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Abstract—This paper focuses on player modeling in multiplayer
adaptive games. While player modeling has received a significant
amount of attention, less is known about how to use player
modeling in multiplayer games, especially when an experience
management AI must make decisions on how to adapt the
experience for the group as a whole. Specifically, we present
a multi-armed bandit (MAB) approach for modeling groups of
multiple players. Our main contributions are a new MAB frame-
work for multiplayer modeling and techniques for addressing the
new challenges introduced by the multiplayer context, extending
previous work on MAB-based player modeling to account for new
group-generated phenomena not present in single-user models.
We evaluate our approach via simulation of virtual players in
the context of multiplayer adaptive exergames.

Index Terms—multi-armed bandit, multiplayer modeling, ma-
chine learning, linear regression, reinforcement learning

I. INTRODUCTION

Multi-armed bandits (MABs, or “bandits”) are a class of
sequential decision problem in which an agent must make
a selection from a group of options repeatedly, observing
rewards resulting from its choices and aiming to maximize the
total reward over the course of the selections [1], [2]. MAB
techniques can assist in addressing the exploration/exploitation
problem, where each selection must consider the utility of
exploring the options to gain information about their potential
rewards versus exploiting the option currently believed to be
the best. When deployed as the experience management (EM)
agent in an adaptive game, bandits have been shown to be
effective at modeling individuals based on their behavior [3],
and an MAB-based AI can serve as the basis for effective
interventions and game adaptation. However, previous research
on MAB-based player modeling (and player modeling at large)
has focused on adapting experiences for individuals rather than
groups of players.

In this paper, we explore the use of MAB-based models
in multiplayer environments, where such environments intro-
duce new design challenges over single-player experiences.
Specifically, we identify three main challenges in MAB-
based multiplayer modeling: best-choice estimation, explo-
ration strategies, and social fairness.

To illustrate these three challenges, we consider a scenario
in which the AI has some set of intervention options it
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can apply to the environment and wishes to maximize some
target metric for each player (e.g., amount of time playing).
In a single-player scenario, the best choice is simply the
intervention that is predicted to result in the highest value
for this metric. However, in a multiplayer scenario, the AI
must contend with multiple measurements of the target metric
from multiple players, and there may not be a single inter-
vention that is the best for all players. Moreover, the choice
of intervention may not necessarily correlate directly with
player experience due to dynamics among players, adding
complexity to the prediction of outcomes for each intervention.
Additionally, MABs often explore by choosing interventions
different from the one believed to be the best in order to
better understand their potential; however, typical exploration
strategies in MABs do not necessarily apply to multiplayer
settings due to player interactions, as we will elaborate later.
Thus, this prompts the following questions: how do we best
leverage multiple measurements from multiple players to make
the most accurate predictions when determining the best
choice? How do we ensure that our exploration considers an
exploration space that more accurately reflects the players’
experience? Finally, how do we maintain social fairness over
time with repeated selections?

We describe each of these problems in more detail in
Section IV. Solving these issues will be essential for the design
of MABs that aim to model group-based and social phenomena
in players. In this paper, we propose solutions to the first two
challenges and leave the third (social fairness) for future work.

Therefore, this paper has three main contributions. The
first is a framework for handling the additional complexity
of modeling multiple players in MAB-based approaches. Our
second contribution is a solution for managing the effect that
multiple rewards and predictions have on the bandit strategy’s
assessment of what the “best” choice means. Finally, our third
contribution is a first solution for handling exploration in
multiplayer scenarios, where we present a modified version
of forced exploration that considers not only the prior bandit
selections but also the previous experiences administered to
the players through those selections.

The remainder of this paper is structured as follows. First,
we discuss existing literature related to this research space.
Second, we introduce our motivating scenario in which we
aim to model player behavior related to social comparison in
an adaptive multiplayer game that encourages physical activity
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(PA). Next, we construct a simulation of this scenario with
virtual players and an MAB-based model for evaluating our
approach. We then discuss our approach in detail, describing
both our Multiplayer Regression Oracle (MRO) for multi-
player bandits as well as our Multiplayer Forced Exploration
(MFE) algorithm. Finally, we evaluate the performance of our
approach in the simulated environment.

II. BACKGROUND AND RELATED WORK

The following introduces related work around multi-armed
bandits and player modeling.

A. Multi-Armed Bandits

A multi-armed bandit (MAB) problem is a decision prob-
lem [1], [2] where an agent is faced with many opportunities,
each with an unknown potential reward (ρ) from which it
must make a selection. This decision is repeatedly requested
of the agent, usually over a limited number of iterations (in
practical cases) known as the horizon of the agent’s operation.
In keeping with an analogy of playing slot machines in a
casino, the agent is tasked with pulling one of the arms each
iteration until the horizon is reached.

