
Representational Sensitivity for Divide the Dollar Playing Agents

Andrew Dong and Daniel Ashlock

Abstract—Divide the Dollar is a two-player simultaneous
game derived from the bargaining game invented by John Nash.
This game is interesting because its strategy space contains an
entire subspace of Nash equilibria. The large number of moves
in the game means that it is somewhat challenging to design
agents to play the game. This study examines the problem of
designing representations for divide the dollar playing agents
and tests a number of representations. It was found that
representation and resources allotted were significant factors
affecting the agents’ performance and that fitness and resources
used appeared to be negatively correlated during evolution. This
study places agents with different representations into direct
competition and finds that there are representations with a
strong competitive advantage. Both the choice of representation
and the allocation of resources to that representation are found
to impact the ability of agents to make bargains and to compete
with one another.

Index terms — Representation, Representational Sensitivity,
Mathematical Games, Game Theory, Divide-the-Dollar, Co-
evolution.

I. INTRODUCTION

In earlier studies on the iterated prisoner’s dilemma [8]
it was found that the representation of agents in simple
experiments with the prisoner’s dilemma had a dominant
effect on the outcome [6]. In this study we extend this work
to a more complex mathematical game, Divide the Dollar,
using a variety of representations enumerated in Section
III. The goal of the study is to check if representation has
a large role in the outcome of evolutionary experiments
with divide the dollar playing agents, and we find it does.
Failure to control for the effect of representation is a major
lacuna in many published papers on evolving agents to play
mathematical games and this study continued the process of
demonstrating such control is critically necessary.

The game divide the dollar is a simplification of the
bargaining game proposed by John Nash [15]. The game is
a simultaneous two-player game in which each player makes
a bid. If the bids have total of one dollar or less, each player
receives their bid, otherwise they receive nothing. This game
is supposed to model the process of making a bargain where
the bargain can fail or be made. Each player is at risk of
leaving some of the potential profit behind. The space of
moves for divide the dollar is the set of pairs of positive
fractions of a dollar, with the pairs summing to no more
than one, yielding non-negative payoffs. A feature that makes

Andrew Dong is an independent researcher in Guelph, Ontario, Canada,
dongandrew99@gmail.com

Daniel Ashlock is with the Department of Mathematics and Statistics
at the University of Guelph, in Guelph, Ontario, Canada, N1G 2W1,
dashlock@uoguelph.ca

The authors thank the University of Guelph for supporting this work.
978-1-6654-3886-5/21/$31.00 2021 IEEE

this game interesting is that there is an entire subspace, pairs
of moves that sum to exactly one dollar, that are all Nash
equilibria. The game is similar to the ultimatum game, but
the ultimatum game enjoys serial rather than simultaneous
play.

Recall that a Nash equilibrium of a game is a set of strate-
gies for players so that no player may improve their score by
changing their strategy unilaterally. The Nash equilibria of a
game are places where, in classical game theory, players are
likely to settle. Having an entire connected subspace of Nash
equilibria means that player behavior is harder to predict.
There is, a priori, no game-theoretic reason to prefer an even
division of the dollar to an uneven split. Human actors see an
even split as being desirable, but this is not a notion encoded
by the definition of Nash equilibria and would have to be
engineered into software agents.

In this study we examine a variety of different agent rep-
resentations, including simple reactive agents, agents based
on artificial neural nets, state conditioned agents, and agents
based on a linear genetic programming representation.

The remainder of the study is structured as follows: section
II examines the history of both divide the dollar and of
representation in evolutionary game theory. Section III gives
the design of experiments. Section IV gives and discusses
results, while Section V draws conclusions.

II. BACKGROUND

The earlier work on the representational sensitivity of the
iterated prisoner’s dilemma [6] showed that, by changing the
agent representation, it was possible to drive the fraction
of cooperative populations arising from evolution from 0%
to 93%. This means that representation plays a dominant
role. Worse, the cited study found neural nets to be largely
uncooperative while other researchers found that neural nets
did learn to cooperate [12]. This seemed to amplify repre-
sentational sensitivity to representational instability, an even
worse state of affairs.

