
Searching for Explainable Solutions in Sudoku
Yngvi Björnsson

Department of Computer Science
Reykjavik University
Reykjavik, Iceland

yngvi@ru.is

Sigurður Helgason
Department of Computer Science

Reykjavik University
Reykjavik, Iceland
sigurdurhel15@ru.is

Aðalsteinn Pálsson
Department of Computer Science

Reykjavik University
Reykjavik, Iceland
adalsteinn19@ru.is

Abstract—Explainable AI is an emerging field that studies
how to explain the rationality behind the decisions of intelligent
computer-based systems in human-understandable terms. The
research-focus so far has though almost exclusively been on
model interpretability, in particular, on trying to explain the
learned concepts of (deep) neural networks. However, for many
tasks, constraint- or heuristic-based search is also an integral
part of the decision-making process of intelligent systems, for
example, in planning and game-playing agents. This paper
explores how to alter the search-based reasoning process used in
such agents to generate more easily human-explainable solutions,
using the domain of Sudoku puzzles as our test-bed. We model
the perceived human mental effort of using different familiar
Sudoku solving techniques. Based on that, we show how to find an
explanation understandable to human players of varying expert
levels, and evaluate the algorithm empirically on a wide range
of puzzles of different difficulty.

Index Terms—XAI, heuristic search, Sudoku

I. INTRODUCTION

The field of explainable AI (XAI) is concerned with devel-
oping techniques that are useful for explaining the reasons be-
hind the decisions of intelligent computer systems, preferably
in a way easily understandable to humans. The research focus
of XAI has so far mostly been on model interpretability, in
particular, providing insights into concepts learned by (deep)
neural networks. Given how prevailing such machine-learning
techniques have become, this is unsurprising. However, for
many tasks, heuristic search is also an integral part of the
decision-making process of intelligent systems.

Heuristic search is one of the fundamental problem-solving
techniques in AI and computer science. It provides computer-
based agents the means of reasoning, or “thinking ahead.” One
of the main appeals of the approach is its general applicability
to decision making in a wide range of disparate problem
domains, including manufacturing optimization, automated
scheduling and planning, and game-playing. Such informed
search techniques are often capable of producing high-quality
(real-time) answers to complex decision problems when pro-
vided with proper guidance.

Although current research into model interpretability may
be applicable for explaining learned heuristic models used by
the search, the better part of the heuristic-search reasoning
process remains unexplained. The solution to heuristic-search

problems typically takes the form of a sequence of actions. For
example, a human to fully appreciate the solution might need
to know not only how each step came about, but also why that
particular sequence is preferable to an alternative one.

In this paper, we take initial steps into making the reasoning
process of heuristic search more transparent to humans, using
Sudoku puzzles as our test-bed. There are fundamentally two
different approaches to achieve this. The former is to treat
the solver as a black-box and then try to explain the resulting
solution post-mortem; in contrast, the latter alters the solver
to produce more human-understandable solutions. Both ap-
proaches have their pros and cons, but the latter typically offers
greater flexibility in delivering human-explainable solutions,
although possibly at the cost of solution quality or run-time
performance. We opt for the second approach here as the goal
is first and foremost to generate highly informative solutions
for humans instead of, e.g., run-time performance. The task of
the search process has thus become more intricate: it is looking
for not only an acceptable solution to the problem (quality-
wise) but also an easily explainable one. Such a solving
approach is relevant in settings where a human is expected to
verify or execute the resulting solution as well as in settings
where a human is hoping to learn from the solving process.

The primary contributions of the paper are: (i) we present
a heuristic-search-based Sudoku solver that returns solutions
understandable to humans with different levels of expertise;
(ii) a study of numerous problem characteristics that relate to
the solution difficulty in our test-bed domain is provided; (iii)
although the test-bed here is Sudoku, many of the underlying
ideas are transferable to a wider-range of problem domains
with similar characteristics; (iv) and finally, this is one of few
recent works emphasizing explainability in heuristic search,
and issue that hopefully will attract added research attention.

The paper is organized as follows. Section II introduces
both the necessary terminology and preliminaries. Section III
explains Sudoku and the basic strategies humans use for solv-
ing such puzzles. Related to that, in Section IV, we develop
a metric for (objectively) measuring the perceived difficulty
humans have in understanding solutions using the human-like
strategies. In Section V, we introduce our algorithm for finding
the most instructive solution paths, followed by an empirical
evaluation of the algorithm in Section VI. Finally, we discuss
related work in Section VII and conclude and discuss future
work in Section VIII, respectively.978-1-6654-3886-5/21/$31.00 ©2021 IEEE

Figure 1. Sole candidates: In the topmost row: 9 is a sole candidate (left), 8 becomes a sole candidate (middle), and finally the 1 becomes one too (right).

II. BACKGROUND

Heuristic (or informed) search methods encompass a wide
range of search algorithms. The term is commonly used
to refer to state-space-based search methods that rely on
heuristics for guiding a search process, such as A*, Minimax,
MCTS, and backtracking-based CSP search. The state-space
is typically explored by growing a search tree representing
the different possible continuations to take. The problem
domains can be single- or multi-agent based, deterministic or
non-deterministic, fully observable or not, and the heuristics
largely domain-specific (hand-crafted or learned) or largely
domain-independent (like variable and action selections in
CSP). For example, classic heuristic-search-based planning
typically employs single-agent search in deterministic and
fully observable domains.

Different search domains face dissimilar explainability chal-
lenges. In an adversary-search domain like chess, a human
observer might need to realize why a seemingly promising
continuation is not taken, for example, because of an unan-
ticipated refutation, whereas in other domains, like Sudoku,
the human must first and foremost understand each step in the
proposed solving sequence.

