
CamerAI: Chase Camera in a Dense Environment
using a Proximal Policy Optimization-trained

Neural Network
James Rucks

Department of Informatics
University of Hamburg

jamesleerucks@gmail.com

Nikolaos Katzakis
Core Technology Group

Deep Silver Fishlabs
n.katzakis@dsfishlabs.com

Abstract—CamerAI is an autonomous chase camera that uses
a PPO-trained neural network. Our results suggest that a
simple, fully connected network with only two hidden layers
of 128 neurons can perform basic chase camera functionality.
We contribute a set of inputs and outputs with their respective
coordinate spaces, as well as a custom reward function that can
be used to train the network with reinforcement learning. Our
findings highlight the importance of correct coordinate spaces,
the need for a continuous reward function, normalization as well
as timely resets during training to allow the network to explore its
environment. We additionally present an evaluation of the output
of CamerAI during 10 hours of chasing a bot that is randomly
exploring a commercial video game map in which CamerAI was
able to keep the player visible 96% of the time.

I. INTRODUCTION

Chase cameras are used in third-person video games as
a means for players to enjoy the game while keeping the
controlled player avatar in view. Keeping the player in view
in a dynamic environment with obstacles and enemies is a
challenging problem that is, to this day, occupying game
developers.

Early work by Vazquez[1] tackles the viewpoint problem by
weighing viewpoints by their entropy. The underlying concept
is that the higher the entropy of the viewpoint, the more
interesting it is to the user. Their definition of entropy is
based on the projected area and the number of faces in the
viewpoint. The focus of our work is chasing a single target and
although viewpoint entropy does not accomplish this, it could
be combined with our method as one input to the network.

Ozaki [2] presented a fully automated virtual camera sys-
tem, which is able to chase a subject with unknown behaviour
through a dense environment in real-time. They outlined three
objectives: Avoid collisions of the camera with obstacles from
the environment, avoid occlusion of the subject by geometry
between the target and the camera, and finally choose a good
viewpoint to look at the subject. The goodness of a viewpoint
is evaluated by calculating the viewpoint entropy [1]. The
approach by Ozaki et al. delivers good results, for a problem
that is comparable to ours, yet with high complexity and real-
time computational cost. In addition, it is unclear if their
approach could scale to track multiple players.

Lino [3] developed an efficient technique and demonstrated
how to reduce the problem of on-screen positioning of multiple
subjects from a 6D search to only a 2D search by proposing
a Toric manifold. Following up on their previous work, they
introduce Toric space [4]. It extends the toric manifold to a
three-dimensional space used to place cameras in 3D space
to capture a scene with two subjects. Despite delivering good
results, the overlapping constraints approach is challenging to
implement and they do not take dynamic obstacle avoidance
or occlusion of the target into account.

A different approach is the definition and maximisation of
certain parameters evaluating the current viewport based on a
specific target. This technique is used in various papers [5],
[2], [6], [7], [8] and described in most detail by the work
from Ranon and Urli [9]. They experiment with a variety of
properties such as size, framing, relative position and occlusion
and find different ways to weigh them.

Finally, Xie [10] developed a semi-automatic system for
quadrocopter videography. It is intended to enable novice users
to get good captures of landmarks, by only setting the start
and end viewpoints of the camera. However, like other works
in aerial cinematography [6], [11], it is not intended for dense
environments due to minimal obstacle avoidance.

Christie [5] identified requirements for controlling cam-
eras in computer graphics from interactive approaches to
fully automated solutions. Their work divides automated so-
lutions into three groups: reactive approaches, optimisation-
based approaches and constraint-based approaches. Reactive
approaches rely on techniques borrowed from robotics and
sensor planning. These approaches compute the behaviour of
the camera based solely on visual properties of the image
without the use of any search process. In constraint-based
and optimisation-based approaches, the user specifies desired
image properties for which the camera behaviour is computed
using general-purpose solving mechanisms. Constraint-based
approaches model the desired properties as a set of constraints
to be satisfied. Optimisation-based approaches express the
desired image properties as a function to be maximised. Our
proposed system can be thought of as a combination of the
latter two.

