
Learning Controllable Content Generators
Sam Earle

New York University
Brooklyn, New York
sam.earle@nyu.edu

Maria Edwards
New York University
Brooklyn, New York

mariaedwards@nyu.edu

Ahmed Khalifa
New York University
Brooklyn, New York
ahmed@akhalifa.com

Philip Bontrager
TheTake

New York, New York
pbontrager@gmail.com

Julian Togelius
New York University
Brooklyn, New York
julian@togelius.com

Abstract—It has recently been shown that reinforcement learn-
ing can be used to train generators capable of producing high-
quality game levels, with quality defined in terms of some user-
specified heuristic. To ensure that these generators’ output is
sufficiently diverse (that is, not amounting to the reproduction
of a single optimal level configuration), the generation process is
constrained such that the initial seed results in some variance
in the generator’s output. However, this results in a loss of
control over the generated content for the human user. We
propose to train generators capable of producing controllably
diverse output, by making them “goal-aware.” To this end, we
add conditional inputs representing how close a generator is
to some heuristic, and also modify the reward mechanism to
incorporate that value. Testing on multiple domains, we show that
the resulting level generators are capable of exploring the space
of possible levels in a targeted, controllable manner, producing
levels of comparable quality as their goal-unaware counterparts,
that are diverse along designer-specified dimensions.

Index Terms—procedural content generation, reinforcement
learning, game AI, pcgrl, conditional generation

I. INTRODUCTION

The idea of using reinforcement learning to learn game
content generators—or at least, the successful implementation
of this idea—is relatively recent [1]. The basic idea is simple:
an agent is trained to construct levels (or other types of game
content) in the same way an agent would be trained to play the
game.1 Instead of being rewarded for e.g. winning the game,
the agent is rewarded for improving the level.

Compared to using search or optimization methods for
content generation [2], Procedural Content Generation via
Reinforcement Learning (PCGRL) requires a long training
time, but is then able to produce an arbitrary number of
content artefacts very rapidly. Compared to methods based
on supervised learning [3], [4], PCGRL avoids the need for
training data, but instead requires a reward function that
reflects content quality.

As PCGRL was only proposed as a methodology very
recently, there are many issues that have not been studied
yet. One of them is controllability. It is highly desirable for

1In this work, “generator” and “agent” are used interchangeably to refer to
the level-generating RL agent.

Fig. 1: Generated levels from a trained generator on the game of Sokoban.
The generator is controlled during inference to produce small Sokoban levels
with variable solution-lengths and numbers of crates.

a content generation method to be able to be controlled by
the user (such as a human designer or a difficulty adjustment
algorithm). For example, one might want to develop a level
that favors a specific playstyle, a quest with a certain degree of
branching, or a map with a certain balance. The obvious way
of controlling the output of an RL-trained content generator
would be to change the reward function (just like how you
would change the fitness function in search-based PCG), but
that would mean retraining the generator for every change of
control parameters.

In this paper, we explore approaches to training generators
which are controllable after training. Or in other words,
training single content generator agents to output a variety of
content artefacts depending on control parameters. We do this
by introducing control parameters as additional “conditional”
inputs to the neural network, and then rewarding the generator
not only for creating correct artefacts but also adhering to the
control parameters. Figure 1 shows an example of generated
Sokoban level by one of our trained generators. The generator

978-1-6654-3886-5/21/$31.00 ©2021 IEEE

Fig. 2: Controllable PCGRL: In the inner loop, an agent produces content
in order to meet certain targets (constraints or heuristics). In the outer loop,
a user (or automatic curriculum) modifies these targets.

is able to control the number of crates in the level and
the solution-length to provide us with different levels across
these two dimensions. It does so with substantial (though not
absolute) reliability.

The key to making this work is the control regime. To ensure
the agent learns to respond to controls, we need to sample from
the space of all possible values these controls may take (e.g.
by using a uniform random distribution). But as this space
becomes large, this naive approach may become inefficient.
For the approach to scale to complex controls, the control
regime should focus on targets with the most learning potential
for the agent.

