
Some Chess-Specific Improvements for
Perturbation-Based Saliency Maps

Jessica Fritz
Johannes Kepler University

Linz, Austria
jessy.fritz@gmx.at

Johannes Fürnkranz
Johannes Kepler University

Linz, Austria
juffi@faw.jku.at

Abstract—State-of-the-art game playing programs do not pro-
vide an explanation for their move choice beyond a numerical
score for the best and alternative moves. However, human players
want to understand the reasons why a certain move is considered
to be the best. Saliency maps are a useful general technique
for this purpose, because they allow visualizing relevant aspects
of a given input to the produced output. While such saliency
maps are commonly used in the field of image classification,
their adaptation to chess engines like Stockfish or Leela has
not yet seen much work. This paper takes one such approach,
Specific and Relevant Feature Attribution (SARFA), which has
previously been proposed for a variety of game settings, and
analyzes it specifically for the game of chess. In particular, we
investigate differences with respect to its use with different chess
engines, to different types of positions (tactical vs. positional as
well as middle-game vs. endgame), and point out some of the
approach’s down-sides. Ultimately, we also suggest and evaluate a
few improvements of the basic algorithm that are able to address
some of the found shortcomings.

Index Terms—Explainable AI, Chess, Machine learning

I. INTRODUCTION

Computer chess is one of the first and most prominent
success stories in artificial intelligence [13], culminating in
Deep Blue’s victory over the reigning world chess champion
[14]. In their second encounter, Gary Kasparov was unnerved
by an unexpected move of the program, which he thought was
too human-like. As a result, in an attempt to understand how
the program arrived at that choice, he requested to see the
printouts of the program. Of course, printing out the entire
variation tree with millions of moves was infeasible for the
Deep Blue team, and they denied the request. What could have
helped here, is an algorithm for explaining the move choice,
which goes beyond simply returning the numerical score of
the move and its alternatives.

Nowadays, there is no doubt that the best chess engines are
far stronger than any human chess players, and chess engines
have also become an undispensable training tool for chess
grandmasters. However, they have been constructed as black
boxes, unable to explain their decision making processes, so
that it still requires expert-level chess knowledge in order to
interpret the moves made by leading chess engines [18]. A
crucial step to bridge this gap between humans and AI is
to provide useful explanations to proposed decision-making
agents. While much of research in explainable AI is centered
around machine learning [12] and the interpretation of deep

Fig. 1: SARFA Example

neural networks [19], there is also great demand for explain-
able AI models in other areas of AI, including game playing.

An approach that has recently been proposed specifically for
games and related agent architectures is specific and relevant
feature attribution (SARFA) [15].1 It has been shown that it
can assist human chess players in assessing important squares,
which improved their success rates in solving chess puzzles
[15]. However, SARFA being conceived as a general tool for
assessing feature importance in black-box models, we also
noticed that the approach has some weaknesses when it is
applied specifically to chess. Consider, e.g., Figure 1, which
is a position from the Bratko-Kopec test [5]. The Stockfish 11
engine played the excellent move Qd2, which is only possible
because the black bishop on c3 is pinned, and, moreover, it
adds another pin on the bishop, which can now no longer take
the white bishop on b2 without losing the queen on a5. The
right part of the figure shows the output of SARFA, where the
different shades of red illustrate the gradience in importance,
with the darkest tone of red being the most important piece.
It can be seen that none of the pieces mentioned above are
considered to be salient. Moreover, by design, SARFA is
also not able to recognize that the empty squares on the
long diagonal are important (if there was a piece on of these
squares, the pin would no longer work and black could take
the white queen), Thus, another goal of this work will be
to analyze such weaknesses, in particular with respect to
positional and endgame play, and suggest and evaluate some
simple improvements.

1Available on Github at https://github.com/nikaashpuri/sarfa-saliency.