In the most common formulation, the stochastic bandit
problem, the rewards offered by each of these arms are
modeled as independent, static distributions of potential reward
values, only discoverable by testing the arms repeatedly.
The agent’s goal is to maximize the total value of rewards
observed over the course of the horizon, where each pull
must consider the opportunity cost of exploiting the agent’s
current knowledge of the reward space to maximize return
versus exploring among the arms to gain a more accurate
understanding of the reward space. The agent’s design can be
conceptually divided into a policy that evaluates this trade-off
to guide exploration pulls and an oracle that predicts future
rewards to maximize exploitation pulls [4].

Variants of the MAB problem add features and constraints
that can better align the MAB problem and its techniques
with real-world problems. Relevant to the ideas discussed
in this research, contextual bandits introduce an external
context vector that describes additional information regarding
the bandit’s environment, potentially offering insight to the
agent [5]. Short-horizon bandits explore situations where the
agent is given very few opportunities to pull arms [4], and
restless bandits approach scenarios in which not every arm is
available on every pull [6].

B. Player Modeling

Player modeling refers to the practice of inferring and track-
ing individual characteristics of a player based on observations
of player qualities or behavior [7]. Adaptive games often
leverage player modeling to dynamically adjust difficulty,
manage user interface, or guide game narrative based on player
preference, performance, or behavior [8]–[12]. In this way,
player modeling can assist in managing the experience of a
player in a software environment by providing an experience
management (EM) AI agent with necessary insight into the

player’s needs so it can perform effective interventions on the
environment [13].

Multiplayer modeling, or the modeling of more than one
player simultaneously, is an understudied field that introduces
significant challenges over individual modeling [14]. When a
virtual environment is shared by multiple players and singular
EM game adaptations must affect those players simultane-
ously, additional concerns emerge for the AI. For instance, AI
predictions must incorporate multiple models, and when an AI
intervention benefits one player but negatively affects another,
the assessment of that intervention’s value must be reconsid-
ered. Additionally, the dynamics among players introduce new
phenomena not present in single-player environments (e.g.,
interpersonal skills, leadership, jealousy, etc.) that may provide
additional opportunities for modeling.

MABs have been shown to be effective in establishing
player models based on player behavior [3], [4]. When used
as the basis for an EM AI, an MAB strategy is distinctly
capable of exploring and exploiting a user’s response to
various intervention states while maximizing reward over time.
In this kind of MAB-based modeling approach where arms are
associated with player characteristics, the method becomes the
model [3], and the arm predictions provided by the MAB work
both to guide the intervention and to describe the system’s
estimation of the player’s underlying preferences or traits.

III. MOTIVATING SCENARIO

Our primary interest in multiplayer modeling is the oppor-
tunity to investigate phenomena that manifest only in group
environments. For example, while traditional single-player
scenarios might enable modeling of individual traits such as
player preferences or skill, multiplayer environments yield
opportunities to model social dynamics such as teamwork,
peer pressure, and so on. The following discusses our domain
of interest and the scenario we have devised to evaluate our
multiplayer modeling approach.

A. Social Comparison Orientation

In this paper, we consider the phenomenon of social com-
parison, the psychological processes by which individuals
compare themselves to others [15]. Social comparisons are
made by individuals, often subconsciously, to evaluate their
own performance (self-evaluation), to gather insight toward
their future success (self-improvement), or to improve their
self-confidence (self-enhancement) [16]. Current models hold
that individual characteristics, known as an individual’s social
comparison orientation (SCO) [17], [18], will determine their
frequency, purpose, and emotional reactions around these
comparisons. For example, some individuals may tend to seek
out (or prefer) comparisons to others doing better than them
(upward comparisons) for the purpose of self-improvement,
while some may prefer to seek out others doing worse than
they are (downward comparisons) for the purpose of finding
relief in their comparatively better performance.

In this research, we construct predictive models of player
SCO based on their behavior when introduced to various



comparison opportunities (i.e., upward and downward) in
the domain of exercise games (or exergames) that aim to
encourage physical activity (PA) in players. Specifically, we
construct a scenario in which players are encouraged to walk
more by measuring a player’s daily steps via a pedometer (e.g.,
a Fitbit device) and motivating them through a team-focused
game activity based around that measurement.