Using a curiosity-based teacher algorithm to sample control
targets, and the observation and reward scheme described
above, we demonstrate controllable PCGRL in three simple 2D
level-design domains as well as in free-play modes in SimCity
and Rollercoaster Tycoon.2

II. RELATED WORK

A. PCGRL

The idea behind PCGRL is to frame the PCG process as
a game of level design for the RL agent [1]. The notion of
building levels in a sequential, goal-driven way complements
our intuition about the human level design process, though it is
not the approach usually employed by machine learning sys-
tems leveraged for PCG [3]–[6]. In PCGRL, the agent is given
a random level and can then, turn-by-turn, change tiles in the
level as it sees fit. For each change that improves the quality of
the level, it is given a reward, and it is penalized when it makes
things worse. This approach allows a user with no access to
training data to train a functional content generator, by having
them instead design a reward function from which an agent
can learn. Where ML-based PCG often struggles to produce
feasible content, here, functional constraints are communicated
to the generator during training via its reward. At the same
time, we get the benefits of a neural network-based generator,
which can generalize to unseen input to produce novel designs
[7]. This allows us to combine strengths of both search-based,
and ML-based PCG.

2Code is available at https://github.com/smearle/control-pcgrl

In a naive implementation, PCGRL is susceptible to a
particular kind of overfitting in which the agent learns to
generate the same level every time. We want to avoid this, as
we want to learn generators rather than levels. To make the RL
agent learn to generate a variety of levels, the original PCGRL
paper employed a strategy to make the agent responsive to the
initial random level provided at the beginning of each episode.
This strategy was designed to limit the number of changes that
the agent was allowed to make to the initial map before the
level-generation episode terminated (i.e. “game over”) during
training. The threshold could be set very low, to make the
agent very responsive to the provided starting state, or it
could be made very high, to give the agent freedom to build
a more optimal design. The philosophy behind this strategy
was that diversity of agent behavior should be incentivized
by the environment, rather than built into the RL model or
update rule, so as to remain compatible with any RL training
regime. In that same spirit, our approach here is to make PCG
Agents controllable by a human designer through changes in
the PCGRL framework itself, and not through custom RL
algorithms.

Taking advantage of the responsive nature of a PCGRL
Agent, there has been followup work to the original PCGRL
paper that uses these trained agents as collaborative designers
with a human designer [8]. By training the agent with a limited
number of allowed changes the agent learns to make very
efficient changes which is ideal for working with a human
designer where the human and agent take turns. The limitation
in this scenario is that the designer cannot communicate intent
to the agent and can only communicate through changes made
in the environment. In this work we want to make the agent
responsive to provided, explicit, design goals, which will hope-
fully allow for for more meaningful human-AI collaboration.

Contemporaneous with our previous work is the work by
[9] and [10]. In [9] the authors devise a game between two
game-playing RL agents and a level design agent. This regret
minimization game tasks the generator with the production of
levels that are neither too hard nor too easy for the players,
removing the need for explicitly designing a reward function
for level-generation. In [10], the authors also pair playing
and generating agents together to remove the need for an
explicit reward function, but adapt the level design to the agent
mid-game. In each of our experiments, at least one of our
controls corresponds to a proxy for player difficulty, and the
works cited above demonstrate possible methods for replacing
these proxies with actual feedback from learning player-
agents in future work. At the same time, the incorporation
of arbitrary level-metrics into the reward function gives the
human designer additional dimensions along which to control
and diversify their levels.

B. Controllable RL

There are several possible approaches to training control-
lable RL agents. We could train the RL agent to respond
behaviorally to text commands [11]. We could train it with
different policy networks [12] or memory modules [13] corre-

https://github.com/smearle/control-pcgrl

Fig. 3: Generated examples from region controlled agent-generator. A
checkerboard pattern is used to efficiently increase the number of disconnected
regions, with some corridors remaining to contribute to path-length.

sponding different goals. Or we could train it with conditional
inputs and reward shaping, like in [10], where level designer-
agents observe an auxiliary input that corresponds to intended
difficulty, and are rewarded for controlling a player agent’s
level of success on the generated levels.

All of these approaches could potentially be applied to
PCGRL (though they have not, yet) and each could address
different use cases. In this work we propose an algorithm-
agnostic approach involving conditional inputs and reward-
shaping. By encoding the goal into the state representation of
the level, we allow any RL algorithm to be used and the goal
information can be coded with the reward function, without
requiring any extra data.