An investigation into a possible reason for this failure to
replicate the prisoner’s dilemma behavior of neural nets [13]
led to the discovery that not only representation, but the
resources, both computational and informational made avail-
able to agents with a given representation, could substantially
affect which behaviors arose under the influence of evolution.
The types of resources varied included the number of hidden
neurons in a neural net, the number of states in a finite state
agent, the time depth of past play in a lookup table, and the
granularity of probability in a Markov chain based agent.

For the prisoner’s dilemma it was found that both represen-
tation and the more fine-grained issue of resources provided
within a representation both had a significant effect on the

agent behaviors that arose during training of agents with an
evolutionary algorithm. Every sort of resource tested, infor-
mational or computational, exhibited a measurable impact on
behavior when varied. Changing the number of states in a
state conditioned agent from 8 to 80, for example, completely
reversed some agent behaviors [2].

In a pair of papers that used genetic programming [9]
to train agents to play divide the dollar [1], [7] it was
found, first, that evolved agents favor near even splits when
they are drawn from a single breeding population. The
second result was that when the players were spit into two
breeding populations, with all play between agents from
distinct populations, that the tendency to split the dollar
nearly evenly decreased substantially. The evolution of fairer
solutions was probably a kinship effect [11]. This is another
nail in the coffin of the notion that simple simulations will
provide a reliable way of modelling behavior. The details of
the simulation are critical.

In [3] a generalization of divide the dollar was proposed
that permitted visual design of additional bargaining games
with controllable properties. This generalization replaces the
set of coordinated bids in standard divide the dollar,

C = {(x, y) : 0 ≤ x, y ≤ 1, x + y ≤ 1}, (1)

with arbitrary sets. Any two dimensional subset of the
positive quadrant with positive area specifies a generalization
of divide the dollar. Each agent specifies a coordinate of
a point (their bid) and if the point jointly specified by the
player’s bids lands in the coordination set, they receive their
bids. A picture of the coordination set permits many of the
properties of the resulting game to be deduced. A variety of
possible scoring sets were explored in [5].

This version of divide the dollar generalizes naturally to
higher dimensions, though the ability to retrieve properties of
the game from visualizations of the set diminishes. A paper
modelling undependable government subsidies with three-
player generalized divide the dollar appears in [4]. This paper
not only generalized to a three player version of the game, but
also explored dynamic coordination sets. The unreliability of
government subsidies was modelled by having a favourable
portion of the coordination set that sometimes disappeared,
modelling the failure of a government to fund industrial
subsidies.

The current study intersects these two lines of research,
into representation and resources for game playing agents
on one hand and into divide the dollar one the other. For
the sake of simplicity, this initial foray into representation
for divide the dollar remains with the original divide the
dollar game, where the scoring set is as in (1). The impact
of representation on generalizations of divide the dollar is
left for the future.

III. DESIGN OF EXPERIMENTS

We begin by stating the fitness function we will use to
drive evolution and compare different agents.

Definition 1: The score of a gene G against another gene
H is the average payout when playing iterated Divide the

Dollar with 50 iterations. This score is always between 0
and 1.

The number of rounds used for iterated play was chosen
based on earlier studies [3], [4], [5]. Too small a number
of rounds does not permit an agents ability to play to be
assessed well, while large numbers of rounds of play take
too long. Fifty is a compromise value arrived at in the earlier
work. When comparing agents, we refer to such a direct
comparison of G and H as a match between G and H .

When evolving agents, the fitness of a gene at a point in
time is its average match score against all other population
members. The fitness evaluation method is a round-robin
tournament of all population members.

A. The Agent Representations

Each representation tested in this study has a binary
variation operator, crossover, and a unary variation operation,
mutation. All new population members are produced by
applying the crossover operator to copies of population
members selected from a 24 member elite. A single instance
of mutation is applied to each new agent after it is produced.