B. Multiplayer Experience Management Setting

In the experiments reported in this paper, we used a sim-
ulated environment with simulated players. In our scenario,
to provide for social comparison opportunities, players are
placed into teams where they regularly (i.e., daily) engage
in a software activity that reports both a player’s own step
performance and that of their teammate. As an intervention,
we construct an MAB-based AI that generates the step count
of a third teammate, one that is not known to the other two
teammates to be artificially constructed.

The two participant teammates (as virtual players, discussed
below) are both presented with the step counts of all members
of their team and are prompted to select one of them to gain
more insight into that teammate’s profile and performance
details. This promotes the comparison activity, where both
the profile selection and the resulting motivating effect are
determined by the virtual player’s modeled SCO.

The steps presented by the third AI teammate constructed by
the AI provides additional comparison opportunities to both
players; in any daily session, the steps of the fabricated AI
teammate could be positioned above, below, or between those
of the participant teammates to provide additional upward
and downward comparisons relative to each. In this way, the
positioning of the AI’s reported steps becomes the experience
management lever through which the AI can increase or
decrease the upward and downward comparison opportunities.
As illustrated in Figure 1, through this lever, the AI can adapt
the overall experience toward what it believes will provide the
most effective social comparison-based motivation.

C. Restless Bandit Design

Our proposed intervention is carried out by an MAB-based
AI agent that considers potential AI teammate step positions
as arms corresponding to the placements discussed in the
previous section (i.e., above, below, or between the steps of
the two participant players). The participant teammates’ steps
can vary, yielding days in which one human teammate (“P1”)
may have higher steps than the other (“P2”) and days in which
the opposite is true. In the case where the AI teammate’s
steps would be placed between those of the two participant
teammates, we recognize that this differentiation may be
significant to the effect of that arm; therefore, we choose
to design a restless bandit [6] that conditionally activates
and deactivates arms based on which of the two participant
teammates has more steps.

Specifically, we construct our restless MAB with four arms
that will determine the placement of the AI teammate’s steps
within a session. The arms are as follows:

Fig. 1. Two participant teammates remotely engage in a software activity each
day in which both teammates’ steps from the previous day are presented. A
third teammate, not known to the participants to be artificially constructed,
is added to the team by the AI. The MAB determines the placement of the
AI teammate’s steps relative to the steps of the participants (option A, B, or
C), providing additional comparison opportunities that can leverage the SCO
preferences modeled for both participants.

• A: The AI teammate’s steps are set 20% above the higher
of the two participant teammates.

• B1: In the case where P1’s steps are higher than those
of P2, the AI teammate’s steps are set to the midpoint
between the two participant teammates’ steps. This arm
is not available if P2’s steps are higher than those of P1.

• B2: In the case where P2’s steps are higher than those
of P1, the AI teammate’s steps are set to the midpoint
between the two participant teammates’ steps. This arm
is not available if P1’s steps are higher than or equal to
those of P2.

• C: The AI teammate’s steps are set 20% below the lower
of the two participant teammates.

D. Virtual Player Design

In this research, we perform simulations with virtual players
to explore and optimize our approach, similar to our previous
bandit-based modeling research [3]. In pursuing a more accu-
rate simulation, we construct these virtual players to exhibit
behavior that would reflect what would be expected from real
human participants. For instance, we implement a simulator
for generating human-like daily steps for our virtual players.

In an analysis of the Mechanical Turk step data in a 2016
study by Furberg et al. [19], the daily step data (n = 1665)
was found to conform to the probability density function of
a gamma distribution Γ(k = 2.8, θ = 3100) [3]. We also
discovered associations between a person’s steps on a given
day (St) and their steps in the days of the prior week. We
therefore constructed a regression model for these records that
included the observed steps for that participant in each of
the previous seven days (St−1, ..., St−7), performing backward
elimination to determine the features that were statistically
significant (p < 0.05) in predicting St. All features survived
this process except the steps from five days prior (St−5).

To best represent real human behavior, we use this insight
to construct a simulator for daily step generation for our
virtual players that we call the Pattern Step Simulator. This



simulator generates steps for the virtual players that conform
overall to the gamma distribution while also maintaining the
associative relationships among days within players via the
process described in our previous work [4].

Finally, in order for our virtual players to be amenable to
the intervention and react to comparison opportunities, we
adopt a model for SCO that can impart individual differences
among virtual players. Reflecting the design of the Iowa-
Netherlands Comparison Orientation Measure (INCOM) [17],
the psychology instrument commonly used to evaluate SCO,
this model consists of two integers (0 ≤ u ≤ 1, 0 ≤ d ≤ 1)
that respectively represent the virtual player’s propensity to
seek out upward and downward comparisons.