C. Absolute learning progress teacher algorithm

In the BipedalWalker environment, a single RL agent can
be trained to navigate diverse terrain, by parameterizing the
terrain-generation process with a continuous variable, and
sampling this variable from a Gaussian Mixture Model that is
fitted to the agent’s Absolute Learning Progress during training
(ALP-GMM) [14]. The agent’s reward is the same across all
sub-tasks. The same ALP-GMM teacher algorithm is used in
our work to generate a curriculum of content-generation sub-
tasks: rather than sampling environments, it samples target
behavior (i.e. level characteristics), each of which correspond
to a particular conditional input scheme and reward function.

III. DOMAINS

A. Binary, Zelda, and Sokoban

Our main experimental domains are the same ones as in [1]
(where they are also described in more detail): Binary, Zelda,
and Sokoban. In the Binary domain, tiles can be either wall or
floor. The goal is to create the longest shortest path between
any two tiles. Zelda is the GVGAI [15] game which is
inspired by the dungeon system in the original Legend of Zelda
(Nintendo, 1986). Levels need to allow the player character to
get the key and open the door, and can place enemies to fight
in the level. Sokoban (Thinking Rabbit, 1982), finally, is the
classic box-pushing puzzle. A solvable Sokoban level allows
for a way in which the player can push each box onto a target.

Fig. 4: From left to right: the generator produces paths of increasing length.
Its control weakens toward the longest path-lengths, which tend to be learned
much later in training.

B. SimCity

In the SimCity reinforcement learning environment based
on the open-sourced SimCity 1 [16] (Maxis, 1989), the agent
constructs a city by placing zones (residential, commercial,
and industrial), infrastructure (road, rail, electricity lines, air-
ports, harbors), and services (police and fire stations, and
parks). Citizens will inhabit and develop zones according to
local desirability rules and global demand by zone-type, and
similarly travel along roads to simulate cycles of commute and
recreation.

RL has previously been used to generate player agents that
can successfully maximize fixed reward functions comprising
weighted combinations of different types of population. The
agents here, on the other hand, are trained to build cities
resulting in a range of population levels. This is a more
plausible approach to generating general playing agents for
this type of management sim game, in which artefacts (like
cities or theme parks) may be functionally optimal in a
multitude of ways.

C. micro-RCT

In the minimal theme-park management learning environ-
ment micro-rct 3, based on RollerCoaster Tycoon (Microprose,
1999) and reproducing some of the implementation logic of
OpenRCT2 4, the agent builds an amusement park by placing
concessions, rides, services (such as washrooms and first aid
stalls) and paths. They are frequented by a fixed number of
guests (with varying intensity and nausea tolerance thresholds)
who produce income for the park. Guests’ mood is affected by
their experience on rides (according to the ride’s characteristics
and the guests’ preferences and tolerance levels) and internal
needs such as hunger, thirst, and bladder.

IV. METHOD

A controllable RL level generator is trained by feeding it
inputs corresponding to target level features, and rewarding it
when it produces levels with these features. New values for

3https://github.com/smearle/micro-rct
4https://github.com/Open/RCT2/OpenRCT2

https://github.com/smearle/micro-rct
https://github.com/OpenRCT2/OpenRCT2

Fig. 5: Generated levels produced by an agent-generator using varying path
length and number of regions. It has precise control over the number of
regions, but struggles to generate long paths. While it is practically impossible
to reach many high path-length and high-regions targets, the agent is also less
apt in generating long paths with few regions, likely because paths require
more complex behavior to construct than atomic, disjoint regions.

target features are sampled at the beginning of each episode.
The episode is terminated when the generator agent either:
reaches the target, makes as many per-tile changes as would
correspond to 100% of the map, or reaches a limit on the
number of steps (equal to the square of the number of tiles on
the map).

In this work, we focus on PCGRL’s narrow action represen-
tation, in which the agent chooses what to build on each tile in
sequence, left-to-right and top-to-bottom. This representation
performs comparably and has fewer actions than others using
additional navigation (turtle) or tile-coordinate (wide) actions.

As in [1], the agent observes a one-hot encoded view
of the game board centered around current tile. Additional
scalar inputs are concatenated with the agent’s 2D observation
(channel-wise), corresponding to the direction (−1, 0 or 1) of
the target change along some metric. The agent’s reward is the
amount by which the level has approached (or moved away
from) target metrics since the previous step. So, if the agent
is generating a maze-like level, where the current length of

the maze is 40, and its target length is 20, then in addition
to its usual one-hot observation of the map, it also observes
a 2D layer filled with −1s representing the desired decrease
in path-length, and receives a reward for taking an action that
causes such a decrease toward the target.