978-1-6654-3886-5/21/$31.00 ©2021 IEEE

The goal of our work is to thoroughly evaluate SARFA for
the game of chess. For example, in Section III, we will evaluate
SARFA on eight chess engines of different playing strengths
and styles. While the original analysis was confined to tactical
positions, which can typically be very well solved by conven-
tional, search-based chess engines, we will also take a look
at its performance on strategic and endgame positions, which
require a deeper chess understanding (Section IV). Finally, we
also noticed a few limitations of SARFA (Section V), which
we tried to address with some chess-specific modifications in
Section VI. For example, SARFA originally only focussed on
evaluating the importance of pieces on the board, whereas in
many positions it is also important that certain squares are
empty. All executed dataset runs, evaluation classifiers and
the proposed adaptation files are publicly available.2

II. SPECIFIC AND RELEVANT FEATURE ATTRIBUTION

A particularly popular technique, when it comes to the
interpretation of inscrutable black-box AI models, are saliency
maps. Their key idea is to determine the relevance of the
input features, with respect to the computed output. For exam-
ple, layered relevance propagation (LRP) [10] propagates the
output activation of a neural network backwards through the
weighted connection in its layers, so that its distribution in the
input layer eventually reflects the respective relevance of the
input features. While such approaches are typically applied to
image-based inputs and depend on the concrete architecture of
the learned black-box model (typically a deep neural network),
they can also be adapted for other input representations. An
obvious idea is to perform random perturbations of the inputs,
with the expectation that relevant features will result in large
changes in the outcome, whereas a perturbation of irrelevant
features will leave the output unchanged (cf., e.g., [16], [7]).

A recently proposed technique along these lines, specific
and relevant feature attribution (SARFA) [15], has previously
been analyzed for various application fields, including com-
mon Atari games such as Breakout or board games like chess.
It relies on an evaluation function Q(s, a) for a given move
a in a position s, which can, e.g., be provided by a common
chess engine, for estimating the importance of features in s.
SARFA iterates over the chess board and perturbs its pieces
by removing them one at a time, retrieving the Q-values for
the resulting positions s′, with the intention of monitoring the
change of the evaluation in the perturbed state.

The key insight of [15] was that not the change ∆Q =
Q(s, a)−Q(s′, a) between s and a perturbation s′ is relevant,
as has, e.g., been proposed in [7], but instead the relative
change has to be used. For example, if a generally important
piece like the queen is removed from the board, ∆Q will
change substantially, regardless of whether the position of the
queen is important for the played move a or not. To capture
such a relative change, SARFA computes a specificity score

∆P = P (s, a)− P (s′, a) (1)

2https://github.com/JessyFritz/sarfa-saliency

where P(s,A) is a softmax probability distribution over all
moves A in a position s, based on the obtained evaluations
Q(s, a). A high ∆P score indicates that the piece, which has
been removed when changing position s to s′, was important
for the evaluation of action a, because its relative importance
in the two positions changed substantially.

While only pieces whose removal directly affects the inves-
tigated move receive a high specificity score ∆P , they should
also have a minimal impact on the distribution of scores of the
remaining moves, i.e., the softmax distribution P(s,A) should
change as little as possible, as when moving from s to s′. To
capture this, a relevancy score

K =
1

1 + (P(s′, A) || P(s,A))
(2)

is calculated, where || denotes the KL-divergence.
The saliency S of a piece is then estimated with the

harmonic mean of the specificity ∆P and relevance K.

S =
2K∆P

K + ∆P
(3)

Pieces with a high saliency will therefore have a high impact
on the evaluation of a move.

III. TESTING DIFFERENT ENGINES

This section aims at identifying differences in saliency maps
generated by various chess engines.

A. Chess Engines Used

For our evaluation we selected several chess playing en-
gines, with a wide variety of playing strengths and playing
styles. Table I shows the tested engines, sorted by recent Elo
ratings from the December 2020 Chess Engines Grand Tourna-
ment.3 The most popular among these are probably the rivaling
Stockfish and Leela engines, which have come forward with
some recent advances in reinforcement learning. Especially
the Stockfish 12 release, compared to its predecessor, made an
impressive leap ahead by including a neural network into their
already strong supervised learning approach. The previous
version, 11, uses heuristic functions for evaluating positions,
combined with a classic alpha-beta game tree search [4]. Like
AlphaZero, Leela relies on a deep neural network paired with
Monte Carlo tree search [2], and thus has a very different and
more human-like playing style than conventional search-based
chess engines [18].

3http://www.cegt.net/rating.htm

TABLE I: Selected Engines

Engine Version Release Year Elo Rating

Stockfish 12 2020 3578
Lc0 v0.26.3 - net J92-270 2020 3534
Stockfish 11 2020 3505
SlowChess Classic 2.4 2020 3275
Komodo 12.1.1 2018 2939
Rybka 2.3.2a 2020 2814
Octochess r5190 2013 2618
Fruit 2.2.1 2005 2569

Fig. 2: Precision, recall, and F1 of saliency maps for different engines.