In our simulation, the virtual players are equipped to make
all the participant player decisions earlier discussed in the mul-
tiplayer exercise, including selecting a profile for comparison
based on the virtual player’s (u, d) model. The values and
relative magnitude of these variables determine the likelihood
that a virtual player will select a profile in a particular direction
and will react positively or negatively to these comparisons
(i.e., increase or decrease their daily steps that day following
the session), as demonstrated in our previous work [3].

IV. MULTIPLAYER MODELING VIA MABS

The inclusion of multiple players in a shared environment
may enable new player characteristics to model, but it also
introduces new challenges to the construction of those mod-
els [14]. Specifically, we identify the three main challenges
as 1) best-choice estimation, where multiple rewards from
multiple players must be considered in MAB exploitation, 2)
exploration strategies, which must now consider more than
arm selection history when assessing the exploration space
of player experiences, and 3) social fairness, where single
decisions made by the AI can affect an experience or virtual
environment shared by multiple individuals.

Regarding best-choice estimation, we consider a scenario in
which an AI aims to maximize a particular metric in players
that it can measure directly (e.g., frequency of feature use) and
provides interventions that adapt the game toward increasing
this metric. As the MAB applies its interventions (based on
arm selections) over time, it can observe how the metric
changes among the players and adjust accordingly. One way
to manage metrics from multiple players might be to simply
work with the average, but this approach may yield lower
rewards; aggregating each player’s metric into a combined
value requires a loss of resolution on the data that might have
been useful toward the MAB’s understanding of the players.

As for exploration strategies, when adapting an MAB-
based approach to a multiplayer context, the nature of both
exploitation and exploration must be reconsidered because the
arms of the bandit no longer necessarily share a one-to-one
relationship with the experience provided to a player. Instead,
observed rewards belong to a collection of players, predictions
and exploitative arm pulls affect multiple individuals, and
arms alone can no longer be used as a proxy for explored
intervention states.

Finally, with regard to social fairness, where each of the
AI’s decisions will affect an experience shared by multiple
players, we must consider how the right choice for the AI
may not always be the arm that predicts the greatest reward.
In sole pursuit of maximizing results, if over time the MAB
continually favors a choice that benefits certain players, other
players may be ignored or marginalized. In the worst case,
a choice that favors certain players might work against or at
the expense of others repeatedly. As the experience of all the
players is placed in the care of the AI, the question is raised
regarding the responsibility the AI has in ensuring that players
receive equitable consideration. However, though we identify
social fairness as a key challenge in multiplayer modeling,
we do not address this challenge in this research but aim to
explore it in our future work.

Therefore, we present the following two approaches toward
addressing (respectively) challenges 1 and 2 above. The first
addresses multiplayer best-choice estimation, exploring how a
bandit strategy might interpret rewards and combine predic-
tions for multiple players to determine the best overall choice.
The second addresses multiplayer exploration strategies, in-
vestigating how explorative arm selections should consider not
only the distribution of past selections but also the distribution
of player experience that those selections have rendered.

A. Multiplayer Best-Choice Estimation

The MAB-based AI is driven by both its oracle, the pre-
dictive model built from observations of player behavior that
predicts future rewards, and its policy, the decision process
that determines when the MAB should explore choices (i.e., to
improve the training data the oracle uses to make predictions)
versus exploit the choices that the oracle currently believes
will maximize results. For our policy, we use a standard ε-
greedy (“epsilon greedy”) strategy in which a parameter ε
determines the percentage of time in which the policy will
explore randomly among the choices not predicted by the
oracle to be the best (0 < ε < 1).

As for the contribution of this work, our Multiplayer Re-
gression Oracle (MRO) maintains a separate linear regression
for each player. Because there are multiple players to consider
in each arm pull, the regressions modeling each are combined
into a multi-part oracle when a decision must be made by
the AI. We also extend our previous work in regression-based
oracles [4] by replacing the arbitrary oracle value as a feature
in the regression with a representation of the arm that reflects
the actual state of the intervention. Specifically, instead of as-
signing a numerical value to each arm (e.g., A = 0, B = 1, ...)
and submitting those values to the regression, we provide
the difference between the player’s steps and the other two
teammates as the value for the regression’s arm feature.