Let st be a vector representing the user-defined control
metrics (e.g. number of enemies, nearest enemy) at time t. At
the beginning of the episode, a target/goal vector g is assigned
corresponding to desired metrics in the output level. This
defines the generator’s task, determining both its conditional
observation and its reward.

The conditional observation vector, c = sign(g − st)
represents the target directions for each metric. The loss of
a given level with respect to the goal vector is given by
lt = ||g−st||L1

. Then the agent’s reward at t is rt = lt−1−lt.
The agent is rewarded for edits that close the gap between the
level’s current metrics and the target, and punished for those
that widen it.

Most simply, control-targets can be sampled from a uniform
random distribution at the start of each episode. But this may
be ill-suited to tasks in which control-metrics are often at odds
, where too much training time might be spent attempting to
reach impossible combinations of targets.

To make training more efficient, control targets are sampled
to maximize the agent’s absolute learning progress [14]. If the
generator has mastered some sub-space of targets perfectly,
the control regime instead favors targets where the generator
shows some long term change in performance. This allows the
generator to focus on tasks that present the highest opportunity
for improvement, as well as those that it may be forgetting.

Generator agents are trained for either up to 500 million
frames using PPO [17] as implemented in stable-baselines
[18], with content-generation tasks implemented as gym en-
vironments [19]. Each experiment is run on a 48-CPU node
of a research cluster with no GPU. Typically, Binary, Zelda
and Sokoban experiments reach the frame limit after ≈ 1, 2,
or 5 days, respectively (as Sokoban-generators begin to more
frequently produce playable levels, running the solver slows
down environment steps considerably). Ranges for control
targets are chosen based on estimated lower/upper bounds
of these metrics on playable levels (e.g. In Binary, we ask
the generator to produce paths from anywhere between 0—no
empty tiles on the board—and 136—the length of an optimal
zig-zag path on a 16×16 board). Other architectural details and
hyperparameters are unchanged from [1]; in particular, initial
level-states are sampled randomly using per-tile probabilities
that differ by environment.

V. RESULTS

To measure both the agent’s progress toward its goals, and
the diversity of the levels it generates, the agent is evaluated
over a grid in target-space (Figures 3–10). For each cell in
the grid, it is allowed one generation episode on each of a
shared set of 50 random initial maps. To visualize an array of
diverse levels, we select the level resulting in the highest total
reward from each cell. Episodes are terminated after 1,000

Fig. 6: From left to right: the generator moves the nearest enemy further away
from the player. It seeks to maximize the path length of the shortest possible
solution (displayed above) in all cases.

Fig. 7: From left to right: the generator increases the path length of the
shortest possible solution, keeping enemies at least 5 tiles from the player.

steps or once the usual termination conditions are met (i.e.
the equivalent of 100% of the level is changed or the control
targets are reached).

Diversity is computed as the mean per-tile hamming dis-
tance between the set of levels generated for a given target.
The value is normalized as a percentage, with 0% indicating
that all the maps are the same, and 100% that no two maps
have the same tile at a given coordinate. Progress is defined
as the relative percentage change from the initial state toward
the control targets. For example, if the target path length is 20,
the initial length is 10, and the agent manages to reach 15 by
the end of the episode, then it has made 50% (15−10

20−10) progress
toward its target. When visualizing results, we restrict mean
progress to the interval [0, 100], so that if an agent fails to
move toward its target at all, or moves away from it, it is said
to have made 0 progress.5

A. Original PCGRL environments

1) Binary: In the Binary domain, generators are rewarded
for producing levels with long paths and a single region. Here,
we train a generator to control for one or both of these metrics.
When we control for one metric, the other takes on a fixed

5This prevents exploding negative scores when the initial state is very close
to the target metrics

value (1 region or maximum path length), and is factored
into the reward accordingly (but omitted from the agent’s
observation).

Generators learn precise control over the number of regions,
while attempting to maximize an (equally-weighted) reward
for increasing path length (Figure 3). They balance a tightly
packed checkerboard pattern with organic corridors of varying
length. Maps become increasingly diverse as the number of
regions increases and the path-length is forced to decrease,
indicating that the generator has learned fewer maps with long
paths than it has maps with medium or small paths against a
checkerboard background. This is understandable, as there are
more constraints on the form which a maximum-length path
can take, as opposed to smaller paths which can, for example,
be translated about the map to produce many distinct levels.

