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Abstract—In recent years, researchers have achieved great
success in applying Deep Reinforcement Learning (DRL) al-
gorithms to Real-time Strategy (RTS) games, creating strong
autonomous agents that could defeat professional players in
StarCraft II. However, existing approaches to tackle full games
have high computational costs, usually requiring the use of
thousands of GPUs and CPUs for weeks. This paper has two main
contributions to address this issue: 1) We introduce Gym-µRTS
(pronounced “gym-micro-RTS”) as a fast-to-run RL environment
for full-game RTS research and 2) we present a collection of
techniques to scale DRL to play full-game µRTS as well as
ablation studies to demonstrate their empirical importance. Our
best-trained bot can defeat every µRTS bot we tested from the
past µRTS competitions when working in a single-map setting,
resulting in a state-of-the-art DRL agent while only taking about
60 hours of training using a single machine (one GPU, three
vCPU, 16GB RAM).

Index Terms—Deep reinforcement learning, Real-time strategy
games

I. INTRODUCTION

In recent years, researchers have achieved great success
in applying Deep Reinforcement Learning (DRL) algorithms
to Real-time Strategy (RTS) games. Most notably, Deep-
Mind trained a grandmaster-level AI called AlphaStar with
DRL for the popular RTS game StarCraft II [1]. AlphaStar
demonstrates impressive strategy and game control, presenting
many human-like behaviors, and is able to defeat professional
players consistently. Given most previously designed bots
fail to perform well in the full-game against humans [2],
AlphaStar clearly represents a significant milestone in the field.
While this accomplishment is impressive, it comes with high
computational costs. In particular, AlphaStar and even further
attempts by other teams to lower the computational costs [3]
still require thousands of CPUs and GPUs/TPUs to train the
agents for an extended period of time, which is outside of the
computational budget of most researchers.

This paper has two main contributions to address this issue.
The first main contribution is to introduce Gym-µRTS as an

*Currently at Google

RL testbed for affordable full-game RTS research, which fo-
cuses on all aspects of the game such as harvesting resources,
defending units, and attack enemies (this is in contrast to
mini-games that only focus on one aspect of the game). Gym-
µRTS is a reinforcement learning interface for the RTS game
µRTS [4], which has been a popular platform to test out a
variety of AI techniques for RTS games. Despite its simple
visuals, µRTS captures the core challenges of RTS games.
Although Gym-µRTS shares many similarities to the StarCraft
II Learning Environment (PySC2) [5], there are also many
key differences (e.g., PySC2 uses a human-like action space
whereas Gym-µRTS uses a lower-level action space). Through
Gym-µRTS, we are able to conduct full-game RTS research
using DRL without extensive technical resources such as high-
performance compute clusters.

Despite the simplifications done in µRTS, playing 1v1
competitive matches via DRL is still a daunting task. Thus, our
second main contribution is a collection of techniques to scale
DRL to play µRTS. We start with a Proximal Policy Optimiza-
tion (PPO) [6] implementation that matches implementation
details of PPO in openai/baselines [7], and incrementally stack
augmentations to account for Gym-µRTS’s combinatorial ac-
tion space (all units must be controlled simultaneously) and
improve training efficiency and performance. Among these
augmentations, two are essential: 1) action composition and
2) invalid action masking. These two augmentations combined
allowed us to bootstrap an initial agent that could compete
on the 16 × 16 map to a reasonable standard. Additionally,
we experimented with 3) diversified training opponents, and
4) different neural network architectures. We provide ablation
studies to shed insights on the importance of each of these
augmentations. Our best-trained agent can defeat every µRTS
bot we tested against, from the past µRTS competitions1 in a
single-map setting, establishing a new state-of-the-art for DRL
bots in µRTS while only taking about 60 hours of training
using a single machine (one GPU, three vCPU, 16GB RAM).
We make source code and trained models 2, as well as all the

1https://sites.google.com/site/micrortsaicompetition/home
2https://github.com/vwxyzjn/gym-microrts-paper978-1-6654-3886-5/21/$31.00 ©2021 IEEE



Fig. 1: Screenshot of our best-trained agent (top-left) playing
against CoacAI (bottom-right), the 2020 µRTS AI competition
champion. Strategy-wise, our agent usually defeats CoacAI
by harvesting resources (green squares) efficiently using two
workers (dark gray circles), doing a highly optimized worker
rush that takes out the enemy base in the bottom right (shown
with 50% damage), followed by a transition to the mid and
late game by producing combat units (colored circles) from
the barracks (dark gray squares). The blue and red border
suggest the unit is owned by player 1 and 2, respectively.
See additional combat videos here: https://bit.ly/3llOhex

metrics, logs, and recorded videos3 available for comparison.