1) Simple Agents: An agent that depends only on the
previous bids by the two players was tested, called the simple
agent, which is determined by three parameters: the first bid
F , the aggression A, and the volatility V . The idea is to
try and coordinate by moving in the direction of a deal if
coordination did not happen in the last round, and to score
slightly better if a deal happened in the last round.

Formally, the simple agent operates as follows: its first bid
is F . Let a and b be the bids of the simple agent and the
opponent on a given round. Then the next bid of the simple
agent is

a′ =

{
a + A if (a, b) ∈ C,

(1− V)a + V (1− b) if (a, b) 6∈ C

where C denotes the set of bids that are considered to be
coordinated, which is that shown in Equation 1 in this study.
If a deal was not made, the SimpleAgent moves a fraction
of V of the way from a to 1− b, since (b, 1− b) ∈ C for all
b ∈ [0, 1].

The binary variation operator used is uniform crossover
on the three parameters that form the gene, F , A, and V .
The unary variation operator, mutation, consists of modifying
each of the three parameters by some ∆, chosen uniformly
at random from [−0.2, 0.2].

2) Artificial Neural Networks (ANNs): Each ANN agent
maintains a history vector ~vin, which stores the bids from
both agents in alternating order and serves as the input
vector to the ANN to generate each bid. The vector ~vin has
dimension m, where m is an even positive integer denoting
the memory of the agent. Before play, each element of the
history vector is initialized with 0.5.

The ANN has a hidden layer of h nodes and an output
layer consisting of one node. The hidden layer vector is
computed by an h-by-m weight matrix W1, a 1-by-h matrix
B1, and a transfer function f1 chosen from one of the

following functions: Sigmoid, ReLU, arctangent, tanh, and
Heaviside. The function used for each of the two layers
can be different functions and are a part of the agents’
genetics. All functions were normalized to have outputs in
the range [0, 1]. Similarly, the output layer is computed with
appropriate genetic parameters W2, B2, f2. The equations
are:

~v1 = f1(W1 ~vin + B1)

~vout = f2(W2 ~v1 + B2)

The transfer functions f1, f2 are applied element-wise the
matrices. The final matrix ~vout has dimensions 1× 1, whose
value is used as the bid. A complete structure of an ANN
agent used in this study can be seen in figure 1.

Fig. 1. A simple illustration of the Artificial Neural Network representations
used in this study. An arrow from a node u to another node v indicates that
the output from node u is used to compute the output of node v.

The binary variation operator is one-point crossover, pro-
ducing two children, on the rows of W1 and B1 and the
columns of the row vector W2. The set of biases B2 of the
children is equal to the set of biases B2 of the parents, with
both orders being equally likely.

3) Moore Machines: The next agent representation used
in this study are finite state Moore machines that generate
bids as their output. Moore machines associate the output
values they emit with their states, as opposed to Mealy
machines that associate outputs with transitions. Transitions
are driven by the outcomes of the previous play, using the
three possible outcomes: I scored higher (H), my opponent
scored at least as well as I did (L), and my opponent and I
did not make a deal (F). These moves are called high, low,
and fail. An example of one of these machines is shown in
Figure 2.

The machine shown in in Figure 2 has only four states.
Because the agent has one possible payoff per state the
number of payoffs available is relatively small. This means
that agents need to have enough states to give them an
acceptable number of payoffs. In addition to payoffs and
transitions, the agents need an initial play. The starting state,
shown with a source-less arrow in Figure 2, yields the initial
payoff. The starting state is always state zero.

The agents are represented as vectors of integers in the
range [0, 213). For an s-state agent, the vector has length
4s, with contiguous blocks of four integers specifying a
state. Within a 4-tuple (n1, n2, n3, n4), we take the first three

Fig. 2. An example of a four-state automata of the sort used in this study.

numbers mod s to obtain the next-state transitions for play
outcomes H, L, and F respectively. The fourth number is
divided by 213 to obtain the state label, which serves as the
bid and is in the interval [0, 1).

When updating a population, pairs of agents reproduce
to replace other agents. This reproduction uses two-point
crossover of the vector of integers. Mutation selects a number
of loci and replaces the integers there with new ones gen-
erated uniformly at random. A parameter of the algorithm,
the maximum number of mutations (MNM), controls the
distribution of number of loci mutated. The number of loci
mutated is chosen among all integers in the range [1,MNM]
uniformly at random.

