common
paradigm that could allow developers to input their insight
into the evolution of testing agents. Given bugginess can be
very game and experience specific, using a technique that a
designer can influence is a potential advantage.

Fig. 1. Bonobo running DropFeet in Unity’s editor mode. The entire
population of 81 adversarial agents is visualised on the left, with a selection
of game instances (marked with an eye) displayed in detail so that the agent
behaviours can be compared.

V. THE BONOBO SYSTEM

Bonobo is a system for Adversarial Behaviour Debugging
in the Unity3D game engine. When supplied with a game in-
stance, which contains the gameplay logic, the authored agents
under inspection, and a game state evaluation function, Bonobo
manages the testing process, training adversarial agents using
NEAT [28] with a population of game instances. It is based
on SharpNEAT [32], a popular implementation of NEAT
for C#, the native language of Unity. SharpNEAT is highly
modular and extensible: we use a custom implementation
of its Experiment class to define fitness functions for game
instances based on gameplay metrics. It also supports custom
implementations of speciation and selection, which we intend
to make use of in future versions of Bonobo.

Currently, we have developed two simple Unity games
for use with Bonobo: Ping, an air hockey like game, and
DropFeet (described in Section VI-A), a clone of the cult two
button fighting game Divekick. To be compatible with Bonobo,
a game needs to provide a Unity prefab defining a game
instance, allowing Bonobo to instantiate multiple versions for
parallel evaluation.

The game instance inherits from a base game instance class
which defines an API for receiving an adversarial agent and
reporting back a game state evaluation value. This class is also
where each game implementation defines how many inputs and
outputs the adversarial agent’s neural network should have.
The developer is responsible for defining these network inputs
(player perceptions), outputs (player actions), and the game
state fitness function.

Additionally, Bonobo allows a developer to provide a
Boolean test for “interesting” game instances, which the
system can highlight during evolution. This helps the devel-
oper identify and investigate gameplay which they suspect
represents bugs or exploits in the authored agent. For example,
DropFeet game instances are classified as interesting simply if
the adversarial agent has scored more points than the authored
agent.

A developer is free to create any game logic they wish
using the features of Unity, with a few technical constraints
which are specific to the design of Bonobo, such as having all
gameplay code in FixedUpdate so the game is deterministic

when played at high speeds, and restricting game objects
to a defined space. The constraints reflect choices we made
to prototype ABD more easily within Unity, but may not
be required by other ABD systems. For example, one could
evaluate the game instances sequentially, use separate scenes,
parallelise across multiple machines, or run the game at normal
speeds.

The core Bonobo system manages the testing process in-
cluding the main UI, which game instance prefab to be tested,
and settings for how many instances will be in the population,
how long a generation of evaluation lasts, and how many
instances will be displayed at one time in the main view. These
settings allow the exact behaviour of Bonobo to be tweaked
depending on the requirements of the game instance being
tested.

Running Bonobo instantiates multiple copies of the game
instance arranged as a grid in world space. Each instance has
a member of the adversarial agent population and runs for a
specified time. The fitness of each instance is then evaluated
and passed to the NEAT algorithm. There is a high-speed mode
which increases Unity’s timescale by four, which still allows a
developer to keep track of the gameplay. In a future version we
hope to include automatic isolation of interesting or erroneous
behaviour, allowing higher speeds.

Rather than displaying the entire population of game in-
stances, the main view of Bonobo shows a selection. This
is based on a combination of state evaluation function and
NEAT’s speciation, sorting the species by their fitness and
displaying representative members from the top species.

VI. HUMAN VERSUS ABD GAMEPLAY

As a first step to understanding how ABD compares to
human playtesting, we conducted a study with the Bonobo
system and DropFeet, a simple two button fighting game
(described in Section VI-A). We looked at the objective differ-
ences in gameplay when testing a challenging but exploitable
authored agent for DropFeet (described in Section VI-B). From
these differences we can make inferences about how useful
each approach will be for debugging. A random test agent
was also included, representing a cheaper baseline approach
to supplementing human playtesting. Three sets of DropFeet
playthrough data were collected (Section VI-C) — with hu-
mans, with Bonobo adversarial agents, with our random agent
— and a comparative analysis performed (Section VI-D).