Additionally, with insights regarding human step behavior
resulting from our analysis of data from the Furberg et al.
dataset [19], we also include in the regression oracle the
observed daily steps for that virtual player over the past seven
days [4]. Note that although the step data analysis did not
indicate the steps five days prior (St−5) to be statistically



Fig. 2. The MRO includes a regression model for each player, where the
rewards (i.e., steps) observed for each day are associated with an array of
independent variables consisting of the rewards for the seven days prior as well
as a feature conveying the nature of the arm selected that day. The regression
models are updated following each observation, and the resulting coefficients
for both players (β1,β2) are used by the oracle to make predictions.

significant, we do not omit it from the predictive model. We
wish to explore the potential for the oracle to exploit previous
rewards to predict future rewards in general, and thus in our
experiments we prefer not to bias the approach with specific
knowledge of the domain.

The complete MRO, illustrated in Figure 2, therefore asso-
ciates the steps from previous days as well as the difference in
steps between the player and both of their teammates against
the resulting daily steps reported for that player. Specifically,
the player regression models consist of dependent variables
including the player’s steps each day of the preceding week
(St−1, ..., St−7) along with a feature representing the arm via
the net result of the comparison between the player’s steps and
those of their teammates. In this, we include Vt−1 as the steps
of the other participant teammate the previous day and At as
the steps for the AI teammate constructed by the bandit agent.
These are associated with the independent variable St, or the
steps observed for the player following their participation in
the daily intervention, as indicated in Equation 1, where the
_ operator denotes concatenation:

St = εt+

8∑
i=1

βi{St−1, ..., St−7}_ (2St−1−Vt−1−At) (1)

Each day when a new session is performed, and for both
players separately (P1 and P2), the regression coefficients β
are recalculated based on all observations for those players.
Then, a prediction is calculated for each player and arm a
based on those coefficients. First, a regression set x̂t,a is
constructed that joins the player’s previous week’s steps with
what the comparison factor would be if that arm were pulled:

x̂t,a = {St−1, ..., St−7}_ (2St−1 − Vt−1 −At,a) (2)

A reward is predicted for the current day for each arm
(ρ̂t,a) by evaluating each of today’s features as they would
be if that arm were pulled (x̂t,a) multiplied by the player’s
corresponding regression coefficients β.

ρ̂t,a =

m∑
i=1

βix̂t,a,i (3)

The result is a predicted step value, which is standardized by
subtracting the mean µp and dividing by the standard deviation
σp of all such rewards previously observed for that player. This
results in a value (ρ̂′t,a) indicating the predicted reward in terms
of the number of standard deviations from the expected value
for each arm and is calculated for each player separately.

ρ̂′t,a =
ρ̂t,a − µp

σp
(4)

For each arm, the corresponding ρ̂′t,a values are averaged
across players to create an aggregate predicted reward for that
arm. The arm with the highest aggregate predicted reward is
then selected by the oracle.

B. Multiplayer Exploration Strategies

To bootstrap the enhancement of the regression oracle, the
MAB may select arms in the initial pulls that attempt to maxi-
mize exploration in a strategy referred to as forced exploration,
which has been shown to improve MAB performance in short-
horizon scenarios [4]. In the forced exploration period (i.e.,
the first n pulls), the bandit strategy considers the selections
that will best provision its oracle by selecting among the less
explored arms for which the confidence in reward is lower.

When modeling individual players, forced exploration is
relatively straightforward: achieving the best exploration is
simply a matter of balancing how many times each arm is
pulled. In typical cases, this automatically offers a player
a balanced exposure to the experiences offered by the AI.
However, in the multiplayer case, the experience offered to
each player is not wholly dictated by the arm that is selected;
instead, aspects of the dynamics among the players may also
factor into the resulting intervention state, and balancing arm
pulls does not necessarily lead to a balanced experience for
all players. For instance, a player in our simulation who has
received arms A and C three times each could have seen
anywhere from three upward and nine downward to nine
downward and three upward opportunities, depending on the
relative steps of their teammate during those experiences. A
simplified example of such a scenario is illustrated in Figure 3.

Therefore, in our approach for Multiplayer Forced Explo-
ration (MFE), we consider not only the current arm pull count
but also the number of upward and downward comparisons
that both players have experienced so far. Because both factors
are important for properly constructing the players’ regression
models, we adopt the following approach to address both
concerns when deciding which arm to pull to maximize
exploration (i.e., to maximize the exposure of the players’
regression models to new situations).