4) Function Stacks: Function stacks are a form of linear
genetic programming similar to Cartesian genetic program-
ming [14]. A function stack is an array of nodes, each of
which consists of an operation, two argument specifiers, and
two ephemeral real constants. The output of a function stack
is the value of node 0. When a node is evaluated, its argument
specifiers are resolved and then the operation of the node is
applied to the values of the arguments to yield the value of
the node. The available operations are given in Table I. The
protected division returns x/y unless x/y is not a number
(NaN), in which case the operation returns x.

TABLE I
THE OPERATIONS AVAILABLE TO THE FUNCTION STACKS. PROTECTED

DIVISION IS EXPLAIN IN THE TEXT.

Operation Description
add Add the arguments, x+ y.
sub Subtract the arguments, x− y.
mul Multiply the arguments, x · y.
max Find the maximum, max(x, y).
min Find the minimum, min(x, y).
amn Arithmetic mean, (x+ y)/2.
gmn Geometric mean,

√
x · y.

div Protected division, x/y.
tws Twist of arguments, xy/(x2 + y2).

These operations were chosen as a simple collection of
operations enabling basic arithmetic and various averaging
operations that can form the foundation for effective strate-
gies for an iterated divide the dollar game.

The argument specifiers for the function stacks include
ephemeral constants in the range [−1, 1), the output of earlier
nodes in the stack, rendering the function stack a directed
acyclic graph for purposes of information flow, and the input
variables, which consist of earlier plays by the agents.

f(x) =
ex−F

1 + ex−F
(2)

The agents function more efficiently if they can only produce
valid divide-the-dollar bids — in this case, values in the
interval (0, 1). The genetic programming used can produce
values in a much wider range. For that reason, a squashing
function, given by Equation 2, was used to coerce the output
into the correct range. This function generates a sigmoid
curve with range (0, 1). The constant F shifts the curve.

Similarly to the ANN agents, each function stack agent
maintains a history vector of size m, denoting the bids from
the last few rounds of play. These bids do not necessarily
reflect the scores obtained as it is possible the bids were not
in the coordination set C.

B. Other Agents

We also use a random agent that picks its bids uniformly
in the range [0,1] and three constant agents that bid 0.4,
0.45, and 0.5 every time. The preceeding list comprises 45
agent specifications that are indexed in Table II. The index
numbers are used in figures.

TABLE II
INDEX NUMBERS FOR EXPERIMENTS PERFORMED. M AND H ARE

MEMORY AND HIDDEN NEURONS FOR ARTIFICIAL NETS. ST IS THE
NUMBER OF STATES IN A MOORE MACHINE. N IS THE NUMBER OF

NODES FOR A FUNCTION STACK WHILE F IS ITS SHIFT. C IS THE VALUE
OF A CONSTANT AGENT.

Parameters # Parameters # Parameters
ANN Function Stack Function Stack (cont.)

0 M6, H6 17 M1, N12, F0.0 29 M4, N12, F0.0
1 M6, H12 18 M1, N12, F0.5 30 M4, N12, F0.5
2 M6, H18 19 M1, N12, F1.0 31 M4, N12, F1.0
3 M8, H6 20 M1, N12, F1.5 32 M4, N12, F1.5
4 M8, H12 21 M1, N16, F0.0 33 M4, N16, F0.0
5 M8, H18 22 M1, N16, F0.5 34 M4, N16, F0.5
6 M10, H6 23 M1, N16, F1.0 35 M4, N16, F1.0
7 M10, H12 24 M1, N16, F1.5 36 M4, N16, F1.5
8 M10, H18 25 M1, N20, F0.0 37 M4, N20, F0.0
9 M12, H6 26 M1, N20, F0.5 38 M4, N20, F0.5