II. BACKGROUND

Real-time Strategy (RTS) games are complex adversarial
domains, typically simulating battles between a large number
of combat units, that pose a significant challenge to both
human and artificial intelligence [8]. Designing AI techniques
for RTS games is challenging due to a variety of reasons: 1)
players need to issue actions in real-time, leaving little time
computational budget, 2) the action spaces grows combinato-
rially with the number of units in the game, 3) the rewards are
very sparse (win/loss at the end of the game), 4) generalizing
against diverse set of opponents and maps is difficult, and
5) stochasticity of game mechanics and partial observability
(these last two are not considered in this paper).

StarCraft I & II are very popular RTS games and, among
other games, have attracted much research attention. Past
work in this area includes reinforcement learning [9], case-
based reasoning [10], [11], or game tree search [12]–[15]
among many other techniques designed to tackle different sub-
problems in the game, such as micromanagement, or build-
order generation. In the full-game settings, however, most tech-
niques have had limited success in creating viable agents to
play competitively against professional StarCraft players until
recently. In particular, DeepMind introduced AlphaStar [1], an

3https://wandb.ai/vwxyzjn/gym-microrts-paper

agent trained with DRL and self-play, that sets a new state-of-
the-art bot for StarCraft II, defeating professional players in
the full-game. In Dota 2, a popular collaborative online-player
game that shares many similar challenges as StarCraft, Open
AI Five [16] is able to create agents that can achieve super-
human performance. Although these two systems achieve
great performance, they come with large computational costs.
AlphaStar used 3072 TPU cores and 50,400 preemptible CPU
cores for a duration of 44 days [1], [3]. This makes it difficult
for those with less computational resources to do full-game
RTS research using DRL.

There are usually three ways to circumvent this computa-
tional costs. The first way is to focus on sub problems such as
combat scenarios [17]. The second way is to reduce the full-
game complexity by either considering hierarchical actions
spaces or incorporating scripted actions [18], [19]. The third
way is to use alternative game simulators that run faster such
as Mini-RTS [20], Deep RTS [21], and CodeCraft4.

We show that Gym-µRTS as an alternative that could be
used for full-game RTS research with the full action space
while using affordable computational resources.

III. PRELIMINARIES

In this paper, we use policy gradient methods to train
agents. Let us consider the Reinforcement Learning prob-
lem in a Markov Decision Process (MDP) denoted as
(S,A, P, ρ0, r, γ, T ), where S is the state space, A is the
discrete action space, P : S × A × S → [0, 1] is the state
transition probability, ρ0 : S → [0, 1] is the initial state
distribution, r : S × A → R is the reward function, γ is
the discount factor, and T is the maximum episode length.
A stochastic policy πθ : S × A → [0, 1], parameterized by
a parameter vector θ, assigns a probability value to an action
given a state. The goal is to maximize the expected discounted
return of the policy:

J = Eτ

[
T−1∑
t=0

γtrt

]
where τ is the trajectory (s0, a0, r0, . . . , sT−1, aT−1, rT−1)

and s0 ∼ ρ0, st ∼ P (·|st−1, at−1), at ∼ πθ(·|st), rt = r (st, at)

The core idea behind policy gradient algorithms is to obtain
the policy gradient ∇θJ of the expected discounted return
with respect to the policy parameter θ. Doing gradient ascent
θ = θ + ∇θJ therefore maximizes the expected discounted
reward. Earlier work proposes the following policy gradient
estimate to the objective J [22]:

∇θJ = Eτ∼πθ

[
T−1∑
t=0

∇θ log πθ(at|st)Gt

]
, Gt =

∞∑
k=0

γkrt+k

This gradient estimate, however, suffers from high vari-
ance [22] and there are many techniques and extensions to
address it [6], [23], [24].