We track two arrays, C and P , where the former con-
tains values regarding the frequency of intervention cases,
or specific circumstances experienced by the players that are
relevant to our model, and latter contains values regarding the
frequency of pulls of each arm experienced by the players. The
C array consists of as many values as there are intervention
states s relative to each player p, where C = (Cj,k : 1 ≤ j ≤
s, 1 ≤ k ≤ p). In our particular scenario, we record the number



Fig. 3. In an example multiplayer system modeled as a two-armed bandit
problem for simplicity, the steps of an AI teammate (grey) can either be placed
“High” (20% above the highest) or “Low” (20% below the lowest). A sample
sequence of six pulls with traditional forced exploration shows that both arms
were indeed pulled an equal number of times. However, due to dynamics
outside the AI’s control, P1 (blue) receives a total of three upward comparison
opportunities while receiving nine downward comparison opportunities. In
this example, arm pull frequencies cannot serve as a reliable proxy for player
experience within the intervention.

of upward and downward comparisons (s = {up, down})
experienced so far by each of the two players (p = {P1, P2}).
The P array consists of n values corresponding to the bandit’s
arms A = {a1, ..., an}, where P = (P1, ...Pn). In our
particular scenario, we record the number of times each arm
in our restless bandit has been pulled in aggregate among the
experiences of both players.

To choose the arm that will maximize exploration, the MAB
calculates the impact that each arm would have on both of
these arrays in terms of the balance among their component
values. Specifically, it examines for both arrays (C and P ) and
each arm a the value of the delta variance function ∆σ2

a(X)
that denotes the change in variance (σ2) that array X would
incur if arm a were pulled (thereby creating Xa).

∆σ2
a(X) = σ2(Xa)− σ2(X) (5)

For example, with respect to the P array, we find the
histories of both players in a three-arm bandit scenario with
arms A = {I, J,K} have been aggregated to yield P =
[4, 6, 7]. The variance of this array is σ2(P ) = 1.555. The
MAB agent will then calculate the change in variance of this
array that would occur when each of the potential arms were
pulled. For instance, pulling the third arm (K) would result
in an array PK = [4, 6, 8], the variance of which would be
σ2(PK) = 2.667, and for which the change in variance would
be ∆σ2

K(P ) = 1.555− 2.667 = −1.11. Alternatively, pulling
the first arm (I) would result in an array PI = [5, 6, 7], the
variance of which would be σ2(PI) = 0.667, and for which
the change in variance would be ∆σ2

I (P ) = 1.555− 0.667 =
0.89. Because +0.89 is larger than −1.11, arm I would be
considered to achieve greater exploration than arm K.

This is performed for every arm a for both arrays (C and
P ). A pair of weighted averages (WC ,WP ) is applied to both
of the resulting values to find the final Exploration Score Ea

for that arm:

Ea = WC ∗∆σ2
a(C) +WP ∗∆σ2

a(P ) (6)

The arm a that yields the highest value for Ea is selected
as the arm to explore. It is worth noting that traditional forced
exploration could be formalized as Equation 6 with WC =
0,WP > 0. As part of our simulation experiments, we explore
a range of potential values for WC and WP to examine their
relative influence on bandit performance.

V. EXPERIMENTAL EVALUATION

To evaluate our framework, we conduct two experiments
exploring bandit strategy performance against our simulation
using virtual players. In these experiments, we examine the
effects of our two proposed techniques along with standard
UCB1 [20], UCBT [4], and ε-greedy policy strategies. First,
we evaluate our proposed solution for the best-choice esti-
mation problem by investigating the potential benefit of our
MRO in its own bandit strategy: a variant of the standard ε-
greedy strategy that replaces the default predictor with our
multi-part regression model predictor. Second, we evaluate
our proposed solution for the exploration strategy problem by
exploring various weights (WC ,WP ) in our MFE approach
to determine the effect that concern for either array factor (C
and P , respectively) may have on performance.

For the policy strategies requiring the tuning of a parameter
(e.g., UCB1’s exploration constant C), we ran pre-tests of the
strategy at various values for the parameter to determine the
value that promoted the highest performance for that strategy
in our simulation. This collection of pre-tests promoted a value
of C = 800 for the UCB1 strategy and ε = 0.01 for the
ε-greedy strategy. Note that UCBT is a parameter-less UCB
strategy and does not require any pre-test tuning [4].

Each bandit variant was examined over a horizon of h = 70
(i.e., a 10-week intervention with daily sessions), where we
recorded observed rewards for each of the 70 time steps (or
pulls). Each of these examinations was considered a trial, and
the presented results of every experiment represent the average
of both players’ rewards over 500,000 trials. For both virtual
players in every trial, the SCO player models (composed of the
u and d factors discussed in Section III-D) were randomized.