10 M12, H12 27 M1, N20, F1.0 39 M4, N20, F1.0
11 M12, H18 28 M1, N20, F1.5 40 M4, N20, F1.5

SimpleAgent RandomAgent
12 simple 41 random
Moore Machine ConstantAgent
13 St8 42 C0.4
14 St12 43 C0.45
15 St16 44 C0.5
16 St20

C. Experimental Parameters

The Artificial Neural Network, Moore, and Function Stack
agents had parameters that were modified and tested. They
are as follows:

• Artificial Neural Networks (ANNs): memory
m ∈ {6, 8, 10, 12}, hidden layer size h ∈ {6, 12, 18}

• Moore machines: number of states in {8, 12, 16, 20}
• Function stacks: memory m ∈ {1, 4}; number of nodes

in {12, 16, 20}; shift F ∈ {0.0, 0.5, 1.0, 1.5}
For the ANNs and function stacks, the memory values

represent input variables consisting of the recent history
of play. A memory of 1 denotes that the gene remembers
the opponent’s last bid only. Larger memory parameters
represent remembering the last bids of the agent and its
opponent. For both ANNs and function stacks, all history
values are initialized to 0.5 before they become available
from play.

D. The Evolutionary Algorithm

Each representation variant listed in Section III-A was
evolved with a population size of 36. Each of the 30 runs ran
for 250 generations of the population; this value was chosen
as it gave the population ample time to settle from the initial
noise, without beginning to sample rare occurrences.

The algorithm uses fitness proportional selection on an
elite consisting of the 24 highest scoring genes in each
generation. This creates a moderate pro-fitness bias for
selection. Each mating event consists of crossover between
two different parents, who are chosen from the elite uni-
formly at random, without replacement. Each mating event
overwrites two non-elite population members (hence there
are (36 − 24)/2 = 6 mating events), and the offspring are
subsequently each mutated. The use of a two-thirds elite
follows earlier research in prisoner’s dilemma and divide the
dollar as a good trade off between stability, which arises from
replacing relatively few agents, and exploration for new agent
types which benefits from replacing more agents.

After selection occurs in each generation, a round-robin
tournament of all 36 genes was conducted and the mean and
best fitness as well as the coordination rate among all pairs
of agents were saved. After the run, the parameters of the
gene for the agent with the highest fitness were saved to be
tested against agents evolved using other representations.

E. Experiments Performed

For each variant of each representation, 30 independent
runs of the evolutionary algorithm were performed. The
30 best-of-run agents for each representation variant were
saved for evaluation. Cross-representational matches then
took place; all 1350 = 45 × 30 possible pairs of agents
played 50 round matches and the results between each pair
of representations were recorded.

For standardization, representations had to implement
three functions:
• Initialize. The data stored by the agent is reset to

prepare for a new game of divide the dollar.
• Get bid. The agent should provide a real number: the

bid it intends to make on the next round.
• Push bids. The agent is given the results of the bid it

and its opponent decided to make on the last round.

This interface allowed representations of different types to
play against each other.

F. Analysis Techniques

In each run, the mean fitness and coordination rate over all
matches was recorded after each generation. Let m(g) and
c(g) denote the mean fitness and mean coordination rate on
the g-th generation.

We consider the average value of m(g) and c(g) from
generations g ∈ {50, 51, . . . , 250}, which gives a measure
of the performance of each representation variant, which
are listed in Section III-C. The early generations (0 to 49)
are not considered to allow the population time to settle
from initial genetic randomness. The tournament includes
representations, the random and constant agents, that were
not evolved.

Call an agent that chooses its bid uniformly at random
from the interval [0, 1] a RandomAgent. Consider a match
between two RandomAgents, where the first RandomAgent
bid x and the second bid y. Note that on rounds where
the two RandomAgents coordinate, (x, y) is a point chosen
uniformly at random in the right triangle with vertices
(0, 0), (1, 0), (0, 1). Thus, the expected total payout for both
players is

2

∫ 1

0

∫ 1−x

0

(x + y) dy dx =
1

3
,

where the factor of 2 comes from the fact that the right
triangle has area 1/2. Thus, the expected payout for each
RandomAgent is 1/6. Moreover, clearly the expected fraction
of coordinations between two agents, where at least one
of them is a RandomAgent, is at most 1/2. These values
were experimentally found to be accurate. These values for
the random and constant agents provide a baseline for our
comparisons.