4https://github.com/cswinter/DeepCodeCraft



Fig. 2: Unit Action Simulation (UAS) calls the policy iter-
atively until all units have actions (at each step, the policy
chooses a unit and issue a unit action to it).

Fig. 3: Gridnet predicts an action for each cell in the map (it
predicts all the action component planes in one step), which
then define which actions each unit will perform.

IV. GYM-µRTS

Gym-µRTS5 is a reinforcement learning interface for the
RTS games simulator µRTS6. Despite having a simplified
implementation, µRTS captures the core challenges of RTS
games, such as combinatorial action space, real-time decision-
making, optionally partial observability and stochasticity.
Gym-µRTS’s observation space provides a series of feature
maps similar to PySC2 (the StarCraft II Learning environ-
ment [5]). Its action space design, however, is more low-level
due to its lack of AI assisted actions. In this section, we
introduce their technical details.

A. Observation Space.

Given a map of size h × w, the observation is a tensor
of shape (h,w, nf ), where nf is a number of feature planes
that have binary values. The observation space used in this
paper uses 27 feature planes as shown in Table I. The different
feature planes result as the concatenation of multiple one-hot
encoded features. As an example, if there is a worker player
1 with hit points equal to 1, not carrying any resources, and
currently not executing any actions, then the one-hot encoding
features will look like this (see Table I):

[0, 1, 0, 0, 0], [1, 0, 0, 0, 0], [1, 0, 0],

[0, 0, 0, 0, 1, 0, 0, 0], [1, 0, 0, 0, 0, 0]

5https://github.com/vwxyzjn/gym-microrts
6https://github.com/santiontanon/microrts

TABLE I: Observation features and action components. ar = 7
is the maximum attack range.

Observation
Features

Planes Description

Hit Points 5 0, 1, 2, 3, ≥ 4
Resources 5 0, 1, 2, 3, ≥ 4
Owner 3 player 1, -, player 2
Unit Types 8 -, resource, base, bar-

rack, worker, light, heavy,
ranged

Current Action 6 -, move, harvest, return,
produce, attack

Action Components Range Description

Source Unit [0, h× w − 1] the location of the unit se-
lected to perform an ac-
tion

Action Type [0, 5] NOOP, move, harvest, re-
turn, produce, attack

Move Parameter [0, 3] north, east, south, west
Harvest Parameter [0, 3] north, east, south, west
Return Parameter [0, 3] north, east, south, west
Produce Direction
Parameter

[0, 3] north, east, south, west

Produce Type Pa-
rameter

[0, 6] resource, base, barrack,
worker, light, heavy,
ranged

Relative Attack Po-
sition

[0, a2r − 1] the relative location of the
unit that will be attacked

Each feature plane contains one value for each coordinate in
the map. The values for the 27 feature planes for the position
in the map of such worker will thus be:

[0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0]

B. Action Space.

Compared to traditional reinforcement learning environ-
ments, the design of the action space of RTS games is more
difficult because, depending on the game state, there is a
different number of units to control, and each unit might have
different number of actions available. This poses a challenge
for directly applying off-the-shelf DRL algorithm such as PPO
that generally assume a fixed output size for the actions.
Early work on RL in RTS games simply learned policies for
individual units, rather than having the policy control all the
units at once [9]. To address this issue, we decompose the
action space into two parts: the unit action space (the space
of possibilities for issuing actions to only one unit) and the
player action space (the space of unit actions for all the units
a player owns).

In the unit action space, given a map of size h × w, the
unit action is an 8-dimensional vector of discrete values as
specified in Table I. The first component of the unit action
vector represents the unit in the map to issue commands to,
the second is the unit action type, and the rest of components
represent the different parameters different unit action types
can take. Depending on which unit action type is selected, the
game engine will use the corresponding parameters to execute
the action. As an example, if the RL agent issues a “move



south” unit action to the worker at x = 3, y = 2 in a 16× 16
map, the unit action will be encoded in the following way:

[3 + 2 ∗ 16, 1, 2, 0, 0, 0, 0, 0]

In the player action space, we compare two ways to issue
player actions to a variable number of units at each frame:
Unit Action Simulation (UAS) and Gridnet [25].