A. Multiplayer Best-Choice Estimation Results

Traditional, single-player bandit strategies rely on the ex-
pected value of past rewards to make their predictions. In
these approaches, the oracle chooses the arm to exploit by
averaging the rewards of each arm in the past and choosing the
arm with the greatest expected value. Some strategies (such
as UCB-class strategies) also consider the variance of past
rewards to construct confidence bounds that influence their
policy decisions. In the multiplayer scenario facilitated by our
simulation, which yields the rewards of two virtual players
each pull, we combine the rewards of both virtual players by
averaging them when they are received by these strategies.

In our first experiment, we introduce our MRO strategy that
uses an ε-greedy (ε = 0.01) policy and a two-part regression
for oracle predictions, as described in Section IV-A. In this



Fig. 4. Comparison of bandit strategy performance using ε-greedy and UCB-
based policies in a short-horizon, multiplayer simulation with virtual players.
The experimental MRO strategy (blue) implements the same policy as the
traditional ε-greedy approach (green), except that it incorporates the multi-
part regression oracle rather than the standard expected value-based predictor.
The ε-greedy regression strategy (brown) also uses a regression oracle, but it
does not maintain a separate regression model for each player.

TABLE I
AVERAGE REWARDS OF BANDIT STRATEGIES IN MULTIPLAYER SCENARIO

(h = 70, ±99.9% CI)

Bandit Strategy Overall Avg. Reward Pull #70
ε-greedy (ε = 0.01) MRO 11976.4 (±116.0) 12208.6
ε-greedy (ε = 0.01) w/ Reg. 11707.2 (±96.6) 11943.1

ε-greedy (ε = 0.01) 11654.8 (±101.2) 11838.2
UCB1 (C = 800) 11671.8 (±106.6) 11882.0

UCBT 11489.2 (±112.2) 11806.9

case, the separate rewards observed for both virtual players
do not need to be combined but can instead be given to each
player’s regression model directly. For comparison, we include
an additional ε-greedy strategy with a single-model regression
oracle (versus the MRO’s multi-model oracle) that averages
both players’ rewards when they are observed in the same
fashion as the traditional strategies.

The results of this five-strategy experiment are presented in
Table I with confidence intervals and visualized in Figure 4,
where the average of both players’ rewards (across all trials)
are shown at each pull over the horizon. These results demon-
strate the value of a predictor that does not simply consider
every arm in isolation but rather the system as a whole. While
we expect all of these bandit strategies to approach the same
performance in the limit (i.e., an infinite horizon), we see
the MRO strategy outperform (p < .001) all three traditional
strategies and the single-model regression oracle variant in this
short horizon that is more relevant to our scenario.

B. Multiplayer Exploration Strategy Results

Where we present that single-player forced exploration can
be formalized as Equation 6 with WC = 0,WP > 0, we
promote an approach that includes consideration for the C
array factor (i.e., WC > 0). Therefore, our second experiment
explores various values for WC and WP to assess the impact
they have on a multiplayer bandit strategy’s performance.

Fig. 5. Results of experiments with randomized values for WC and WP ,
with the ratio between the values plotted against the (standardized) reward
observed. Experiments with ratio values higher than 3.0 were omitted from
visualization but included in analysis. A higher ratio of WC/WP appears
to correspond with higher performance, with an apparent threshold between
0.27 and 0.38 in our scenario, and where bandit strategies below this threshold
demonstrated lower performance. Note that strategies using traditional forced
exploration (i.e., WC = 0) would all present below this threshold.

We performed 100 experiments using a standard ε-greedy
(ε = 0.01) strategy and adopting our MFE technique for the
first 8 pulls of each trial. In each of the 100 experiments,
the values for WC and WP were each randomly selected
from the interval [0, 3]. The average rewards observed for each
pull of each trial were aggregated and standardized across all
experiments, with results visualized in Figure 5.

These results suggest that forced exploration strategies
underperform in our multiplayer scenario when the WC/WP

ratio drops below a threshold, supporting our intuition that
WC performs better at values higher than zero; that is, in
multiplayer scenarios, the inclusion of the C array in forced
exploration may hold an advantage over traditional approaches
that consider only the P array.

VI. DISCUSSION

Our primary contribution in this paper is a new MAB
framework for multiplayer modeling that addresses concerns
regarding both exploitation and exploration in a multiplayer
context. The addition of multiple players not only exposes
new player characteristics available for modeling, but it also
introduces new challenges for how an MAB might predict the
impact of an intervention and breaks the assumption that MAB
arms share a direct mapping to player experience.