We use the default centipawn evaluation as the Q-value,
which is the standard evaluation among basic chess engines.
Once the engine is successfully initialized using the UCI4, the
program’s main function can be called with a FEN5 for a chess
board as parameter, which then calculates the board’s best
move for a given amount of time, in our case 5 seconds. After
that, the program perturbs every piece, each time retrieving a
new set of Q-values in order to calculate the saliency (3).

B. Evaluation Measures and Datasets

We evaluated the engines in terms of precision and recall
on a variety of different sets of chess positions, including the
dataset that was used in the original SARFA paper [15], the
Bratko-Kopec test [5], and a set of positional and strategic
endgame positions [1], which will be analyzed in detail in later
sections. For computing precision and recall, the marked-up
labels need to be compared to ground truth labels for important
squares. For obtaining these, we re-used the labels wherever
available (e.g., from the SARFA datasets) and relied on the
squares mentioned in move annotations by chess experts,
supplemented by our own analyses6. The precision value
describes the fraction of relevant squares among the retrieved
squares, while recall describes the fraction of retrieved relevant
squares among all squares annotated as relevant. To express
saliency maps’ accuracy in a single term, we will also use
the F1-measure, which is the harmonic mean of precision and
recall.

C. Results

Figure 2 shows the results averaged over all tested datasets,
expressed by precision and recall and sorted by their F1-score.
It is evident that some engines produce better output than
others, as the F1 measure ranges from 50 % with Stockfish
12 to 33 % with Leela. These exceeding deviations across
different engines saliency map computations also illustrate

4The Universal Chess Interface (UCI) is a standardized interface for chess
engines, cf. https://backscattering.de/chess/uci/.

5The Forsyth-Edwards Notation (FEN) is a compact representation code
for chess positions, cf. https://www.chessgames.com/fenhelp.html.

6The second author is a chess expert (Elo rating approx. 2100). Of course, it
was ensured that the annotation was performed independently of the program
development, which was driven by the first author.

how little they are linked to their age or Elo rating. It may
be true that this perturbation-based approach produces focused
saliency maps, however, this does not guarantee that it works
for every agent.

Particularly surprising is that the the neural-network based
Leela engine, which is based on AlphaZero and can thus be
expected to play more human-like chess than conventional
chess engines [18], produces the worst saliency maps over all
eight engines, despite having the second highest Elo rating.
One could have assumed, that evaluations from a neural
network based engine are simply more difficult to analyze and
interpret, as they do not employ human-like heuristics to make
its decisions like basic AI engines do. However, following this
assumption, the evaluation above should have exposed similar
problems for all reinforcement learning agents, which it clearly
did not. It can be seen that SARFA worked far better for the
Stockfish 12 engine, which uses an efficiently updatable neural
network (NNUE) in combination with their classical human
knowledge evaluations and plays significantly stronger than
any of its predecessors [4]. However, of all applied agents,
Leela is the only one that uses no human knowledge at all, so
maybe this could be a clue for this weakness.

IV. DIFFERENT TYPES OF CHESS POSITIONS

In the following, we will use the SARFA saliency map im-
plementation against several datasets to evaluate these engines
based on the underlying chess positions, whether the program
works best for tactical in comparison to strategic positions, or
for endgame setups.

A. Bratko-Kopec Test

The first dataset, which will be used for assessing the
quality of given engines, is the well-known Bratko-Kopec
test,7 which has been a standard in computer chess for nearly
20 years, as it equally balances two diverse kinds of puzzles,
positional and tactical ones, and predicts your Elo rating based
on your answers. The original experiment from Bratko and
Kopec in the 1980s [5] hereby concluded that traditional
search-based chess playing computer programs excel at tactical
puzzles, where it is important to find a surprising variation that
promises a short-term gain (such as a queen sacrifice, which
ends in a forced mate a few moves later), and are weaker
in positional puzzles, where the task is to estimate long-term
strategic effects of moves. The positional and tactical profiles
of humans, on the other hand, are more evenly distributed.
The Bratko-Kopec test contains 12 puzzles of each kind and
should correlate to the actual Elo ratings of humans and chess
programs. Each puzzle has a unique solution, but the user can
enter up to four ranked moves, which are scored with 1, 0.5,
0.33 or 0.25 points respectively, in case one of the inserted
moves matches the given solution move.