Their mechanisms are best illustrated through an example
as shown in Figs. 2 and 3, where the player owns two workers
and a base in a 4× 5 map.

UAS calls the RL policy iteratively. At each step, the policy
chooses a unit based on the source unit masks (a vector of
h×w scalars). It then chooses the action type and parameter
via the unit action masks (a vector of 6+4+4+4+4+7+49
scalars). We then compute a “simulated game state” where that
action has been issued (and any potential rewards collected).
Once all three units have been issued actions, the simulated
game states are discarded, and the three actions are collected
and sent to the actual game environment.

Under Gridnet [25], The RL agent receives a player action
mask (a tensor of shape (h,w, 1+6+4+4+4+4+7+49),
where the first plane indicates if the source unit is available). It
then issues actions to each cell in this map in one single step,
that is, issues in total 4∗5 = 20 unit actions. The environment
executes the three valid actions (actions in cells with no player-
owned units are ignored).

C. The Action Spaces of Gym-µRTS and PySC2

Although Gym-µRTS is heavily inspired by and shares
many similarities with PySC2 [5], their action space designs
are considerably different. Specifically, PySC2 has designed its
action space to mimic the human interface, while Gym-µRTS
has a more low-level action that require actions being issued
for each individual unit. This distinction is rather interesting
from a research standpoint because certain challenges are
easier for an AI agent and some more difficult.

Consider the canonical task of harvesting resources and
returning them to the base. In PySC2, the RL agent would
need to issue two actions at two timesteps 1) select an area
that has workers and 2) move the selected workers towards to a
coordinate that has resources. Then, the workers will continue
harvesting resources until otherwise instructed. Note that this
sequence of actions is assisted by AI algorithms such as path-
finding. After the workers harvest the resources, the engine
automatically determines the closest base for returning the
resources, and repeating these actions to continuously harvest
resources. So the challenge for the RL agent is to learn to
select the correct area and move to the correct coordinates. In
Gym-µRTS, however, the RL agent can only issue primitive
actions to the workers such as “move north for one cell” or
“harvest resource that is one cell away at north”. Therefore, it
needs to constantly issue actions to control units at all times,

having to learn how to perform these AI-assisted decisions
from scratch7.

The benefit of PySC2’s approach is that it makes it easier to
do imitation learning from human datasets and the resulting
agent will have a fairer comparison when evaluated against
humans since the AI and the human are mostly playing the
same game. That being said, the human interface could be an
artificial limitation to the AI system. In particular, the human
interface is constructed to accommodate the human limita-
tions: humans’ eyes have limited range, so camera locations
are designed to help capture larger maps, and humans have
limited physical mobility, so hotkeys are set to help control
a group of units with one mouse click. However, machines
don’t have these limitations and can observe the entire map
and issue actions to all units individually.

D. Reward Function

We use a shaped reward function to train the agents, which
gives the agent +10 for winning, 0 for drawing, -10 for losing,
+1 for harvesting one resource, +1 for producing one worker,
+0.2 for constructing a building, +1 for each valid attack action
it issues, +4 for each combat unit it produces. It gives the
rewards to the frame at which the events are initialized (e.g.
attack takes 5 game frames to finish, but the attack reward is
given at the first frame). For reporting purposes, we also keep
track of the sparse reward, which is +1 for winning, 0 for
drawing, -1 for losing. The shaped reward weights are picked
by hand with very little tuning.

Note this shaped reward function is similar to the one used
in Open AI Five for Dota 2 [16]. Like in Open AI Five, it
is possible for the agents to gain more shaped rewards by
doing other good behaviors than winning the game outright.
Notice we have avoided using very large win/lose rewards
because anecdotally large reward numbers could cause worse
performance for RL algorithms, which might be the reason
why reward normalization [26] or reward clipping [27] have
been used in previous work.