Conversely, generators can control for specific path length
while maintaining a single connected region, producing shorter
paths in various forms and locations on the map, and a variety
of organic labyrinths to achieve longer paths (Figure 4). During
level-generation, path-length tends to grow or shrink gradually.
This may allow the generator to more accurately sense whether
it has reached or exceeded its target, when its conditional input
changes to 0 or changes sign, respectively.

A generator trained to control both regions and path-lengths
learns to blend these checker-boarding and labyrinth-growing
strategies (Figure 5). It has the most success reaching its
goals—and produces the most diverse levels—when aiming
for low path-length and varying number of regions.

The generator learns to control regions more easily than
path-length presumably because the policy it learns to control
regions is simple and highly localized. Still, progress toward
longer path lengths is apparent, particularly when the target
number of regions is lower (given that increasing regions and
path length are conflicting goals). It is also possible that the
weights assigned to these respective control metrics are such
that it is often optimal for the generator, in terms of its reward,
to sacrifice path-length to allow for more regions.

2) Zelda: In Zelda, agents are usually rewarded for placing
1 key, door, and player, between 2 and 5 enemies, maximizing
path length (from the player to the key to the door), and leaving
a minimum distance of at least 5 tiles between the player
and the nearest enemy. To train a controllable generator, we
take nearest-enemy and path-length as our control metrics (in
particular because they could be taken as proxies for level
difficulty), and fix all other targets.

When controlling for nearest-enemy alone, the generator is
able to maintain high path-lengths while placing enemies at
various minimum distances from the player (Figure 6). These
levels tend to share a common structure resulting in high
path-length—namely a corridor through which the player must
travel back and forth to retrieve the key and access the door—
with enemies sliding up and down the corridor between levels
to end up closer or further from the player. These levels are
consequently more diverse when the closest enemy is nearer
the player, since there are fewer constraints on the positioning
of any other enemies in the level.

Fig. 8: Left to right: generator increases path length. Bottom to top: generator
increases distance to nearest enemy. The generator has the best control over a
set of levels in which path-length is around twice nearest-enemy: enemies are
placed by the key, with the door close to the player. Other, fixed playability
constraints are generally met reliably across the control-space.

Controllable path-lengths are produced by levels ranging
from open spaces to more lengthy corridors, with the key and
door placed at various distances from the player and each other
(Figure 7). Surprisingly, there is greater diversity among higher
path-length levels, despite their being more theoretically con-
strained and thus fewer in number. It may be that while the
some trivial family of layouts can be used to easily achieve
minimal paths, the generator’s learning a diversity of longer-
path configurations is crucial to its transitioning gradually and
resourcefully from random initial states toward optimal levels.

The generator can also be trained to control both metrics
simultaneously (Figure 8). In this case, it tends to favor levels
in which the enemy is very close to either the player or the
key/door. The agent generates more diverse content when both
nearest-enemy and path-length are high or non-trivial.

3) Sokoban: In Sokoban, the default heuristics call for 1
player, at least 2 crates, a matching number of targets, and
maximal solution-length (the number of steps taken by an
A* solver to push all crates onto targets). Here, the generator

Fig. 9: From left to right: the generator produces small Sokoban levels with
increasingly lengthy solutions. Longer solution-lengths require the player to
navigate obstacles and backtrack in order to push the crate to the target.
Diversity decreases with level complexity.

attempts to control the number of crates and solution-length.
The Sokoban level-generator exhibits strong control over a

range of solution-lengths, corresponding to modest complexity
on a very small map (Figure 9). The generator reliably pro-
duces playable levels, and deviates from its control targets only
when these contradict fixed playability targets. It produces a
variety of levels, from simple open rooms, to those with simple
obstacles, and corridors that require back-tracking before the
crate can be pushed toward its target. Most levels use 1 or
2 crates in concert with player backtracking through narrow
corridors to control solution-length.

When asked to control the number of crates in addition to
the solution-length (Figure 10), the generator instead favors
the use of multiple crates to increase level complexity

B. micro-RCT (Roller Coaster Tycoon)

In micro-rct, agents learn to build parks with specified
levels of guest (un)happiness (Figure 11). To maximize hap-
piness, a cluster of concession stands is placed by the en-
trance, and guests immediately buy food/drinks whenever their
hunger/thirst falls below a certain threshold. They then receive
a happiness boost from the perceived value of the purchased
item. To make guests unhappy, the generator places a few
small thrill rides by the entrance. The rides are popular among
guests, but have a high enough nausea score to induce some
vomiting, which causes guests to become disgusted by their
cramped surroundings.