A. DropFeet

DropFeet is a simplified version of Divekick, a two button
fighting game for two players. The players are coloured red
and blue, and the goal is to hit your opponent with a diving
kick. Landing a kick to the body earns 1 point, landing a
kick to the head earns 2 points. Once a point is scored,
the round is over and the players are reset to their starting
positions. Pressing the Jump button on the ground makes the
character jump directly upwards. Pressing the Kick button on
the ground makes the character take a short hop backward.
Finally, pressing the Kick button in the air immediately causes

Fig. 2. The possible movement options in DropFeet a: Jump directly up. b:
Hop backwards. c: Launch a diving kick from the air.

the character to kick diagonally downwards in the direction
they are facing. The higher in a jump arc a player presses
kick, the further a kick will travel. Once a player commits to
a kick, they are locked in until they hit the ground. If both
buttons are pressed at the same time, jump is prioritised on the
ground, and kick is prioritised in the air. There are no other
inputs for this game. For this experiment, the red fighter is
always be the authored agent, and the blue fighter is the tester
— either a human, the random agent, or Bonobo adversarial
agent.

B. The Exploitable Authored Agent

An authored agent was developed to play DropFeet, which
is controlled through a set of utility functions that evaluate
which action to take based on the game state. Of note is the
fact that the authored agent has some randomness included
in its actions, manifesting in the agent sometimes jumping
in order to advance or gain positional advantage when it is
a safe choice. This unpredictability makes the agent a better
opponent, as predictability is a big weakness in fighting games.
For this analysis, a bug was included in the agent which
causes the agent to launch attacks from the top of its jump
arc which can easily be avoided and counterattacked by the
agent’s opponent. This behaviour is highly exploitable, as it
will perform these jumps both as an attempt to counter attack,
and randomly instead of doing a low attack to advance safely.
This bug was chosen from a set of three buggy variations of
the agent that were developed, as it stuck a balance between
being observable, but not too obvious, representing the kind
of bugs that would be expected to be picked up by QA.

C. Playthrough Collection

The game logged the full state and player actions, which
could later be replayed to reproduce the gameplay. For each
condition, playthrough logs were programmatically edited to
produce roughly 15 second playthrough segments, always
ending on a score to include complete rounds. A set of eight

segments per condition were selected for analysis, allowing us
to compare more easily across conditions. For the human and
random testers, those segments with the highest score advan-
tage for the tester were selected, representing gameplay where
the authored agent could be manifesting a bug or exploit.
This reflects the preprocessing a developer would do in order
to look for the most informative sections of a playthrough
session. The adversarial agents were quite repetitive in their
gameplay, so we simply generated segments of the required
length.

1) Human Playthroughs: To gather human test data, four
players were given a version of DropFeet with the authored
agent. These players were selected for their familiarity with
the fighting genre, so they could adequately serve as testers.
One works as a game developer. They were given instructions
on how to play the game and asked to play for at least
two minutes. For each of the four players, the two segments
with the largest score difference in the player’s favour were
selected.

2) Random Playthroughs: The authored agent played
against a random agent that took an action every 4 frames
(DropFeet’s game logic runs at a fixed 60fps). It had an equal
probability of pressing the Jump button, the Attack button,
both, or neither. 30 minutes of data was collected, to reflect
the amount of human test data.

3) Adversarial Agent Playthroughs: Bonobo used a fitness
function that encouraged a variety of actions and scoring
against the authored agent. It was penalised for pressing no
buttons, and rewarded if it presses both buttons through the
match. There was a large reward for scoring points and a small
negative reward for conceding points. Playthrough data was
gathered from two runs of Bonobo, each with a population
size of 81 and lasting 200 generations (about 30 mins). We did
not tune the population size or generations, but had observed
this maintained a reasonable variation in behaviour and was
long enough to develop interesting adversarial behaviours. Two
separate runs of Bonobo were used as the neuroevolution
process is stochastic, so this would mitigate against one lucky
or unlucky run, while avoiding cherry picking the results from
a unrealistic number of runs. The eight playthrough segments
were generated from the fittest member of the top four species
generated by each run.