V. SCALING DRL TO GYM-µRTS

We use PPO [6], a popular policy gradient algorithm, to
train agents for all experiments in this paper. In addition
to PPO’s core algorithm, many implementation details and
empirical setting also have a huge impact on the algorithm’s
performance [26].

We start with a PPO implementation that matches the
implementation details and benchmarked performance in ope-
nai/baselines [7]8, and use it along with the architecture from
Mnih, et al. (denoted as Nature-CNN) [27] as the baseline. We
train the RL agents using UAS and Gridnet by playing against
CoacAI, the 2020 µRTS competition winner, in the standard
16x16basesWorkers map, where the RL agents always
spawn from the top left position and end episodes after 2000

7Notice, however that µRTS offers both the low-level interface and a
PySC2-style interface with AI-assisted actions, but for Gym-µRTS, we only
expose the former.

8See https://costa.sh/blog-the-32-implementation-details-of-ppo.html
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Fig. 4: Ablation study for UAS and Gridnet.

game ticks. We then incrementally include augmentations for
both UAS and Gridnet and compare their relative performance.

We run each ablation with 4 random seeds each. Then,
we select the best performing seeds according to the reported
sparse reward function and evaluate them against a pool of 11
bots with various strategies that have participated in previous
µRTS competitions (other competition bots are not included
due to either staleness or difficulty to set up) and 2 baseline
bots which are mainly used for testing. All µRTS bots are
configured to use their µRTS competition parameters and
setups. The name, category and best result of these bots are
listed in Table II. The evaluation involves playing 100 games
against each bot in the pool for 4000 maximum game ticks,
and we report the cumulative win rate, the model size, and
total run time in Figure 4. To further provide insights, we
record videos of the RL agents against each of the bots in the
pool and make them publicly available9. Let us now describe
the different augmentations we added on top of PPO.

A. Action Composition

After having solved the problem of issuing actions to a
variable number of units (via either UAS or Gridnet), the next
problem is that even the action space of a single unit is too
large. Specifically, to issue a single action at in µRTS using
UAS, according to Table I, we have to select a Source Unit,
Action Type, and its corresponding action parameters. So in
total, there are hw×6×4×4×4×4×6×a2r = 9216(hwa2r)
number of possible discrete actions, which includes many
invalid actions, which is huge even for small maps (about 50
million in the map size we use in this paper).

To address this problem, we use action composition,
where we consider an action as composed of some smaller

9https://wandb.ai/vwxyzjn/gym-microrts-paper-eval/reports/
Final-Eval--Vmlldzo0OTY1Mzc

independent discrete actions. Namely, at is composed of a set
of smaller actions D = {aSource Unit

t , aAction Type
t , aMove Parameter

t ,
aHarvest Parameter
t , aReturn Parameter

t , aProduce Direction Parameter
t ,

aProduce Type Parameter
t , aRelative Attack Position

t }. And the policy
gradient is updated in the following way (without considering
the PPO’s clipping for simplicity):

T−1∑
t=0

∇θ log πθ(at|st)Gt =
T−1∑
t=0

∇θ

∑
adt∈D

log πθ(a
d
t |st)

Gt

=

T−1∑
t=0

∇θ log

 ∏
adt∈D

πθ(a
d
t |st)

Gt

Implementation-wise, for each action component, the logits
of the corresponding shape are output by the policy, which
we refer to as action component logits. Each action adt is
sampled from a softmax distribution parameterized by these
action component logits. In this way, the algorithm has to
generate hw + 6 + 4 + 4 + 4 + 4 + 6 + a2r = hw + 36 + a2r
logits, significantly less than 9216(hwa2r) (301 vs 50 million).

B. Invalid Action Masking

The next most important augmentation in our experiments
is invalid action masking, which “masks out” invalid actions
out of the action space (by exploiting the fact that we know
the rules of the game), significantly reducing it. This is used in
PySC2 [5], OpenAI Five [16], and a number of related work
with large action spaces [17].