978-1-6654-3886-5/21/$31.00 ©2021 IEEE

In this work, we tackle the problem using a simple
neural network trained using Proximal Policy Optimization
(PPO) [12], [13], [14]. We identify sets of appropriate inputs
and outputs and a reward function to enable training of the
network. The resulting network, CamerAI, controls the camera
to traverse a 3D game level and keep the player in view. Our
approach, i.e. rewarding the agent for satisfying certain visual
properties using reinforcement learning, results in a model that
performs well when exposed to maps of similar complexity to
those seen during training.

II. TRAINING ENVIRONMENT

Among the challenges in using neural networks for a chase
camera task is to create a suitable training environment for the
neural network. The requirements include an environment that
captures inputs, feeds the outputs back to the agent, and most
importantly the design of a reward function that evaluates the
camera perspective and allows the neural network to find the
gradient to a good solution as quickly as possible.

In our implementation, the viewpoint had to satisfy the
following constraints:

1) The camera should not collide with map geometry.
2) The player should not be occluded by geometry between

camera and player.
3) The player should not be outside the frustum of the

camera.
4) The camera should keep a reasonable distance to the

player.

A. Training Levels

As a test environment for the intelligent spectator camera,
we developed four levels. The design of the levels is based on
two essential requirements:

Firstly, they should resemble the structure of actual com-
puter game maps.

Secondly, the maps should portray environments of different
complexity that are increasingly more difficult for the camera
to navigate.

To fulfil our requirements, we developed four distinct levels,
which are displayed in Figure 1. The levels are similar to those
of Burelli et al. [15].

B. Player Bots

As a target for the chase camera, we created a bot player
whose movements contain a certain amount of randomness.
The bot selects a random point in a sphere of 20m around
itself (wander radius). From this random point, the closest
position on the NavMesh1 is calculated and the bot travels to
that waypoint. Upon arrival at this waypoint, it generates a
new one and so on.

1A mesh that specifies which places on the map computer-controlled
enemies can access (see Fig. 1c)

C. Spectator Camera

The image that users see on their screens is the output
of a virtual camera that is controlled by CamerAI. It can
freely translate on the x,y and z axes. Rotation is limited;
we allow free yaw, letting the camera rotate 360◦, as well as
limited pitch of 180◦. We applied these restrictions to prevent
the system from outputting camera shots that are vertically
inverted, e.g. a pitch of more than 180◦. Roll was locked to
ensure a stable view of the game without disorientation to the
spectators. We set the field of view to 90◦.

This virtual camera provides input for the neural network
and receives output in the form of translation and rotation.
However, this can lead to many changes of direction in a short
time, causing the camera image to jitter. In our current imple-
mentation of CamerAI, the output of the network exhibited a
high amount of jitter.

We stabilize the image by using two cameras. We refer
to the first one as “AI Camera”. It provides the inputs for
the neural network and is also directly controlled by the
outputs of the neural network. The second camera, referred
to as the “Lerp Camera”, closely follows the “AI Camera”,
but significantly reduces jitter. Its new position L′Position is
calculated each frame from its previous position LPosition,
and the position of the AI Camera APosition, dependent on
an interpolant t ∈ [0, 1].

From now on unless Lerp is explicitly stated, “camera”
refers to the AI Camera.

L′Position = (LPosition −APosition) · t (1)

For this linear interpolation, we use “Vector3.Lerp()” [16].
Similarly “Quaternion.Slerp()” works for spherical interpola-
tion, which treats the vectors as directions. We use the latter for
the rotation of the Lerp Camera. The result of this smoothing
is shown in Figure 2.

III. NEURAL NETWORK

A. Inputs

As input to the neural network, we collect observations from
the training environment.

1) Player Location: Both orientation and position of the
player needs to be transformed to the camera’s coordinate
space. The position is supplied as a vector (x, y, z) ∈ R3,
while the orientation, of which we only need the Y-axis value,
is collected as an Euler angle 0 6 y 6 360.

2) Frustum Check: Another key piece of information is
whether or not the player is inside the camera frustum.

For each of the eight corner points of the player’s bounding
box, we check individually, if it lies in the visible screen area
of the camera, as seen in Figure 3. To do so, we transform its
position CornerPos from world space into camera space to
CornerPosT .