Table II shows the results of the test for all 8 engines,
where Leela has the highest score of all. Its score of 20.83
points means that it made the fewest mistakes, as its four

7http://www.kopecchess.com/bratko-kopec-test/

TABLE II: Bratko-Kopec Test Scores

Engine Total Score Positional Tactical

Leela 20.83 8.83 12.0
Octochess 19.58 7.58 12.0
Stockfish 12 19.25 8.25 11.0
Fruit 19.00 7.50 11.5
Stockfish 11 18.83 8.33 10.5
Rybka 18.16 7.66 10.5
Komodo 18.00 8.50 9.5
SlowChess 18.00 9.00 9.0

best moves did not contain the solution only 4 out of 24
times. All other engines proposed wrong moves 5, 6 or even 7
times, which was the case for Stockfish, Rybka and Komodo.
Considering that Stockfish 12 has the highest Elo of all tested
engines, it would have been logical that it achieves the highest
score, but interestingly, it is behind Octochess, which has the
second weakest Elo rating. If we take a look at positional and
tactical puzzles separately, the table depicts that both Leela
and Octochess managed to list all 12 solution moves for the
tactical puzzles, whereas both Stockfish engines missed either
one or two of those moves. Generally, except for Slowchess,
the score for tactical puzzles is always higher.

For estimating the precision, recall, and F1 for these po-
sitions, we manually analyzed all 24 puzzles’ best moves,
identifying some of the most important squares as the ground
truth that should be uncovered by the saliency maps. Figure 3
shows the results of the test for all 8 engines, separated into
positional and tactical puzzles for our ground-truth analysis.
Generally, except for Stockfish 12 and Leela, it can be seen
that the precision for positional puzzles is always higher than
the one for tactical ones, and that, in general, precision is much
higher than recall. This, however, is a bit deceptive, as for
some of the engines, the predictions are very conservative. For
example, Octochess’, Fruit’s and Rybka’s positional saliency
maps show a very high precision of 100%, but a recall below
15%, because they all only mark exactly one piece per board,
which is the starting square of the solution move. The average
number of marked squares for positional puzzles over all
engines is 2.31 squares per board, where Stockfish 12 offers
the highest average of 5.29 squares. Similarly, the average
over tactical puzzles over all engines is 3.38, so more than

Fig. 3: Bratko-Kopec Test Saliency Maps

one square higher per board than at positional puzzles, where
Stockfish 12 again marks the most squares per board. If we
take a look at the calculated F1-measure, Stockfish 12 clearly
produces the best saliency maps for the Bratko-Kopec test,
followed by the slightly older, other Stockfish engine.

Overall, it can be said that the SARFA approach works
slightly better for positional than for tactical puzzles, as can,
e.g., be seen from the positional average score over all eight
engines, which is somewhat higher for positional (25.1%)
than for tactical puzzles (23.7%). This is surprising, as chess
engines are typically better in finding tactical moves than
positional moves, which is also witnessed by the scores the
engines obtained at the puzzles (Table II). Apparently, the
estimation of the influence of a piece on the board on the final
evaluation of the position is fairly independent of the type of
the position, and might even work better in quiet, non-tactical
positions.

B. Endgame Puzzles

For testing the performance of SARFA on endgames, we
used 10 endgame puzzles from Sune Larsson [1]. His test
suite does not provide a solution move for every puzzle, yet it
mentions its expected result as win, draw, or loss for every
puzzle and even states the difficulty of some hard to find
moves. For the cases where the author did provide a solution
move, we analyzed the moves qualitatively and added ground-
truth squares, which should be highlighted by the engines.
Here, the number of squares marked as relevant was typically
higher than in other puzzles, as we, e.g., often had to mark
entire blocked pawn formations with adjacent empty squares.

Fig. 4: Endgame Puzzles Saliency Maps

Figure 4 illustrates that Slowchess has the highest F1-
measure, which it achieved through its recall fraction of
approximately 19 %. Rybka is last, which only marked one
true positive square and thus has a recall below 5 %.

V. LIMITATIONS OF SARFA

In this section, we will list and analyze some shortcomings
of SARFA, which we noticed in our experiments. We primarily
focus on Stockfish 12, as this agent proved to produce some
of the most promising saliency maps.