Masks are generated and being applied as shown in Figure 5.
Under UAS, the agent would first sample a source unit based
on the source units masks of shape (hw), then query the
game client for the action type and parameter mask of the
said units with shape (78). Under Gridnet, the agent would
receive all the masks up front on source unit, action type and
parameter with shape (hw, 79), where the first plane of 79
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Fig. 5: Neural network architectures for Gridnet and UAS. The
green boxes are (conditional) inputs from the environments,
blue boxes are neural networks, red boxes are outputs, and
purple boxes are sampled outputs.

is the mask on the source unit selection. Note that in both
cases, the agent received a full action mask that in a sense
significantly reduce the search space. In contrast, PySC2 and
SMAC (the StarCraft Multi-Agent Challenge) [17] would only
provide a partial mask on the action type, and the logits of
action parameters are unmasked (our action types and action
parameters are function identifiers and arguments in PySC2’s
term). This could explain why invalid action masking does not
seem to cause as drastic of a difference in PySC2 as shown
by Kanervisto et al. [28].

In the interest of ablation study, we also conduct experi-
ments that provide masking on the action types but not the
action parameters, which is more similar to PySC2’s settings.
As shown in Figure 4, we see that having only a partial mask
has little impact whereas having the full mask considerably
improves performance. Although the action space and PySC2
is quite different as discussed above, masking all invalid
actions maximally reduces the action space, hence simplifying
the learning task. We therefore believe that the PySC2 agents
could receive a performance boost by providing masks on
function arguments as well.

TABLE II: The previous µRTS competition bots.

Name Category Best result

CoacAI Scripted 1st place in 2020
Tiamat MCTS-based 1st place in 2018
MixedBot MCTS-based 2nd place in 2019
Droplet MCTS-based 3rd place in 2019
Izanagi MCTS-based 4th place in 2019
Rojo MCTS-based 5th place in 2020
LightRush Scripted 6th place in 2020
GuidedRojoA3N MCTS-based 7th place in 2020
WorkerRush Scripted 8th place in 2020
NaiveMCTS MCTS-based 9th place in 2020
RandomBiasedAI Scripted 10th place in 2020
Random Scripted -
PassiveAI Scripted -

C. Other augmentations

This section details other additional augmentations that
contribute to the agents’ performance, but not as much as the
previous two (which are essential for having an agent that even
starts learning to play the full game).

1) Diverse Opponents: The baseline setting is to train
the agents against CoacAI. However, this lacks a diversified
experience and when evaluating, we frequently see the agents
being defeated by AIs as simple as WorkerRush. To help
alleviate this problem, we train the agents against a diverse set
of built-in bots. Since we train with 24 parallel environments
for PPO, we set 18 of these environments to have CoacAI
as the opponent, 2 to have RandomBiasedAI, 2 to have
WorkerRush, and 2 to have LightRush. Per Figure 4, we see
a rather significant performance boost for Gridnet, whereas in
UAS the performance boost is milder.

2) Nature-CNN vs Impala-CNN vs Encoder-Decoder: To
seek better neural network architectures, we experimented
with the use of residual blocks [29] (denoted IMPALA-CNN),
which have been shown to improve the agents’ performance
in several domains like DMLab [24]. Additionally, Han et al.
[25] also experimented with an encoder-decoder network in
Gridnet, so we also conducted experiments using this architec-
ture. Per the ablation study in Figure 4, we see IMPALA-CNN
helps with the performance of UAS whereas encoder-decoder
benefits Gridnet.

VI. DISCUSSION

Establishing a SOTA in Gym-µRTS. According to Fig-
ure 4, our best agent consists of ppo + coacai + invalid
action masking + diverse opponents + impala cnn, reaching
the cumulative win rate of 91%. Additionally, Figure 6 shows
the specific match results, showing this agent can outperform
all other bots in the pool. Note that in the µRTS competition
settings the players could start in two different locations of
the map whereas our agent always start from the top left.
Nevertheless, due to the symmetric nature of the map, we
could address this issue by “rotating” the map when needed
so that both starting locations look the same to our agent.
Therefore, our agent establishes the state of the art for µRTS
in the 16x16basesWorkers map. Note that generalizing to
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Fig. 7: The shaped and sparse return over training steps for all
4 random seeds of PPO + invalid action masking for Gridnet
and UAS. The curve is smoothed using exponential moving
average with weight 0.99.

handle a variety of maps (including the asymmetric ones) in
µRTS competition settings is part of our future work (also note
that some work on StarCraft II also focused in the one map
setting [3], while still requiring large computation budgets).