In Unity3D screen space, ScreenSpacewidth is defined on
the X-axis and ScreenSpaceheight is defined on the Y-Axis.
The Z-Axis represents depth in camera space. CornerPosT is

(a) Level I (b) Level II (c) Level III with navmesh in cyan (d) Level IV - de dust2

Fig. 1: Level Design

Fig. 2: Path of the AI Camera (Green) and Lerp Camera (Red)

Fig. 3: Frustum check

located in the visible screen area of the camera if the following
three conditions are met:

0 6 CornerPosTx 6 ScreenSpacewidth (2)

0 6 CornerPosTy 6 ScreenSpaceheight (3)

0 6 CornerPosTz (4)

We store the result of our visibility test in a list consisting of
eight Boolean variables Vfru = (r1, . . . , r8) with rn ∈ {0, 1}.
During the iteration through the eight corner points of the
bounding box we set each corner’s respective variable in the
list to 1 if it fulfils the Equations 2, 3 and 4, and to 0 if it
does not.

3) Player occlusion by scene geometry: To prevent the
player from being occluded by scene geometry, we test using
the method of Ranon and Urli, by casting rays to the corners
of a bounding box [9]. This should not be confused with

the previously collected view frustum observations. Unlike
the frustum check, all ray tests here will succeed even if the
camera is facing away from the player (see Figure 4).

(a) Overview of the Scene (b) Camera Output

Fig. 4: Geometry occlusion test

Here we also store the result of our test in a list of eight
boolean variables Vocc = (r1, . . . , r8) with rn ∈ {0, 1}.
During the iteration, through the eight corner points of the
bounding box, we set each corner’s respective entry in the list
to 0, if the corner is hidden, and to 1, if it is not.

4) Object proximity rays: Information about nearby objects
in the vicinity of the camera and target player is essential to
find ways around obstacles.

Fig. 5: Environment proximity Rays being cast.

First, we cast two rays of length l, one of them straight up
and one straight down. Then we form a fan shape from n rays
and duplicate it m times around the Y-axis. As a result, we get
evenly distributed rays in all directions, as seen in Figure 5.
In our implementation, values of l = 10, n = 3 and m = 8
resulted in the best performance.

Similar to rays from the camera, we cast rays from the
player location to its surrounding environment.

We create two lists, one for CameraEnvRays and one for
PlayerEnvRays. Both are of length 2 + (n · m) and each
entry represents one ray. For each ray, we store the distance
until the first impact with a collider. If the ray does not hit a
collider, we record the maximum length l.

5) Collision of the Camera: Whether or not the camera
collides with an object from the environment can be detected
by checking the proximity rays cast from the camera, as
described in Section III-A4. If the distance to the first collision
is zero for every ray, then the camera must be colliding with
geometry. This method does, however, require casting rays in
all directions every time.

The reward function only uses the information of whether
a collision occurs. Since this does not require the casting
of multiple environment rays, we implement a second, more
efficient method.

Fig. 6: Camera in Open Space Fig. 7: Camera Colliding

We can check whether a sphere with centre p and a radius r
touches or is inside of a wall of the map. We pass the current
position of the camera to the collision checking method as p
and r = 1. Based on the result, we set a Boolean variable
Ccoll to 1 if the camera collides with something (Figure 7),
and to 0, if it does not (Figure 6).

6) Data Preprocessing: To reduce and stabilize training
times, we preprocess the input data before feeding it into the
neural network.

For rescaling a value x we use min-max normalization [17,
p. 33-34]. This scales a value x with a minimum of xmin and
maximum of xmax to a value x′ ∈ [a, b].

x′ = a+
(x− xmin)(b− a)

xmax − xmin
(5)

For positions in world space, we scale each of the three
components of the vectors to the interval [0, 1] with min-
max normalization. First, we iterate through all colliders of
the scene and extend a “Bounds” [16] object incrementally so
that it encloses all colliders at the end. Then we obtain the
minimum and maximum points of the bounds and use their
components as a and b values for normalization.

Positions in camera space are not normalized.
We convert rotations from quaternions to Euler angles.

Then, we normalize the components of the vectors, which are
between 0 and 360 to values between 0 and 1 using min-max
normalization.

Camera and player environment rays produce values be-
tween 0 and 20, which we also scale with min-max normaliza-
tion. We additionally use one-hot encoding, which means that
for every ray, we introduce a separate independent variable.
Each variable represents an input neuron.