(a) Low Saliency (b) High Saliency

(c) Checkmate (d) Pawn Promotion

Fig. 5: Saliency Maps

A. Overly Specific and Overly General Saliency Maps

Figure 5 gives an overview of some unsatisfactory saliency
maps on different types of chess boards, whether they are
focused too much or too little, or are simply no help for
inexperienced chess players at identifying relevant pieces in
certain positions. In Figure 5 (a), one can see a map in which
the engine did not consider a single additional square as
salient, except for the performed best move’s starting square
b2. Obviously, this saliency map is too simple and fails at
its intended task to gain insight into the engine’s playing
behavior. Conversely, the next map, (b), highlights too many
squares than presumably desired, which is also not transparent
or helpful. Given this inconsistency of highlighting many
irrelevant squares at once, whereas in other maps only one
square is salient, a good goal could be to avoid both these kinds
of maps by walking the line between not marking anything and
the whole board.

B. Empty and Blocked Squares

The following two Figures 5 (c) and (d) show two cases that
are more a matter of opinion than really a flaw. This played
check by the white queen on map (c) could be considered
salient by highlighting the black king and maybe even its
neighboring rook, as it blocks the king’s escape, ultimately
leading to a checkmate. The map only marks the black bishop
on c8, which is important to the played move, as it blocks
the white queen from being taken by the black rook on a8.
However, the value of the move would clearly be diminished
if the black rook would not block the black king’s exit square,
so this should be marked as important as well. The next

map, (d), shows a pawn promotion d7-d8Q, where it might
be useful to highlight the empty square d8, with promoting
the pawn being most likely the only reason for this move.
Regarding this issue, the SARFA authors stated that their
implementation currently cannot highlight the importance of
absence of certain attributes, i.e., the saliency of empty squares
[15]. Taking the chess saliency map’s purpose of gaining
insight into the playing behavior of an engine into aspect,
it could be meaningful for the interpretation to extend this
implementation to consider empty squares as salient, as they
certainly can play a crucial role for an intended move.

C. Strategic Positions
The original SARFA study [15] was limited to tactical

positions, where the effect of the presence or absence of
a piece will have a more pronounced effect. Nevertheless,
SARFA also performed well on the strategical positions of
the Bratko-Kopec test (Figure 8). In this section, we take a
closer look at some strategic positions, using saliency maps
produced by Stockfish 11, Stockfish 12 and Komodo.

Figure 6 shows some saliency maps on additional strategic
positions. Obviously, they all have in common that they
essentially only highlight the moving piece, but do not provide
any help for understanding the strategical patterns involved.
The first one, Figure 6 (a), shows a positional puzzle that is all
about creating weak squares in the course of the game. After
playing Ne6, the following moves should be d4Xe5, d6Xe5,
Nf5 and Bb4, after which White dominates white squares [3].
The second puzzle (b), produced by Stockfish, shows that a
small material advantage can create a positional plus for the
opponent. In the actual game, White sacrificed the exchange
against for a pawn (Rb6, c4-c5, RXb7, c5-c6, Ra7, c6XRd7,
QXd7) [3]. Interestingly, the engine did not even mark the
white bishop on b7 as salient for the move Rb6, although it
is both the reason why the rook moved (the bishop attacked
the rook) as well as the reason why the rook moved to b6
(the rook attacks the bishop). In position (c), White played
Bb5, with the intention of controlling the hole on c6, truly
a salient square. This puzzle shows that it is good to embark
upon the weak points of the opponent, in this case leading
to material win after the line Bb7, BXNf6, BXBf6, Qa4,
Re7 and, finally, Bc6 [3]. The last puzzle, (d), is not ideal for
black because of the uncoordinated black pieces. This can be
partly resolved by trading bishops on g5, and then following
up with Ne7, making up space for the other pieces. Again,
this should be considered important for this move.8

VI. CHESS SPECIFIC IMPROVEMENTS

Section V pointed out some limitations of SARFA, which
we will aim to improve in this section by adapting the
original SARFA with some more chess-specific aspects. We
will illustrate these improvements with the same puzzles as
in Figure 6, and show the updated maps in Figure 7. A more
principled evaluation can eventually be found in Section VI-C.

8https://chesstempo.com/positional-motifs

(a) Weak Squares (b) Small Advantage

(c) Weak Point (d) Offer Exchange

Fig. 6: Strategic Chess Puzzles (SARFA)

(a) Weak Squares (b) Small Advantage

(c) Weak Point (d) Offer Exchange

Fig. 7: Strategic Chess Puzzles (Improved)

A. Empty Squares

First, we tried to solve the problem that empty squares often
appear to be relevant but are not considered in the original
SARFA version. To that end, we perturbed empty squares
between ranks 2 to 7 as follows:

(i) Place a pawn of the player on the empty square, unless
it would put the opponent’s king into check.