The results between all pairs of versions of representations
tested were used to calculate the performance of each rep-
resentation versus all other representations. For each pair of
different representations (R,S), the widths of the 95% confi-
dence intervals on the agents mean score were recorded. We
say that one version or a representation dominates another
if it has a higher mean score and their confidence intervals
do not overlap. If the confidence intervals do not overlap we
say the representations have no clear dominance. Note that
dominance is anti-symmetric and transitive as a relation; we
declare by fiat that an instance of a representation trivially
dominates itself, in order to make dominance a partial order
on the instances of representations tested. We formalize this
in Definition 2.

Definition 2: For any pair of instances of representations,
if the 95% confidence intervals on their population mean
scores in competition with one another fail to overlap, we
say the instance with the higher mean score dominates the
other. We also define an instance as dominating itself, to
permit dominance to satisfy the definition of a partial order.

We examine the partial order determined by dominance
as another way to evaluate the performance between repre-

Fig. 3. One of the 30 runs with Moore machines with 20 states. The
coordination rate fluctuated significantly from one generation to the next.

sentations. Figure 5 displays the Hasse diagram [10] of this
partial order.

IV. RESULTS AND DISCUSSION

For each run, the best fitness, population average fitness,
and coordination rates were saved in each generation. Fig-
ure 3 shows the progression of one such run, demonstrating
nominal evolutionary behavior for agent training.

A. Evolution of Representations

Figure 7 shows the range of coordination and fitness of
the ANN, Moore, simple, and function stack representations
from the evolutionary runs. Figures 8 and 9 break out the
ANN and Moore agents for added clarity. The x- and y-
coordinates show the average of the population mean fitness
and the average of the coordination rates respectively, taken
over generations 50 to 250 for all 30 runs of each representa-
tion variant. The data expressed by these coordinates are the
normalized area under the blue and green curves of Figure 3
for all representations over all 30 runs. The crosses show the
95% confidence intervals for both dimensions.

In each evolutionary run, SimpleAgents evolved to have an
aggression A close to 0. This is because significantly negative
A are not beneficial to the agent as its bid will never increase,
and very positive A yield collisions with other SimpleAgents.

The SimpleAgents in each run evolved to be very similar.
However, each of the 30 SimpleAgent representatives had
quite different values of V and F , and so did not coordinate
very well with each other. Hence, each run can be said to
have a “culture” that yields good performance within the run,
but not when compared against other SimpleAgents from
different runs or other agents of different representations.

Figure 4 shows some typical patterns that were observed.
The majority of runs had a “spike” where the coordination
and fitness would increase rapidly within a small number
of generations. It is important to note that the metric for
evaluating individual described in III-F does not reflect the
final scores of the genes.

Fig. 4. Four runs from the evolution of SimpleAgents. Significant variability in the runs was observed as a result of the “cultures” that formed in each
run. The scenario in the bottom left, where the coordination remained near 0.5 for a large portion of the 250 generations, occurred in a small number of
runs; most runs exhibited a spike in fitness and coordination rate.

The Moore agents tended to perform worse with more
states, coordinating less frequently and achieving worse aver-
age fitness. Figure 9 shows the correlation between resources
and coordination.

For the artificial neural networks, a representation’s per-
formance was most influenced by the number of nodes in
the hidden layer, and secondarily by the amount of memory.
The representations using 18 hidden nodes achieved lower
scores, on average, than representations using 12 hidden
nodes, which in turn got lower scores than with 6 hidden
nodes. Simpler neural agents learned divide the dollar better
in a fixed amount of time.

Moreover, within the representations that used h hidden
nodes for h ∈ {6, 12, 18}, the agents with less memory
coordinated more. This result suggests that, while having
more resources permits having a more intricate strategy,
agents were not able to evolve to effectively make use of
the increased information. However, ANNs with more nodes
in each layer are able to simulate ANNs with fewer nodes
layer. This illustrates that the duration of evolution required
to achieve similar results, i.e. the rate of improvement,
varies materially between agents with different amounts of
resources.