D. Playthrough Analysis

Figure 3 shows the scores achieved by the testers and au-
thored agent for each playthrough segment, and the bounding
ellipses for each type. Looking at scores we can get an idea
of how the various testers performed against the authored
agent in the selected playthroughs. The human and random
agents sets of scores are both more tightly grouped than the
adversarial agent, with the human players performing better,
and the random agents performing close to 1 for 1. On the
other hand there are a wide range of score differences from the
adversarial agent. This seems to indicate that the adversarial
agent playthroughs have more variation than the other types

Fig. 3. A scatterplot of the scores achieved by the playthroughs used in the
survey. The line represents where games of an even score would lie. Ellipses
are multivariate normal distribution confidence ellipses with a confidence level
of 0.95.

Fig. 4. A Boxplot taking each collection of 8 playthroughs and plotting how
many time each action was performed per second.

of playthough, which may make sense due to the differing
selection method.

Figure 4 shows a boxplot of how many times each action
was performed per second in each playthrough. This helps
us get an idea of differences and similarities between how
the actions are selected. In general, the adversarial agents are
more similar to human players than the random agent, with
fewer actions per second. There are a low amount of hops in
all three conditions. When looking at the movements of the
agents, a similar story appears. Low use of hops seems to show
that score differences were lower when hops were used more
often — authored agent often won when the opponent used
hops — since the random agent selected their actions with even
probability and yet not many hops were present in the selected
representative gameplay segments. It is interesting that the
adversarial agent used the most hops, but averaged a better
score difference. Hops were used more intentionally than with
the random opponent, showing the adversarial behaviour was
not random.

Fig. 5. PCA biplot of all the statistics gathered from the playthrough segments.
The wide range of positions the adversarial agents cover seem to show a wide
coverage of the behaviour space

Figure 5 is a biplot of a PCA based on the frequency of
actions taken per second, and distances moved per second
by the tester in each playthrough of each type, and helps us
characterise the different playthoughs. The X-axis could be
described as buttonsy: high horizontal movement and pressing
lots of buttons, therefore taking lots of actions. The Y-axis
can be described as hoppy: using the back hop often and
having lower vertical distance travelled. Random appears to be
highly buttonsy, whereas humans are far less buttonsy, and less
hoppy. Adversarial agents cover a wide range of this space,
overlapping with both other groups. This indicates adversarial
agents explore a wider range of test behaviours.

The most striking visual difference between the playthrough
types is that the adversarial agents are far more repetitive
and consistent. In any single playthrough segment, the human
players have more variance in what they attempt, whereas an
individual adversarial agent will attempt to repeat the same
strategy over and over. This can also be seen by looking at
the statistics for a sliding 5 second window which moves in 1
second increments for each replay segment, then calculating
the coefficient of variance for the statistics. Figure 6 shows
plots of the coefficient of variance for each playthrough’s stats.
The highly repetitive nature of the adversarial agents leads to
a low coefficient of variance, whereas the human’s wide range
of gameplay styles lead to higher values. The random agent
has a low coefficient of variance since the actions taken are
uniformly selected through the whole replay.

E. Discussion

The most significant difference between the human replays
and the adversarial agents is the consistency of actions taken
within a single replay. This consistency could be useful for a
developer observing the playthrough in isolating which action
or circumstance is causing unwanted behaviour. Also, adver-
sarial agents play-styles cover a wide range of behaviours that
overlap both the clustered human players, and the clustered
random players. This can be interpreted as adversarial agents

Fig. 6. A Boxplot that plots the coefficient of variance of how many times
each action was taken for a sliding 5-second window of each playthrough.

covering a wider range of the behaviour space that the two
other options. This may mean it’s possible that adversarial
agents will bring up bugs that might not be caught by a random
agent, or a human tester.