The checks for occlusion and frustum return lists of Boolean
values represented by 0 and 1. For the eight values per list,
we also use one-hot encoding, resulting in a total of sixteen
variables.

7) Input Format: As inputs for the neural network, we use
the observations of the environment in a format presented in
Table I:

TABLE I: Inputs of the Neural Network

Observation Value Domain Coordinate Space

Camera Rotation R3 World
Camera Environment Rays R26 Camera
Player Position R3 Camera
Player Rotation R1 Camera
Player Occlusion Rays {0, 1}8 independent
Player Frustum Check {0, 1}8 independent

B. Outputs

The output of the neural network is applied as translation
and rotation to the camera. Table II lists all CamerAI outputs:

TABLE II: Outputs of the Neural Network

Action Value Domain Coordinate Space

Translate Camera R3 Camera
Rotate Camera R2 Camera

It should be noted that PPO has been found to work best
when the network outputs translation relative to the camera’s
coordinate system. This means that CamerAI tells the camera
to “move left by x units..” or “translate upwards by Y units..”.
The network inference pass does not output positions in world
coordinates. The output is directions in which the CamerAI
agent should move.

C. Network Architecture

We chose an architecture that consists of two fully con-
nected hidden layers, illustrated in Figure 8. In our final
configuration, we use 48 input neurons. The hidden layers
consist of 128 neurons each, and there are five output neurons.
We use the default configuration of hyperparameters from the
ML-Agents library [18].

D. Rewards

To calculate the reward that is awarded to the network
at every training step, we rely on the observations of the
environment that are already collected for the input of the
neural network. The calculation of the reward is based on four
core principles:

1) A high penalty should be given if the camera collides
with geometry, as this scenario provides the viewer with

Input 1

Input 2

Input 48

Input layer

Output 5

Output 1

Output layerHidden layers

Fig. 8: Structure of the Neural Network

an even worse shot than, for example, a viewpoint from
which the player is partially occluded.

2) A minor penalty should be given if parts of the player
are not in the camera’s frustum, or are occluded by
geometry, as this is not a desired viewpoint either. To
check this, we count the number of corners of the
player’s bounding box that are in the camera’s frustum
or unoccluded.

3) A small reward should already be given when the player
is fully visible, as this provides an acceptable shot.

4) A high reward should be given when the player is fully
visible, and the camera is at the ideal distance from the
player.

We introduce a tuple Γ = (γcoll, γfru, γocc, γdist) con-
taining the information of whether the camera is colliding
γcoll ∈ {0, 1}, how many bounding box vertices are in the
frustum γfru ∈ {0, . . . , 8}, how many bounding box vertices
are visible γocc ∈ {0, . . . , 8} and the distance between the
camera and its ideal position γdist ∈ R at the current time
step.

Section III-A already describes how Ccoll = γcoll is
obtained from the environment for the neural network.
Vfru and Vocc are also described in Section III-A. γfru and

γocc can easily be derived from them:

γfru =
∑

x∈Vfru

x and γocc =
∑

x∈Vocc

x (6)

In order to calculate γdist, we first define an ideal position
of the camera. We define an ideal distance of the camera to
the player on the Y-axis distanceY = 1.5, as well as an
ideal distance on the XZ-plane distanceXZ = 3.5. These two
specifications result in a circle of ideal camera positions above
and around the player, as shown in Figure 9.

The reward should therefore be a continuous function pro-
portional to the distance from the ideal camera position. For
this purpose we define the function Rdist(Γ) : Γ 7→ [0, 1],
which is a Gaussian function.

In an early implementation of the reward function, the
distance reward function Rdist only specified a fixed area
where the camera was supposed to position itself. If the camera

γdist

distanceY

distanceXZ

Circle	of	ideal	camera

positions

Player

Camera

Fig. 9: Ideal Camera Position and γdist

was far away from its ideal position, it was not easy for
the PPO algorithm to learn (via gradient descent) in which
direction it had to move to get closer to the ideal position (and
therefore highest reward). Only by introducing the Gaussian
function for Rdist the camera learned to stay within the desired
XZ- and Y-distance.