C. SimCity

In SimCity, agents learn to control the amount of residential
population in the city (Figure 12). A maximal residential pop-
ulation can be achieved without any commercial or industrial
zones via a strategic, dense configuration of residential around
a single power plant, with disjoint road tiles placed adjacent
to zones to increase population density. To induce medium
residential population, the agent places zones more disparately,
inviting a greater proportion of low-density development. This
may allow it to meet lower population targets with increased
precision.

Fig. 10: The generator produces small Sokoban levels with various solution-
lengths and numbers of crates. It has the best control over levels with many
crates and long solutions. Levels with few crates are the most diverse, as on
such a small map, more crates drastically reduces the number of solvable
configurations.

D. Control regimes

In Table I, several baseline agents are compared against
controllable agents in the Sokoban level-generation domain.
A baseline agent allowed to change 100% of the board during
training is the most successful during evaluation on a baseline
task (in which target metrics are fixed at their default values),
consistently outputting near-optimal configurations.

Controllable generators are trained with either a regime
of uniform-randomly sampled control targets, or of targets
sampled according to learning progress (i.e. an ALP-GMM
curriculum). More often than not, agents trained with ALP-
GMM show a slight advantage over those trained on randomly-
sampled targets (both on the baseline task and on a set of
control-tasks). Note that this was not the case, however, in the
simpler Binary and Zelda domains, where random sampling
of targets tended to outperform or match the performance
of an ALP-GMM curriculum, respectively. This discrepancy
would seem to support the intuition that the use of adaptive
control regimes will be important for scaling up RL-based
controllable content generators to more complex domains and
control-spaces.

VI. DISCUSSION

Results on level generation tasks show that with conditional
(target) input and shaped reward, RL can be used to train gen-

erators that encode a set of playable levels that are controllably
diverse along measures of interest, such as deterministic prox-
ies for player difficulty. Experiments with management sims
suggest that this learned control can handle the stochasticity
and temporal dynamics resulting from agent-based simulation.
These controls could serve as convenient and useful interfaces
for game designers for producing content with given character-
istics. They could also act as easily searchable or traversable
spaces for the sake of curriculum generation, producing levels
adapted to a particular player [20], or for the purpose of
training a player agent.

Notably, generators learn to adapt to changing, user-defined
targets over the course of long inference episodes, despite
having only been trained to approach one set of targets
per episode. Novel states can emerge from this traversal of
conditional space, and these dynamics set controllable content
generators apart from methods that might search for a diverse
set of levels directly, arguably giving them a greater degree
of expressivity. On the other hand, the computation required
to learn a generator is likely to be greater, since this diverse
space of levels must be represented in a compressed form in
the agent’s weights, rather than stored in an archive.

Random initial states during level generation, combined
with a limit on the number of changes that may be made to the
map, ensure that a controllable agent learns diverse levels for
targets where possible. Often, the generator learns to traverse
the space of levels in small steps, moving from initial states,
incrementally along dimensions of interest until the target is
met, thanks to its limited, binary conditional observation and
its incentives for efficiency. To ensure paths through this space
are explored more thoroughly, and free them of the constraint
of the initial random maps, an archive could be kept as in [21].

In cases where there is some trade-off between control
targets, the generator is tasked with finding optimal solutions
according to some weighting of these controls’ effect on
reward, which may be difficult to tune. For example, in the
Binary problem, it is impossible to produce a maximal number
of both paths and regions (because having many regions
precludes having a long path). But it may be desirable to search
for levels along the pareto front of these multiple objectives.
This could be approximated by turning these per-control
weights into controls themselves, supplying them directly
as conditional input, prompting the agent to learn multiple
objectives.

VII. CONCLUSION

Formulating content generation as a reinforcement learning
problem allows us to learn generators that produce game
levels of high quality along user-specified dimensions (e.g.
path length). But it may also be desirable to have a generator
that encodes the space these dimensions produce (e.g. levels
of variable path length) rather than one point within it.