The results of our experiments regarding our MRO approach
support our intuition that MAB-based models for multiplayer
scenarios should reconsider their process of exploitation and
arm prediction, and we believe our strategy significantly
outperformed the other strategies for three reasons. First, by
combining all of the MAB’s performance history into a single
model for a player, the predictions made by the oracle are able
to leverage the knowledge of every previous pull into every
future prediction. In contrast, expected value-based oracles
such as those used in the traditional scenarios only make use
of each arm’s respective history when predicting their future
performance.



Second, our regression oracle enables the introduction of
additional features, such as a player’s previous output, which
enables the oracle’s predictions to exploit any inherent patterns
that exist in that output (e.g., an individual’s daily step
behavior). It is worth noting that while the simulation was con-
structed to explicitly model these patterns in its step generation
process, we expect such patterns to emerge organically in other
real-world contexts where the MAB is repeatedly observing
the same human player over time.

Third, because the MRO internally tracks players using
separate models, it is able to maintain a higher level of
resolution on each player during predictions. In contrast, the
traditional strategies and the single-model regression strategy,
which average the rewards across players at the time of
observation, lose this resolution in the aggregation process. We
expect there is advantage in waiting until the time of prediction
to perform this aggregation as demonstrated in our approach,
and we intend to investigate this further in our future work.

As for our MFE approach, we found that consideration for
the C (intervention case) array (i.e., WC > 0) outperformed
traditional forced exploration that emphasized the P (pull
frequency) array. While it does appear that both factors are
important for maximizing performance, we believe a threshold
exists for multiplayer scenarios regarding the WC/WP ratio
beneath which strategies may underperform. This threshold is
likely variable and dependent on the specifics of the scenario.

The experimental support for a non-zero WC confirms our
intuition that MAB-based models for multiplayer scenarios
should reconsider their definition of exploration. When the arm
selection merely reflects an aspect of the intervention state’s
construction, a player’s actual behavioral responses to inter-
vention states may derive more directly from their individual
differences and the group dynamics. Therefore, we believe that
tracking salient aspects of the intervention state for each player
is, if not a more effective way to engage exploration, then at
least an essential component for consideration.

VII. CONCLUSION

This paper focused on the understudied field of multi-
player modeling and presented an MAB-based multiplayer
modeling approach. We identified the three main challenges
for MAB-based multiplayer modeling that include best-choice
estimation, exploration strategies, and social fairness; we
addressed the first two by introducing a new oracle toward
better predictions of player impact during exploitation pulls
and a new forced exploration approach toward more accurate
assessment of player experiences during exploration pulls.

Our experiments demonstrated that our Multiplayer Regres-
sion Oracle, which allows for players to be tracked separately
and combined during predictions, significantly outperformed
traditional and single-model regression strategies when applied
to our multiplayer scenario. Our results also validated our
Multiplayer Forced Exploration approach, supporting our intu-
ition that exploration in multiplayer scenarios should consider
player experience history as rendered in the game environment
rather than the history of pulled arms alone.

As part of our future work, we would like to extend our
analysis of multiplayer scenarios beyond two players, where
we expect the discussed concerns will be further amplified. We
also plan to examine the third challenge, namely that of social
fairness, where the oracle might use alternative calculations
(besides averaging) when making predictions for the group
that consider outcomes beyond strict performance. Finally, in
our current work, we are examining the potential for these
techniques in human user studies in the context of exergames.
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modeling,” Artificial and Computational Intelligence in Games, 2013.

[14] J. Zhu and S. Ontanón, “Experience management in multi-player
games,” in Proceedings of the IEEE Conference on Games, 2019.

[15] L. Festinger, “A Theory of Social Comparison Processes,” Hum. Rela-
tions, vol. 7, no. 2, pp. 117–140, May 1954.

[16] J. V. Wood, “Theory and research concerning social comparisons of
personal attributes.” Psychol. Bull., vol. 106, no. 2, p. 231, 1989.

[17] F. X. Gibbons and B. P. Buunk, “Individual differences in social
comparison: Development of a scale of social comparison orientation,”
J. Pers. Soc. Psychol., vol. 76, no. 1, pp. 129–142, 1999.

[18] A. P. Buunk and F. X. Gibbons, “Social comparison: The end of a theory
and the emergence of a field,” Organ. Behav. Hum. Decis. Process., vol.
102, no. 1, pp. 3–21, 2007.

[19] R. Furberg, J. Brinton, M. Keating, and A. Ortiz, “Crowd-sourced
fitbit datasets 03.12.2016-05.12.2016,” 2016. [Online]. Available:
http://doi.org/10.5281/zenodo.53894

[20] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine Learning, vol. 47, no. 2-3, pp.
235–256, May 2002.