VII. EFFECTS ON PERCEPTIONS OF AUTHORED AGENTS

Given the observed differences between the human and
ABD testing, our next question was how these might impact
debugging. Specifically, do the differences affect people’s
ability to infer bugs or exploits in the authored agent? We
performed an online study to investigate this question.

A. Perception Survey

Participants were given a description of the game DropFoot
and told that its developer has written an AI opponent for
the game and gathered some video playthroughs to see how
the AI performs. They were then presented with a video of
either humans or adversarial testing. Below the video they are
asked to rate how exploitable or buggy they think the authored
agent is, from 1-10, and are able to scroll through the video
while they settle on their answer. On the next page, they are
shown the same video again for reference and asked to select
which of the following statements describes the error/exploit
that exists in the agent, two of which were correct:

• The red player launches some attacks from too far away
(Correct)

• The red player is predictably defensive
• The red player doesn’t react to the blue players motions
• The red player can be baited into an easily attacked jump

(Correct)
• None of the above

Finally, the participants are asked to rate how useful the set
of replays were for finding exploits in the authored agent on
a 7-point scale from Extremely Useless to Extremely Useful.

B. Results & Discussion

The survey has a total of 163 responses, with 57 having seen
the human replays, 48 having observed the adversarial agents,

Fig. 7. Compared to watching replays from humans, replays from adversarial
agents are rated as seeming more exploitable, whereas replays from random
agents are rated similarly.

Fig. 8. Compared to the human replays, participants who observed the random
agent performed significantly worse at correctly identifying the error.

and 58 having seen the random agent. Looking at responses
to the first question investigating how buggy or exploitable
the participants rated the authored agent, shown in Figure 7
the agent was rated as more buggy when the players observed
the adversarial agents with a mean exploitable rating of 5.7,
compared to the human replays 4.8 (Wilcoxon rank sum p-
value=0.039). On the other hand, comparing the human replays
to the random playthroughs, no significant effect seemed to
appear from this sample (Wilcoxon rank sum p-value=0.322).

Considering the ability of participants to correctly identify
the error in the authored agent, the only significant effect
when compared to the human replay data was that participants
observing the random replays performed significantly worse
than the human replays (Chi-squared p-value: 0.00376). No
significant effect appeared when comparing the adversarial
agents to the human replays.

Finally, neither the random agent (mean 5.3) nor the ad-
versarial agent (mean 5.1) were significantly different to the
human replay data in terms of how useful the participants
evaluated the usefulness of the replays (mean 5.2).

These results indicate that using replays from ABD can
provide value to developers attempting to debug their game
AI, when compared to using human testers. As participants
that observed the adversarial agent replays rated the authored
agent as more exploitable, it could be imagined that adversarial
agents are a suitable tool for helping developers get an inkling
about whether their authored agents are behaving properly. The
fact that the adversarial agent replays performed similarly to
the human replays when it came to identifying the error is
also of significance, as whereas with human replays, adding
a breakpoint while the tester is playing is usually out of the
question, with an adversarial agent playthrough, by re-running
the exported agent a developer would be able to inspect the
insides of their authored agent while the adversarial agent was
playing against it.

VIII. CONCLUSIONS AND FURTHER WORK

We proposed Adversarial Behaviour Debugging as a tech-
nique to aid in debugging of authored agents; described
Bonobo, an implementation of ABD in the Unity game engine;
performed analysis on how ABD playthroughs perform com-
pared to human and random testers, and performed a study
investigating how these different testers affect an observer’s
perception of a buggy authored agent.

Playthrough segments from adversarial agents cover a wider
range of behaviour than human or random testers, while per-
forming behaviours more consistently than humans. This could
be useful for discovering or reproducing bugs and exploits that
might get overlook during human testing. However, how an
observer interprets Bonobo testing compared to human testing
suggests that ABD playthroughs provide different insights,
rather than exclusively better insights. Rather than acting as a
replacement for human testers, ABD is likely better suited as
a supplement.