The function value is 1 when γdist = 0 and declines with
increasing γdist:

Rdist(Γ) = a · exp

(
− (γdist − b)2

2c2

)
with a = 1, b = 0, c = 2

(7)

Making the reward function continuous helps the neural
network find an appropriate gradient during training and there-
fore learning how to reach a higher reward. Another option to
make the reward function more continuous is to check the
corner points of the player bounding box for being in the
view frustum or for not being occluded by geometry. Instead
of just measuring full occlusion or visibility with true or false,
we look at each corner of the bounding box individually.

If the player is partially outside the frustum or hidden by
geometry, we want to give a negative reward. Hence, we define
the linear function Rvis : Γ 7→ [−1, 0] which scales γfru and
γocc to 0 when the player is fully in the frustum and not
occluded, and to −1 when the player is outside the frustum
and fully occluded:

Rvis(Γ) =

(
γfru + γocc

16

)
− 1 (8)

This continuous reward function is key for the learning
process of the neural network. In R : Γ 7→ [−1, 1] we combine
the previously defined subfunctions and calculate the final
reward, which the network learns to maximize during training
with the help of PPO:

R(Γ) =

−1 if Ccoll = 1
2
5 ·Rvis(Γ) if Ccoll = 0 ∧ (γfru < 8 ∨ γocc < 8)
1
2 ·Rdist(Γ) otherwise

(9)

The summands and factors are used to express the “weight”
of the subfunctions and were determined through experimen-
tation.

E. Training Process

We conducted simultaneous single-agent training. This
means that we train independent agents in parallel, who learn
the same behaviour. We always train with ten agents at the
same time as shown in the examples of the Unity3D ML-
Agents framework. The advantage of this training method
is that parallel training accelerates the training process and
stabilizes the results.

For all actions, we use time steps of 0.02 seconds playing
time and train at a rate of 100 times the game speed. Every
agent independently calculates rewards, takes actions and if
necessary, resets itself.

Every four time steps a decision is made, what action to take
next. In each time step, the action selected by the last decision
is executed and then evaluated by the reward function. Every
500 time steps a training interval is completed and the neural
network is updated with new weights.

Following the completion of a training interval, it is not
always necessary to perform a reset. We reset only if at the
end of the training interval:
• the camera collides with an object from the environment,
• the player is not in the frustum of the camera, or
• or the player is occluded by geometry.
A reset results in the camera being automatically placed at

the ideal Y- and XZ-distance behind the player. If none of the
three reset criteria is met, the camera is not reset.

The motivation behind this is that the camera always has
the same time to collect both positive and negative rewards
within the set time intervals and can therefore easily recognize
improvements. Avoiding a reset of the camera immediately
after one of the three reset criteria is met is intentional. It is
meant to give the network a chance to learn how to escape
unfavourable situations before learning how to avoid them
altogether.

IV. EVALUATION

Part of the goals of this work was understanding how Cam-
erAI performs in levels of increasing complexity (Figure 1).
Therefore we considered the following training levels:

“Level I” only consists of a flat floor, which is bordered
by walls. The camera only needs to turn in the right direction
and stay within the playing area, to follow a player on this
level. Keeping a suitable distance to the player can already be
tested.

“Level II” has increased complexity. Four plus-shaped ob-
stacles block the view of the camera to the player in certain
positions. They can also lead to a collision of the camera with
them.

“Level III” increases the complexity further. Since the
ground was plane at all previous levels and there were no
vertical obstacles, the problem of tracking the player could be
solved solely through navigating the camera on a 2D plane.

By introducing a plateau that can be reached by ramps and
limiting the area to the top by a roof, vertical movement of the
camera becomes necessary. This means that in order to track
the player, navigation in 3D space is required in contrast to the
previous two levels. Level III already contains all challenges
which CamerAI was expected to master.

“Level IV” is a fully-fledged model of an original computer
game map, with all the challenges of the previous levels, as
well as other tricky elements such as broad slopes, narrow
tunnels and thin walls. The geometry of the map is a replica
of the Counter-Strike map “de dust2”. It is, to this day, one
of the most popular Counter-Strike maps [19].

0 0.5 1 1.5 2

·105

−50

0

50

Time Step

R
ew

ar
d

Level I
Level II
Level III
de dust2

Fig. 10: Training Results on Levels I-IV. 200k time steps (i.e.
far right of the plot) equals to 45 minutes training time.