(ii) Compute new Q-values and, in consequence, saliency
scores for the resulting position.

(iii) Repeat (i) and (ii) with a pawn of the opponent’s color.
(iv) Estimate the saliency of the empty square with the

maximum of both saliencies.
In addition, we generally also consider the empty squares

that are necessary for the played move as important. A fixed
saliency that corresponds to the set saliency threshold has
been hard-coded to these squares, such that they would be
just important enough to appear in the heat map.

B. Important Pieces

The next feature targets increasing the saliency of pieces,
based on the board’s specific situation.

a) Promoting Square: In pawn promotions, typically not
many pieces are salient, except the promoting pawn itself. In
such cases, we increase the saliency of the destination square
to 1 (as, e.g., for the square d8 in Figure 5d). The promotion
puzzle now additionally highlights the promoting square d8,
as well as the Knight on g5, which will be threatened after
promoting to a queen.

b) King in Check: A simple, but important chess-specific
modification is that the purpose of a move in chess is often

to deliver a check. Here, the original implementation always
assigns a saliency of 0, as the king can’t be removed or
replaced for perturbation. However, this is problematic, as
any board where the king makes a move will mark no
squares at all, because the threshold will also be calculated
as 0. Nonetheless, in particular in endgames, the king is an
important piece. In a case of a check, the king, as well as
the square from which the check is delivered, are assigned
a saliency of 1. The checkmate map from Figure 5c adds
the king, the squares included in the best move and opponent
pieces that are threatened by the queen after her move.

c) Threatened and Guarding Pieces: It is really inter-
esting that the map in Figure 6 (b) did not mark the bishop
on b7 as salient, although the rook, which is on b6 after his
move, directly threatens this completely unguarded piece. As
such pieces, which could be taken by the piece of the original
action after its move, could be important, an increment of
these pieces’ saliency through exploring the new available
moves after actually making the best move seems appropriate.
Additionally, this is now also applied for the opponent, such
that a piece’s saliency, which threatens the original action on
its destination square, is increased as well. Also, we increased
the saliency of pieces which protect the best move at its
destination square.

d) Blocked Pieces: As seen in Figure 6 (d), sometimes
certain pieces are blocked and have to be freed by moving
other pieces in order to create an escape path for the piece
in need. In the given map, this is the case for the knight on
c8, which has clearly no way to go, without being taken by
the pawn on c5. This puzzle’s move Bg5 frees the square

Fig. 8: Improved Bratko-Kopec Test Saliency Maps Fig. 9: Improved Endgame Dataset Saliency Maps

e7 for the important knight. For these pieces, the program
calculates the difference in legal moves before and after the
best move and examines if there were new moves for pieces,
other than the piece of the best move, available. If this is the
case, it iterates the previous moves with the destination as that
piece and checks whether all of them were of opponent’s color,
meaning this piece was trapped before this positional move.

C. Evaluation of Improvements

In order to evaluate the suggested improvements, we re-ran
the datasets from Section IV to evaluate how the proposed
changes influence the overall saliency map generation for
different engines. Regarding the empty squares feature, as
for some maps the implementation would still mark way too
many empty squares, we limited the overall number of empty
squares, which are not included in the best move, to 3.

If we take a look at the reiterated Bratko-Kopec test seen
in Figure 8, we perceive a considerable improvement over the
original SARFA version (Figure 3): now, no F1 value is below
44%, whereas previously all were below 35%. Quite similar,
Figure 9 shows an improvement in the average from 15% in
Figure 4 to 36% here.

In Figure 10, we also evaluated the sensitivity of the F1
scores, averaged over all engines, to the specific choice of
the number of marked squares. For the Bratko-Kopec test,
three turned out to be the actual optimal choice, whereas in
the endgames, higher values tend to score better. This is not
surprising, because, as previously noted, there the number
of labeled empty squares tends to be larger than in other
positions, in particular in tactical positions.

Fig. 10: F1 over number of empty squares, average of all engines.

In summary, the suggested chess-specific improvements
worked better for both the Bratko-Kopec test and the endgame
dataset with an overall improvement by 20 % on average.
This also resulted in more evenly distributed evaluations for
all engines, which highlights that all agents’ saliency maps
now produce useful and interpretable outputs.