There are still several different questions that could be
asked, and we’ve only looked at one, ‘How does ABD
effect participants perception an agents bugginess’. There are
many other questions that could be asked and would be
interesting, such as presenting participants with playthroughs
of buggy agents and non-buggy agents, to investigate if ABD
playthroughs effect participant accuracy in identifying if a bug
is present or not. We could present participants with a range of
different buggy agents to investigate how ABD playthroughs
effect participants ability to identify different bugs.

DropFeet is a simple game environment and further work
could generalise this work to more complicated agents and
environments. We also use the original NEAT algorithm,
and have yet to explore whether alternative neuroevolution
algorithms, such as RBF-NEAT[33] or Cascade-NEAT [34]
could create different explorations of the behaviour space and
be even more useful for debugging.

ACKNOWLEDGMENTS

Nathan John is supported by the IGGI EPSRC Centre for
Doctoral Training (EP/L015846/1).

REFERENCES

[1] M. Dawe, S. Gargolinski, L. Dicken, T. Humphreys, and
D. Mark, “Behavior Selection Algorithms An Overview,”
in Game AI Pro. CRC Press, 2013, pp. 47–60.

[2] N. John, J. Gow, and P. Cairns, “Why is debugging video
game AI hard?” in Proc. AISB AI & Games symposium,
Apr. 2019, pp. 20–24.

[3] H. M. Chandler, The Game Production Handbook. Jones
& Bartlett Publishers, 2009.

[4] H. Lieberman, “The Debugging Scandal and What to Do
About It,” Commun. ACM, vol. 40, pp. 26–29, 1997.

[5] M. Beller, N. Spruit, D. Spinellis, and A. Zaidman, “On
the dichotomy of debugging behavior among program-
mers,” in IEEE/ACM ICSE, 2018, pp. 572–583.

[6] D. Ungar, H. Lieberman, and C. Fry, “Debugging and the
experience of immediacy,” Communications of the ACM,
vol. 40, no. 4, pp. 38–43, 1997.

[7] M. Kassab, J. F. DeFranco, and P. A. Laplante, “Software
Testing: The State of the Practice,” IEEE Software,
vol. 34, no. 5, pp. 46–52, 2017.

[8] M. Harman and B. F. Jones, “Search-based software engi-
neering,” Information and Software Technology, vol. 43,
no. 14, pp. 833–839, Dec. 2001.

[9] C. D. Nguyen, S. Miles, A. Perini, P. Tonella, M. Har-
man, and M. Luck, “Evolutionary testing of autonomous
software agents,” Autonomous Agents and Multi-Agent
Systems, vol. 25, no. 2, pp. 260–283, Sep. 2012.

[10] J. Kasurinen, J.-P. Strandén, and K. Smolander, “What
do game developers expect from development and design
tools?” in Proc. Int. Conf. on Evaluation and Assessment
in Software Engineering. ACM, 2013, pp. 36–41.

[11] E. Murphy-Hill, T. Zimmermann, and N. Nagappan,
“Cowboys, Ankle Sprains, and Keepers of Quality: How
is Video Game Development Different from Software
Development?” in Proc. of the 36th Int. Conf. on Soft-
ware Engineering. ACM, 2014, pp. 1–11.

[12] J. Merrill, “Automated Testing for League of Legends,”
Feb. 2016. [Online]. Available: https://technology.
riotgames.com/news/automated-testing-league-legends

[13] C. Buhl and F. Gareeboo, “Automated testing: A key
factor for success in video game development. case
study and lessons learned,” in Proc. Pacific NW Software
Quality Conferences, 2012, pp. 1–15.

[14] D. Mark, E. Johansen, S. Ocio Barriales, and M. Robbins,
“Behavior is Brittle: Testing Game AI,” 2017, published:
Presentation at GDC. [Online]. Available: https://youtu.
be/RO2CKsl2OmI

[15] K. Dill, “Structural Architecture: Common Tricks of the
Trade,” in Game AI Pro, S. Rabin, Ed. A. K. Peters,
Ltd., 2013, pp. 61–71, section: 5.