We show that this can be achieved by sampling from
target points within this space over the course of training.
The generator then observes its target and is rewarded for
approaching it. The resulting learned generator is controllable,

TABLE I: Sokoban level-generation. Performance of baseline (single-objective) agents, and controllable agents with learning-progress-informed (ALP-GMM)
and uniform-random control regimes, with various change percentage allowances. Agents are tested on a baseline task with metric targets fixed at their default
values, and on control tasks, in which controllable metric targets are sampled over a grid. At certain change-percentages, controllable agents are competitive
with or outperform baseline agents on the baseline task. Controllable agents trained with an ALP-GMM curriculum tend to outperform those trained using a
random control curriculum.

fixed targets controlled targets
evaluated controls — solution-length crate, solution-length

pct. targets reached diversity pct. targets reached diversity pct. targets reached diversity
learned
controls

control
regime

change
percentage

— —
0.2 72 56 41 57 36 55
0.6 75 44 47 42 44 44
1.0 94 30 49 29 45 34

sol-length

uniform
random

0.2 66 51 35 49 29 52
0.6 76 49 55 44 52 42
1.0 82 38 60 32 56 32

ALP-GMM
0.2 52 49 25 49 22 45
0.6 78 51 56 40 50 41
1.0 83 40 70 31 60 28

crate,
sol-length

uniform
random

0.2 60 57 33 48 32 42
0.6 81 47 48 45 44 44
1.0 66 41 49 42 38 45

ALP-GMM
0.2 71 50 37 43 35 44
0.6 81 38 48 39 43 41
1.0 73 48 43 40 46 40

Fig. 11: From left to right: the generator produces minimal roller coaster
theme parks of increasing guest happiness. Popular but nauseating thrill
rides cause some vomiting and decrease happiness, while dense placement of
burger stalls increases it. In medium happiness parks, the generator attempt
to mitigate nausea-induced unhappiness by placing first-aid stalls throughout
the park.

0 100 200
residential population

Fig. 12: The generator produces SimCity layouts with increasing residential
population. It connects zones to power by adjacency, and uses the presence
of adjacent roads to toggle between low and high density to meet its target
precisely.

and the user is able to dynamically prompt it to produce levels
of a certain type during inference.

To ensure that the reinforcement learning generator trains
efficiently, for example by spending less time on large areas of
level-space that are impossible to learn (e.g. high regions and
path-length), we sample these targets to maximize the agent’s

absolute learning progress. The generator focuses on those
areas where it is excelling or regressing the most, prompting
it to explore new and disparate regions of level space while
simultaneously recalling what it has already learned.

When procedural content generation is used to learn better
game AI, it may be desirable for the level generator to have
an interpretable or easily searchable behavior space, bolstering
our ability to manually or automatically create curricula of
levels for game-playing AI. The approach to learning control-
lable generators presented here is one such candidate, and our
experiments suggest that it can learn to generate a diverse set
of playable and complex levels.

The varying aptitude with which these controllable genera-
tors are able to explore the space of levels along user-specified
dimensions can also help game designers to explore the
constraints of level design in their game. And the generator’s
ability to adapt to changing goals during inference, as well as
the relative diversity of levels it can produce within a given set
of target features, make it a potentially interesting co-creative
tool.

REFERENCES

[1] Ahmed Khalifa, Philip Bontrager, Sam Earle, and Julian Togelius.
Pcgrl: Procedural content generation via reinforcement learning. In
Proceedings of the AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, volume 16, pages 95–101, 2020.

[2] Julian Togelius, Georgios N Yannakakis, Kenneth O Stanley, and
Cameron Browne. Search-based procedural content generation: A
taxonomy and survey. IEEE Transactions on Computational Intelligence
and AI in Games, 3(3):172–186, 2011.

[3] Adam Summerville, Sam Snodgrass, Matthew Guzdial, Christoffer
Holmgård, Amy K Hoover, Aaron Isaksen, Andy Nealen, and Julian
Togelius. Procedural content generation via machine learning (pcgml).
IEEE Transactions on Games, 10(3):257–270, 2018.

[4] Jialin Liu, Sam Snodgrass, Ahmed Khalifa, Sebastian Risi, Georgios N
Yannakakis, and Julian Togelius. Deep learning for procedural content
generation. Neural Computing and Applications, pages 1–19, 2020.