To evaluate CamerAI we first train a neural network for
each level for 2 · 105 steps (Figure 10). Following that, we let
CamerAI follow a player bot around the map for ten hours. For
each time step, we record whether the player is visible on the
screen completely, partially or not at all. To fasten the process,
we simulate the ten hours of game time at a hundredfold speed,
just like during network training.

TABLE III: CamerAI’s Performance after 10 Hours of Filming

Player Level I Level II Level III de dust2

Fully in Sight 99.14% 98.72% 97.93% 96.41%
Partially in Sight 0.86% 1.26% 2.05% 3.52%
Not in Sight 0.00% 0.02% 0.02% 0.07%

The result, which is presented in Table III, shows that
CamerAI is able to keep the player on screen for the vast
majority of the tested sessions. On Level IV (de dust2),
CamerAI keeps the player fully on-screen over 96% of the
time and spends less than 0.1% of the time in a viewpoint
where the player cannot be seen at all.

In addition to this, CamerAI delivers superior results to state
of the art 3rd person cameras when map geometry abruptly
occludes the view (c.f. Video Figure).

Also, we discovered that the normalization of inputs pre-
sented in Section III-A6 led to a significant reduction of
training time in Level IV (Figure 11).

0 0.5 1 1.5 2

·105

−50

0

50

Time Step

R
ew

ar
d

On
Off

Fig. 11: Effect of Normalization on Training on Level IV. 200k
time steps (i.e. 2 on the x axis) equals to 45 minutes training
time.

V. DISCUSSION

The evaluation results suggest that CamerAI performs well
across our given set of environments in real-time. CamerAI
is able to reliably keep a target player running around on a
complex map on screen and avoid occlusion or collisions.

Our implementation does not divide the environment into
cubic cells and run resource-intensive path-finding algorithms
in 3D space. All inputs for the neural network can be broken
down into primitive operations such as getting positions or
casting rays, which are possible in all common 3D engines
with low implementation and performance effort [16], [20],
[21], [22].

Also, we see that in popular games, 3rd person cameras
are unable to gracefully handle abrupt occlusions. We present
two common scenarios in which CamerAI consistently delivers
superior results (c.f. Video).

Despite the acceptable results, CamerAI also has some
limitations. The network adapts well to the environment it has
already been exposed to and learns to respond competently to
small variations (i.e. a network trained on Level III - performs
well on Level IV). Despite that, there are limitations to this
which stem from the type of neural network configuration and
type of training algorithm (PPO). Other types of configurations
or training algorithms might be able to modulate their output
faster to adapt to faster varying environments (abrupt stairs,
pits, rapid onset-offset of occlusions).

CamerAI is only trained to keep a single player on screen
while the environment in the background or interaction with
other players is not taken into account. This remains as future
work.

Finally, the algorithm’s ability to provide enjoyable camera
movement for the spectator is estimated using heuristics. The
quality of the resulting camera movements should as a next
step be evaluated with real users.

VI. CONCLUSION

CamerAI is a fully connected network with only two hidden
layers of 128 neurons that can perform chase camera function-
ality. The CamerAI network architecture delivers acceptable

results with only 8 minutes of training on a laptop computer,
with maximum performance following 45 minutes of training.
This work contributes a set of inputs and outputs, their
appropriate coordinate spaces, as well as a carefully designed
reward function that can be used to train the network with
reinforcement learning. Our findings highlight the importance
of correct coordinate spaces for the inputs and outputs, a
continuous reward function, normalization of the inputs, as
well as timely resets during training to allow the network
to explore its options and its surroundings using raycasts.
CamerAI was able to keep the player fully visible 96% of
the time during a long run in a complex game map.

Given the proliferation and ease of use of machine learning
frameworks, we believe that extending this work as well
as designing better agents holds promise for the future of
automated cinematography for 3D environments and physical
drones. The future of game cinematography could potentially
comprise of a number of specialized CamerAI-type agents,
orchestrated by a “director” neural network.

ACKNOWLEDGMENT

The authors would like to thank Christophe Lino for advice
and guidance early in the project. Also, Frank Steinicke for
offering help with editing the paper.

REFERENCES

[1] P.-P. Vázquez, M. Feixas, M. Sbert, and W. Heidrich, “Viewpoint
selection using viewpoint entropy.” in VMV, vol. 1, 2001, pp. 273–280.