Our best agent struggles the most against the Droplet bot,
which typically uses a worker rush strategy, but enhanced
thanks to MCTS search. Droplet usually defeats our agent by
destroying the first barracks our agent makes, which is a rare
experience with other bots. As a result, our agent would keep
trying to build a barracks until it exhausts its resources, at
which point, Droplet would have more left over resources,
build more workers and eventually defeat our agent. However,
if by chance our agent successfully builds and protects the first
barracks and combat units, it is usually able to defeat Droplet.
As part of our future work, we would like to include agents

like Droplet in our training process. However, search-based
bots like Droplet significantly decrease the speed of training.

Hardware Usage and Training Time. Most of our experi-
ments are conducted using 3 vCPUs, 1 GPU, and 16GB RAM.
According to Figure 4, the experiments take anywhere from
37 hours to 117 hours, where our SOTA agent takes 63 hours.

Model size vs performance. Overall, Gridnet models have
more parameters compared to the UAS models. This is because
Gridnet predicts the action type and parameter logits for every
cell in the map. We did not find a strong correlation between
the model’s size (in number of trainable parameters) and
the performance of the agents. As shown in Figure 4, it is
clear that the techniques such as invalid action masking or
different neural network architectures are more important to
the performance than the sheer number of the model’s trainable
parameters in our experiments.

Variance w.r.t. Shaped and Sparse Reward. In almost all
experiments conducted in this paper, we observe the RL agents
are able to optimize against the shaped rewards well, showing
little variance across different random seeds; however, this is
not the case with respect to the sparse reward (win/loss). We
report the sum of shaped rewards and sparse rewards in the
episode as shaped return and sparse return respectively in
Figure 7, where we usually see little difference in the shaped
return when the sparse (win/loss) return could be drastically
different. This is a common drawback with reward shaping:
agents sometimes overfit to the shaped rewards instead of
sparse rewards.

UAS vs Gridnet. Figure 7 shows a typical result where
Gridnet is able to get much higher shaped return, but it
receives relatively similar sparse return as UAS. Upon further
inspection of the agents actual behaviors, we found the Gridnet
agents obtain higher shaped return by 1) producing more
barracks, 2) producing more combat units, and 3) harvesting
more resources effectively. In fact, Gridnet agents learn to
harvest resources using three workers, which is a behavior
we haven’t observed in any existing bots. We suspect this
difference is due to how rewards are attributed in UAS vs
Gridnet. UAS attributes rewards to unit actions individually,
while Gridnet attributes the rewards to the player action
collectively.

Depending on the implementation, Gridnet agents usually
have many more trainable parameters. Also, when the player
owns a relatively small amount of units, it is faster to step
the environment using UAS because Gridnet has to predict an
action for all the cells in the map; however, when the player
owns a large number of units, Gridnet’s mechanism becomes
faster because UAS has to do more simulated steps and thus
more inferences.

The Amount of Human Knowledge Injected. In our
best trained agents, there are usually three sources of human
knowledge injected: 1) the reward function, 2) invalid action
masking, and 3) the use of human-designed bots such as Coa-
cAI. In comparison, AlphaStar uses 1) human replays, 2) its
related use of Statistics z and Supervised KL divergence [1],
and 3) invalid action masking.



VII. CONCLUSIONS AND FUTURE WORK

We present a new efficient library, Gym-µRTS, which
allows DRL research to be realized in the complex RTS envi-
ronment µRTS. Through Gym-µRTS, we conducted ablation
studies on techniques such as action composition, invalid ac-
tion masking, diversified training opponents, and novel neural
network architectures, providing insights on their importance
to scale agents to play the full game of µRTS. Our agents can
be trained on a single CPU+GPU within 2-4 days, which is a
reasonable hardware and time budget that is available to many
researchers outside of large research labs

For future work, we would like to consider multiple maps
and the partial observability setting of µRTS (i.e. fog-of-war).
Additionally, we also want to experiment with selfplay, which
further reduces human knowledge injected such as the human-
designed bots we used in this paper.
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