[16] D. Isla, “Handling Complexity in the Halo 2 AI,”
2005. [Online]. Available: https://www.gamasutra.com/
view/feature/130663/

[17] J. Gillberg, “Tom Clancy’s The Division: AI Behavior
Editing and Debugging,” 2016, published: Presentation

at GDC. [Online]. Available: https://www.youtube.com/
watch?v=rYQQRIY zcM

[18] M. Lewis and D. Mark, “Building a Better Centaur:
AI at Massive Scale,” 2015, published: Presentation
at GDC. [Online]. Available: https://www.gdcvault.com/
play/1021848/Building-a-Better-Centaur-AI

[19] G. Alt, “The Suffering: A Game AI Case Study,” in
Challenges in Game AI workshop, 19th National Conf.
on AI, 2004, pp. 134–138.

[20] C. Holmgård, M. C. Green, A. Liapis, and J. To-
gelius, “Automated Playtesting with Procedural Personas
through MCTS with Evolved Heuristics,” CoRR, vol.
abs/1802.06881, 2018.

[21] O. Keehl and A. M. Smith, “Monster Carlo: an MCTS-
based framework for machine playtesting unity games,”
in IEEE CIG, 2018, pp. 1–8.

[22] S. Stahlke, A. Nova, and P. Mirza-Babaei, “Artificial
Players in the Design Process: Developing an Automated
Testing Tool for Game Level and World Design,” in Proc.
CHI PLAY. ACM, Nov. 2020, pp. 267–280.

[23] T. Machado, D. Gopstein, A. Nealen, O. Nov, and
J. Togelius, “AI-Assisted Game Debugging with Cicero,”
in IEEE Congress on Evolutionary Computation, 2018.

[24] G. Chaslot, S. Bakkes, I. Szita, and P. Spronck, “Monte-
Carlo Tree Search: A New Framework for Game AI.” in
AIIDE, 2008.

[25] T. Machado, A. Nealen, and J. Togelius, “SeekWhence
a retrospective analysis tool for general game design,” in
Proc. Int. Conf. on the Foundations of Digital Games.
ACM, Aug. 2017, pp. 1–6.

[26] S. Risi and J. Togelius, “Neuroevolution in games: State
of the art and open challenges,” IEEE Trans. on Com-
putational Intelligence & AI in Games, vol. 9, no. 1, pp.
25–41, 2015.

[27] D. Floreano, P. Dürr, and C. Mattiussi, “Neuroevolution:
From architectures to learning,” Evol Intell, vol. 1, 2008.

[28] K. O. Stanley and R. Miikkulainen, “Evolving neural
networks through augmenting topologies,” Evolutionary
computation, vol. 10, no. 2, pp. 99–127, 2002.

[29] ——, “Competitive coevolution through evolutionary
complexification,” Journal of artificial intelligence re-
search, vol. 21, pp. 63–100, 2004.

[30] K. Stanley, N. Kohl, R. Sherony, and R. Miikkulainen,
“Neuroevolution of an automobile crash warning sys-
tem,” in Proc. conf. on Genetic and evolutionary compu-
tation. ACM, 2005, pp. 1977–1984.

[31] K. O. Stanley, R. Cornelius, R. Miikkulainen, T. D’Silva,
and A. Gold, “Real-time Learning in the NERO Video
Game.” in AIIDE, 2005, pp. 159–160.

[32] C. Green, SharpNEAT, 2018. [Online]. Available:
https://github.com/colgreen/sharpneat

[33] N. Kohl and R. Miikkulainen, “Evolving neural networks
for fractured domains,” in Proc. Conf. on Genetic and
evolutionary computation, 2008, pp. 1405–1412.

[34] ——, “Evolving neural networks for strategic decision-
making problems,” Neural Networks, vol. 22, no. 3, 2009.