[2] M. Ozaki, L. Gobeawan, S. Kitaoka, H. Hamazaki, Y. Kitamura, and
R. Lindeman, “Camera movement for chasing a subject with unknown
behavior based on real-time viewpoint goodness evaluation,” The Visual
Computer, vol. 26, pp. 629–638, 06 2010.

[3] C. Lino and M. Christie, “Efficient composition for virtual camera
control,” in ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, 2012.

[4] ——, “Intuitive and Efficient Camera Control with the Toric Space,”
ACM Transactions on Graphics, vol. 34, no. 4, pp. 82:1–82:12, Jul.
2015.

[5] M. Christie, P. Olivier, and J.-M. Normand, “Camera control in computer
graphics,” Computer Graphics Forum, vol. 27, no. 8, pp. 2197–2218,
2008.

[6] R. Bonatti, C. Ho, W. Wang, S. Choudhury, and S. Scherer, “Towards a
robust aerial cinematography platform: Localizing and tracking moving
targets in unstructured environments,” CoRR, vol. abs/1904.02319,
2019. [Online]. Available: http://arxiv.org/abs/1904.02319

[7] H. Jiang, B. Wang, X. Wang, M. Christie, and B. Chen, “Example-
driven virtual cinematography by learning camera behaviors,” ACM
Trans. Graph., vol. 39, no. 4, Jul. 2020. [Online]. Available:
https://doi.org/10.1145/3386569.3392427

[8] L. Burg, C. Lino, and M. Christie, “Real-time anticipation of occlusions
for automated camera control in toric space,” Computer Graphics
Forum, vol. 39, no. 2, pp. 523–533, 2020. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13949

[9] R. Ranon and T. Urli, “Improving the efficiency of viewpoint compo-
sition,” IEEE Transactions on Visualization and Computer Graphics,
vol. 20, no. 5, pp. 795–807, May 2014.

[10] K. Xie, H. Yang, S. Huang, D. Lischinski, M. Christie, K. Xu, M. Gong,
D. Cohen-Or, and H. Huang, “Creating and Chaining Camera Moves for
Quadrotor Videography,” ACM Transactions on Graphics, vol. 37, pp.
1–14, Aug. 2018.

[11] B. F. Jeon and H. J. Kim, “Online trajectory generation of a MAV
for chasing a moving target in 3d dense environments,” CoRR, vol.
abs/1904.03421, 2019. [Online]. Available: http://arxiv.org/abs/1904.
03421

[12] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” CoRR, vol. abs/1707.06347,
2017. [Online]. Available: http://arxiv.org/abs/1707.06347

[13] S. Rudolph, S. Edenhofer, S. Tomforde, and J. Hähner, “Reinforcement
learning for coverage optimization through ptz camera alignment in
highly dynamic environments,” in Proceedings of the International
Conference on Distributed Smart Cameras, 2014, pp. 1–6.

[14] W. Hönig and N. Ayanian, “Dynamic multi-target coverage with robotic
cameras,” in 2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2016, pp. 1871–1878.

[15] P. Burelli and G. N. Yannakakis, “Combining local and global opti-
misation for virtual camera control,” in Proceedings of the 2010 IEEE
Conference on Computational Intelligence and Games. IEEE, 2010,
pp. 403–410.

[16] Unity Technologies. (2019) Unity user manual (2019.2). [Online].
Available: https://docs.unity3d.com/Manual/

[17] M. Kantardzic, Data Mining: Concepts, Models, Methods and Algo-
rithms, 2nd ed. John Wiley & Sons, Inc., 2011.

[18] Unity Technologies. (2019) Unity ml-agents toolkit (beta). [Online].
Available: https://github.com/Unity-Technologies/ml-agents

[19] David Johnston. (2019) Making of: Dust 2. [Online]. Available:
https://www.johnsto.co.uk/design/making-dust2/

[20] Epic Games. (2019) Unreal engine 4 documentation. [Online].
Available: https://docs.unrealengine.com/

[21] Crytek. (2019) Cryengine v manual. [Online]. Available: https:
//docs.cryengine.com/

[22] J. P. Freiwald, N. Katzakis, and F. Steinicke, “Camera time warp:
compensating latency in video see-through head-mounted-displays for
reduced cybersickness effects,” in Proceedings of the 24th ACM Sym-
posium on Virtual Reality Software and Technology, 2018, pp. 1–7.