Both the Moore machines and ANN agents achieved
higher levels of coordination with fewer resources — the
Moore machines that coordinated most frequently were the
ones with 8 states, and similarly the ANN representation with
the fewest hidden layer and input (memory) nodes reached

the highest average coordination in evolution.
The function stacks all performed similarly, and evolved

to be close to always coordinating; the main performance-
differentiating factor was the shift F ; larger values of F led
to an inherently easier time coordinating, which resulted in
a slightly better fitness in evolution.

All representations were able to evolve to achieve signif-
icantly higher payouts and coordination rates than a Ran-
domAgent as discussed in Section III-F. In an earlier study
on representational sensitivity in Iterated Prisoner’s Dilemma
[6], both Cooperative Neural Networks and Neutral Neural
Networks were not able to reach a 50% probability of being
better than random play by generation 250 of evolution. The
different outcome here can likely be attributed to a much
finer granularity of the game Divide the Dollar, as agents
were required to bid a real number in the interval [0, 1] rather
than provide a binary choice of “cooperate” or “defect” —
the granularity of all representations is significantly finer for
Iterated Divide the Dollar playing agents.

B. Cross-Representational Play

Crossover of members must happen between two members
of the same representation, and so each evolutionary run
was conducted on one representation only. Thus, for some
representation R, the evolutionary runs favour those that can
perform well against agents of type R, but not necessarily
of other types. Thus, the performance of R when playing

Fig. 5. Shown is a directed graph of competitive dominance. An arrow from node u to node v indicates that representation u dominates representation v.
The experiments are keyed by their index numbers (see Table II), with ANN experiments shown in blue, Moore machines in green, function stacks in red,
the simple agent in violet, the constant agents in brown, and the random number generator in gold, using the Graphviz dot layout engine.

against representations other than R reflects the robustness
of R.

Figure 5 shows the partial order of dominance, explained
in Definition 2. The width of this directed acyclic graph is
a measure of the incomparability of representations. Notice
that the agent representations are well grouped within the
partial order, showing function stacks are superior to ANN
and Moore agents. The Moore and ANN agents had no dom-
inance over one another. The simple agent was dominated
by almost everything else and the random agent performed
badly.

The agents that were not evolved served as a baseline
for comparison, as described in Section III-F. Against all
representations from all four classes depicted in Figure 7,
the ConstantAgent with constant 0.5 was able to achieve the
highest overall score.

While it was noted that agents using fewer resources per-
formed better during evolution, Figure 5 reveals that agents
with higher memory are robust when playing against general
opponents of varying representations. The representations
numbered 2, 4, and 11 are ANN agents with hidden layer
sizes 18, 12, and 18, respectively. Conversely, representations
0 and 3 are at the bottom of the digraph and have hidden
layers of size 6, which is the smallest size that was tested.
Similarly, function stack representations 25, 26, and 35 are
not dominated by any other representation; these functions
stacks used 20, 20, and 16 nodes, respectively.

The ConstantAgent with constant 0.5 performed the best
as all representations evolved to bid slightly under 0.5 to
coordinate with each other.

V. CONCLUSIONS

In this study, the representations with the highest fitness
and coordination during evolution were the function stacks.
The coordination rates varied moderately between the four
classes of representations and a clear correlation between
the amount of resources allotted to a representation and
its coordination rate was observed. Compared to Iterated
Prisoner’s Dilemma, the complexity of Iterated Divide the
Dollar means it is much more challenging to create robust
agents that are able to perform well against an array of play
styles.

This study demonstrates that representation and the
amount of resources available are influential factors in the be-
havior of a divide the dollar playing agent, both performance-
wise when playing against other agents and during evolution-
ary search.

Possible reasons for this variation are:
• Sensitivity to random initialization. Although our

methods begin examining the population from gen-
eration 50 to allow for the early burn-in of random
populations, exploitative agents may prevent the general
population from increasing their fitnesses.