[5] Vanessa Volz, Jacob Schrum, Jialin Liu, Simon M Lucas, Adam Smith,
and Sebastian Risi. Evolving mario levels in the latent space of a
deep convolutional generative adversarial network. In Proceedings of
the Genetic and Evolutionary Computation Conference, pages 221–228,
2018.

[6] Philip Bontrager and Julian Togelius. Fully differentiable procedural
content generation through generative playing networks. arXiv preprint
arXiv:2002.05259, 2020.

[7] Niels Justesen, Ruben Rodriguez Torrado, Philip Bontrager, Ahmed
Khalifa, Julian Togelius, and Sebastian Risi. Illuminating generalization
in deep reinforcement learning through procedural level generation.
arXiv preprint arXiv:1806.10729, 2018.

[8] Omar Delarosa, Hang Dong, Mindy Ruan, Ahmed Khalifa, and Julian
Togelius. Mixed-initiative level design with rl brush. arXiv preprint
arXiv:2008.02778, 2020.

[9] Michael Dennis, Natasha Jaques, Eugene Vinitsky, Alexandre Bayen,
Stuart Russell, Andrew Critch, and Sergey Levine. Emergent complexity
and zero-shot transfer via unsupervised environment design. arXiv
preprint arXiv:2012.02096, 2020.

[10] Linus Gisslén, Andy Eakins, Camilo Gordillo, Joakim Bergdahl, and
Konrad Tollmar. Adversarial reinforcement learning for procedural
content generation. arXiv preprint arXiv:2103.04847, 2021.

[11] Felix Hill, Sona Mokra, Nathaniel Wong, and Tim Harley. Human
instruction-following with deep reinforcement learning via transfer-
learning from text. arXiv preprint arXiv:2005.09382, 2020.

[12] Hossam Mossalam, Yannis M Assael, Diederik M Roijers, and Shimon
Whiteson. Multi-objective deep reinforcement learning. arXiv preprint
arXiv:1610.02707, 2016.

[13] Piotr Mirowski, Matthew Koichi Grimes, Mateusz Malinowski,
Karl Moritz Hermann, Keith Anderson, Denis Teplyashin, Karen Si-
monyan, Koray Kavukcuoglu, Andrew Zisserman, and Raia Had-
sell. Learning to navigate in cities without a map. arXiv preprint
arXiv:1804.00168, 2018.

[14] Rémy Portelas, Cédric Colas, Katja Hofmann, and Pierre-Yves Oudeyer.
Teacher algorithms for curriculum learning of deep rl in continuously
parameterized environments. In Conference on Robot Learning, pages
835–853. PMLR, 2020.

[15] Diego Perez-Liebana, Jialin Liu, Ahmed Khalifa, Raluca D Gaina, Julian
Togelius, and Simon M Lucas. General video game ai: A multitrack
framework for evaluating agents, games, and content generation algo-
rithms. IEEE Transactions on Games, 11(3):195–214, 2019.

[16] Sam Earle. Using fractal neural networks to play simcity 1 and conway’s
game of life at variable scales. arXiv preprint arXiv:2002.03896, 2020.

[17] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and
Oleg Klimov. Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347, 2017.

[18] Ashley Hill, Antonin Raffin, Maximilian Ernestus, Adam Gleave, Anssi
Kanervisto, Rene Traore, Prafulla Dhariwal, Christopher Hesse, Oleg
Klimov, Alex Nichol, Matthias Plappert, Alec Radford, John Schulman,
Szymon Sidor, and Yuhuai Wu. Stable baselines. https://github.com/
hill-a/stable-baselines, 2018.

[19] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider,
John Schulman, Jie Tang, and Wojciech Zaremba. Openai gym, 2016.

[20] Georgios N Yannakakis and Julian Togelius. Experience-driven proce-
dural content generation. IEEE Transactions on Affective Computing,
2(3):147–161, 2011.

[21] Alexander Mordvintsev, Ettore Randazzo, Eyvind Niklasson, and
Michael Levin. Growing neural cellular automata. Distill, 5(2):e23,
2020.

https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines

	Introduction
	Related work
	PCGRL
	Controllable RL
	Absolute learning progress teacher algorithm

	Domains
	Binary, Zelda, and Sokoban
	SimCity
	micro-RCT

	Method
	Results
	Original PCGRL environments
	Binary
	Zelda
	Sokoban

	micro-RCT (Roller Coaster Tycoon)
	SimCity
	Control regimes

	Discussion
	Conclusion
	References