VII. RELATED WORK

Like in many other areas, the demand for interpretable
explanations has also risen in game playing, and in chess
in particular. The idea of using a chess engine’s evaluation
function to detect changes in the position evaluation when a
move is made is not new. The chess tutoring system described
in [17] classified available moves as good or bad based on
changes in commonly observed positional features such as
king safety or knight centralization. The main drawback and
distinction of this method compared to SARFA is that one
needs actual access to the engine’s inner working in the form
of the evaluation function features. SARFA is independent of
hand-crafted evaluation function features, as it only requires
the overall numerical evaluation of all moves.

Some prior work in this area focused on the use of
natural language processing techniques for generating game
commentary. The game-aware commentaries introduced in [8]
train an end-to-end neural model to generate natural language
commentaries from a dataset of move/commentary pairs. It
also relies on high-level features such as attacked pieces before
and after the move, the change in score, etc. Along similar
lines, the skilled chess commentator [20] jointly trains a neural
network engine and a comment generation model for different
types of natural language comments. [9] introduces a rule-
based commentary generator for the chess variant Shogi that
predicts words of input positions and generates comments
using a language model trained on human expert comments.

More related to our pursuit is work on visualizing chess
games. Recently, [6] introduced a technique for visualizing
sets of chess games by bundling common move trajectories
in a low-dimensional embedding of chess positions. Similarly,
the authors of [11] introduced a tree-based visualization of a
move and interesting alternatives. None of these techniques
aims at visualizing the significant patters associated with the
played move, as SARFA does.

VIII. CONCLUSIONS

Regarding the interpretability gap between humans and AI,
it is quite obvious where the problem of chess engines lies.
Without doubt, engine moves are correct or at least better than
human choices, but it is hard to extract a concrete, simple
justification for a move in the thicket of variations that the
program evaluates. Modern neural network based engines like
AlphaZero can not only come up with short-term tactical
shots, but have also become notorious for playing long-term
piece sacrifices, which can not be justified by a variation tree,
but are rooted in the gain of long-term positional advantages
[18]. Simple explanations, such as the numeric evaluation
of the best k moves in the current position, which are now
routinely provided by conventional chess engines, do not give
any insight on which pieces on the board are important and
led to the observed evaluation score.

SARFA is a general method for analyzing the importance
of features by observing the effect of input perturbations on
the output, which we have, in this work, specifically analyzed
for the game of chess. Our results showed that not all chess
engines produce useful saliency maps, as witnessed by a varia-
tion in the average F-score of 17% between the best and worst
engine’s maps. We also found that higher playing strength does
not necessarily lead to improved saliency maps. Surprisingly,
Leela, a very strong neural-network based engine, performed
rather poorly at the saliency map generation. On the basis of
these experiments, we furthermore extended the functionalities
of SARFA by including a few straight-forward, chess-specific
modifications, such as an approach for perturbing the empty
squares, or saliency increments for chess-specific scenarios
such as checks or promotions. Our results demonstrated that
these techniques can indeed increase SARFA’s performance
on the studied datasets.

Nevertheless, this improvement is currently limited by the
decrease in precision that naturally comes with marking more
squares by increasing their saliency scores. Future work could
include a refinement of the empty square perturbation strategy,
which currently had to be cut off at a fixed number instead of
a pre-set threshold, because otherwise too many squares would
be marked as empty. Additionally, one could devise different
strategies for perturbing empty squares, which currently only
tried to replace with pawns of either color. This proved to be
particularly useful in endgame studies, where the position of
the pieces (in particular pawns) is often very static. However,
we did not include perturbations that place chess pieces
different than pawns that, for example, replace higher value
pieces by lower ones to capture the difference in importance.

A next step ahead should, in our opinion, be to move from
annotating pieces (as in the original SARFA) or empty squares
(as in our version), to annotating moves. Many of the empty
squares in a position capture whether a certain move or even
a sequence of moves are possible in a given position. A more
direct way of capturing the saliency of moves could further
bridge the interpretability gap between humans and programs,
for which we believe SARFA is a valuable foundation.

