
from 30,834 to 34,613, representing a 12.25% improvement
after training on the novel levels set. This shows that the novel
content generated from the framework is learnable.

D. Discussion

The results of these experiments show that the framework
can generate novel content satisfying the novelty objective
for three agents with different strategies. However, the agent
used for the novelty generation can be switched with an
agent that deploys multiple strategies representing the strate-
gies of the existing suite of Angry Birds agents. This will
make the initialization of the framework more capable to
generate novel content that satisfies the novelty objective of
a broader range of agents. The second set of experiments
done using the reinforcement learning agent is a preliminary
analysis conducted to show that the generated novel content
is learnable. As the agent we used is based on the standard
deep Q-learning algorithm, we expect that the state-of-art
reinforcement learning agents should at least achieve similar
performance. Future experiments can be done with different
learning agents and different novelty objectives to study and
compare the learning capabilities of the agents.

VII. CONCLUSION

In this paper, we proposed the first systematic novelty
generation framework for physics-based video games. We
discussed the modules of the novelty generation framework
in general and we instantiated it for a research clone of
Angry Birds. We conducted two experiments to show that the
generated novelties are consistent with user-defined objectives.
We conducted another experiment using a learning agent to
show that the generated novelties are learnable. In future, we
plan to extend the framework to generate novelties, which
ensures a change to the agent’s strategy. We believe that
this work will facilitate advancements in future AI agent
developments in open-world environments.
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