• Sensitivity of the population to crossover and mu-
tation. In some representations with fewer parameters
per gene, children have a high probability of having
behaving similarly to the parents. In other cases, since
the number of new children per generation is fixed,
producing offspring that is easily exploitable or highly
exploitative can cause instability in the population.

REFERENCES

[1] D. Ashlock. GP-automata for dividing the dollar. In Proceedings of
the 1997 Genetic Programming Conference, pages 18–26, Cambridge

Fig. 6. Run 5 from the evolution of ANN agents with memory 6, hidden
layer size 6 (top) and memory 12, hidden layer 18 (bottom). The results in
Figure 8 can be explained by decrease in coordination, and thus also score,
in ANN agents as agents further evolve, when agents have higher memory
and hidden layers. This pattern was observed in the majority of runs in more
resource-demanding ANN agents.

Fig. 7. Shown are 95% confidence intervals on mean fitness and coordina-
tion for each representation.

MA, 1997. MIT Press.
[2] D. Ashlock, W. Ashlock, S. Samothrakis, S. Lucas, and C. Lee. From

competition to cooperation: Co-evolution in a rewards continuum.
In Proceedings of the IEEE 2012 Conference on Computational
Intelligence in Games, pages 33–40, Piscataway, NJ, 2012. IEEE Press.

[3] D. Ashlock and G. Greenwood. Generalized divide the dollar. In
Proceedings of the IEEE 2016 Congress on Evolutionary Computation,
pages 343–350, Piscataway, NJ, 2016. IEEE Press.

[4] D. Ashlock and G. Greenwood. Modeling undependable subsidies

Fig. 8. This figure breaks out the ANN agents from Figure 7.

Fig. 9. This figure breaks out Moore agents from Figure 7.

with three-player generalized divide the dollar. In Proceedings of the
IEEE 2017 Congress on Evolutionary Computation, pages 1335–1342,
Piscataway, NJ, 2017. IEEE Press.

[5] D. Ashlock, E.Y. Kim, and G. Greenwood. Characterizing scoring sets
in generalized divide the dollar. In Press, IEEE Transaction on Games,
2021.

[6] D. Ashlock, E.Y. Kim, and N. Leahy. Understanding representational
sensitivity in the iterated prisoner’s dilemma with fingerprints. Trans-
actions on Systems, Man, and Cybernetics–Part C: Applications and
Reviews, 36(4):464–475, 2006.

[7] D. Ashlock and C. Richter. The effect of splitting populations on
bidding strategies. In Proceedings of the 1997 Genetic Programming
Conference, pages 27–34, Cambridge MA, 1997. MIT Press.

[8] R. Axelrod and W. D. Hamilton. The evolution of cooperation.
Science, 211:1390–1396, 1981.

[9] Wolfgang Banzhaf, Peter Nordin, Robert E. Keller, and Frank D.
Francone. Genetic Programming : An Introduction : On the Automatic
Evolution of Computer Programs and Its Applications. Morgan
Kaufmann, San Francisco, 1998.

[10] Garrett Birkhoff. Lattice Theory. American Mathematical Society,
Providence, RI, 1948.

[11] K. Foster and T. Wenseleers amd F. L. W. Ratnieks. Kin selection is
the key to altruism. Trends in Ecology and Evolution, 21(2):57–60,
2000.

[12] G. Kendall, X. Yao, and S. Y. Chong. The Iterated Prisoner’s
Dilemma, 20 years on. World Scientific, 2007.

[13] E. Y. Kim and D. Ashlock. Changing resources available to game
playing agents: Another relevant design factor in agent experiments.
IEEE Transactions on Computational Intelligence and AI in Games,
9(4):321 – 332, 2016.

[14] J.F. Miller and S. L. Smith. Redundancy and computational efficiency
in cartesian genetic programming. IEEE Transactions on Evolutionary
Computation, 10(2):167–174, 2006.

[15] J. Nash. Two-person cooperative games. Econometrica, 21(1):128–
140, 1953.