REFERENCES

[1] Endgame puzzles. [Online]. Available: https://www.stmintz.com/ccc/
index.php?id=476109

[2] Leela chess. [Online]. Available: https://github.com/LeelaChessZero/
lc0/wiki

[3] Positional chess puzzles. [Online]. Available: https://www.chess.com/
article/view/test-your-positional-chess

[4] Stockfish chess. [Online]. Available: https://stockfishchess.org/
[5] I. Bratko and D. Kopec, “The Bratko-Kopec experiment: A comparison

of human and computer performance in chess,” in Advances in Computer
Chess. Pergamon Chess Series, 1982, pp. 57–72.

[6] A. P. Hinterreiter, C. A. Steinparz, M. Schöfl, H. Stitz, and M. Streit,
“Exploring visual patterns in projected human and machine decision-
making paths,” ACM Transactions on Interactive Intelligent Systems
(TiiS), 2021, Special Issue on Interactive Visual Analytics for Making
Explainable and Accountable Decisions.

[7] R. Iyer, Y. Li, H. Li, M. Lewis, R. Sundar, and K. P. Sycara,
“Transparency and explanation in deep reinforcement learning neural
networks,” in Proceedings of the 2018 AAAI/ACM Conference on AI,
Ethics, and Society (AIES), J. Furman, G. E. Marchant, H. Price, and
F. Rossi, Eds. New Orleans, LA, USA: ACM, 2018, pp. 144–150.

[8] H. Jhamtani, V. Gangal, E. Hovy, G. Neubig, and T. Berg-Kirkpatrick,
“Learning to generate move-by-move commentary for chess games
from large-scale social forum data,” in Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics. Melbourne,
Australia: ACL, 2018, pp. 1661–1671.

[9] H. Kameko, S. Mori, and Y. Tsuruoka, “Learning a game commentary
generator with grounded move expressions,” in 2015 IEEE Conference
on Computational Intelligence and Games (CIG), 2015, pp. 177–184.

[10] S. Lapuschkin, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller,
and W. Samek, “On pixel-wise explanations for non-linear classifier
decisions by layer-wise relevance propagation,” PLoS ONE, vol. 10, 07
2015.

[11] W. Lu, Y. Wang, and W. Lin, “Chess evolution visualization,” IEEE
Transactions on Visualization and Computer Graphics, vol. 20, no. 5,
pp. 702–713, 2014.

[12] C. Molnar, Interpretable Machine Learning, 2020. [Online]. Available:
https://christophm.github.io/interpretable-ml-book/

[13] K. Müller and J. Schaeffer, Man vs. Machine: Challenging Human
Supremacy at Chess. Russell Enterprises Inc., 2018.

[14] M. Newborn, “Kasparov Vs. Deep Blue: Computer Chess Comes of
Age”. Berlin, Heidelberg: Springer-Verlag, 1997.

[15] G. Piyush, P. Nikaash, V. Sukriti, K. Dhruv, D. Shripad, K. Balaji,
and S. Sameer, “Explain your move: Understanding agent actions using
specific and relevant feature attribution,” in International Conference on
Learning Representations (ICLR), 2020.

[16] M. Robnik-Šikonja and M. Bohanec, “Perturbation-based explanations
of prediction models,” in Human and Machine Learning: Visible,
Explainable, Trustworthy and Transparent, J. Zhou and F. Chen, Eds.
Springer International Publishing, 2018, pp. 159–175.

[17] A. Sadikov, M. Možina, M. Guid, J. Krivec, and I. Bratko, “Automated
chess tutor,” in Computers and Games, H. J. van den Herik, P. Ciancarini,
and H. H. L. M. J. Donkers, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2007, pp. 13–25.

[18] M. Sadler and N. Regan, Game Changer: AlphaZero’s Groundbreaking
Chess Strategies and the Promise of AI. New in Chess, 2019.

[19] W. Samek, G. Montavon, A. Vedaldi, L. Hansen, and K.-R. Müller,
Eds., “Explainable AI: Interpreting, Explaining and Visualizing Deep
Learning”. Springer, 2019, vol. 11700.

[20] H. Zang, Z. Yu, and X. Wan, “Automated chess commentator powered by
neural chess engine,” in Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics. Florence, Italy: Association
for Computational Linguistics, Jul. 2019, pp. 5952–5961.

Acknowledgments: We are very grateful to the authors of
SARFA [15] for sharing their code, in particular to Nikaash
Puri who also provided helpful comments on our experiments.
Thanks also are also due to the anonymous reviewers, whose
comments helped us considerably to stream-line the paper.