Constraint satisfaction problems (CSPs) are a class of
problems that can be described by a set of variables, V =
{v1, v2, ...vi}, a set of domains D = {d1, d2, ..., di}, where
dj is the set of values that variable vj can take, and lastly
a set of binary constraints C = {c1, c2, ..., cn}, where cj =
(va, vb, relationaloperator).

A variable vi is arc-consistent with another variable vj if
(and only if), for every value a in di there exists a value b
in dj such that (a, b) satisfies the binary constraint between
the two variables. A problem is arc-consistent if (and only
if) every variable is arc-consistent with every other variable.
Although there exist several related algorithms for making a
problem arc-consistent, AC-3 [11] is the most widely used.

Sudoku, our test-bed puzzle game, is naturally formalized as
a CSP, and Sudoku puzzles are generally effectively solvable
using a CSP solver. However, when searching not only for
a solution but the most explainable one, then the problem is
more naturally formalized as a heuristic-search-based single-

agent problem. One distinguishing feature between CSP and
heuristic search is that, in the former, the goal state itself
represents the solution, whereas in the latter the exact sequence
of actions taken that lead to the goal state is the solution.

III. SUDOKU

The game of Sudoku is played on a rectangular grid, usually
at order 3, meaning that the grid is of size 32 × 32 = 9 × 9,
and overlaid by mutually exclusive boxes (also called blocks
or regions) of size 3 × 3 (see Figure 1). We interchangeably
refer to grid cells as variables, as this is how they would
be represented in the CSP formalism. The domain of each
variable (grid-cell) is 1 to 9 (32).

Initially, a partially filled puzzle is provided and the task
of the player is to fill out the remaining grid cells such
that each number occurs exactly once in each row, column,
and box. Sudoku puzzles are traditionally generated such that
they have exactly one solution. The puzzles can be of a
varied level of difficulty, ranging from being easily solved by
humans using only trivial deduction techniques to requiring
quite sophisticated levels of reasoning.

A. Human Solving Strategies

Humans do apply various deduction schemes to solve
Sudoku puzzles and a rich literature exists (e.g., see [4])
describing a wide array of strategies of different complexity,
including with names such as "X-wing", "Swordfish" and
"Unique Rectangle". Novice players do typically rely only on a
couple of simple deduction strategies, however, as they become
more proficient the more elaborate strategies they incorporate
into their arsenal of solving techniques. Consequently, when
presenting a puzzle solution to a novice player, the solution
must be at an appropriate sophistication level for the player
to fully comprehend it, for example, by using only familiar
deduction strategies. As the players develop their problem-
solving skills, more advanced strategies can be incorporated.

We will borrow from the Sudoku literature some of the
deduction strategies that are typical for beginner (to interme-
diate) level players, as presented in the following subsections.
We refer to the (other) cells in the same row, column, or box
as a cell c as row-, column-, and box-neighbours of cell c,

Figure 2. One-dimensional (left) and two-dimensional (middle) unique candidate, and naked-double candidate (right)

respectively. The neighbours of a cell c is the union of the
row-, column- and box neighbours.

B. Sole Candidate

The sole candidate strategy detects a grid cell whose domain
has been reduced to a single candidate, for example, as seen
in Figure 1. More generally, in detecting a sole candidate
all neighbours of a cell c may play a role in restricting the
cell’s domain. Note, that in the CSP framework sole-candidate
domain reduction would be performed via arc-consistency.

C. Unique Candidates

If a value, say v, has been eliminated from the domains
of all row-, column- or box-neighbours of a cell c, then we
know that cell c must be assigned the value v. The unique
candidate strategy tries to do such an elimination, for example,
as depicted in Figure 2.

We remove values from the box cell’s domain, as in Figure
2, by scanning its neighbours. The unique candidate can be
found with two levels of difficulty, they can be found by
scanning ether one or two dimensions. We refer to candidates
found by scanning two dimensions as two-dimensional unique
candidates, and those found by scanning only one of the
two dimensions, we refer to them as one-dimensional unique
candidates. The reason for this distinction is that it typically
requires somewhat less mental effort to scan only one type
of neighbours. Analogously, when finding a unique candidate
in a row (or a column), we use the box-neighbours and the
col-neighbours (or row-neighbours) of the remaining row (or
col) cells. All one-dimensional unique candidates are also two-
dimensional unique candidates, but not the reverse.

D. Naked Doubles Candidate

Naked doubles is a pair of neighbour cells, say c1 and c2,
having an identical domain D of size two. This means that
each of two values remaining in D must be assigned to one
of the two cells. Although, we do not know (yet) which cell
should be assigned which value, we know that the two domain
values must be reserved for those two cells only. This implies
that if c1 and c2 are, for example, row-neighbours, then no
other cell in that row can take on the two values in D and

we can remove the values from their respective domains if
present. Analogous arguments apply if c1 and c2 are col- or
box-neighbours, as seen in Figure 2.

IV. ESTIMATING THE COST OF AN EXPLANATION

How understandable is a solution to a human player?
Ultimately, the answer to this is subjective and depends on the
person. Here we try to quantify explainability in somewhat ob-
jective terms based on different solution strategies and general
principles. Assuming different strategies exist for achieving
individual steps of a multi-step plan, for example, the different
strategies for deducting an assignment of a Sudoku grid-cell
we saw in the previous section.

We define a cost function for measuring a plan’s (solution’s)
explainability — the higher the cost the less understandable the
plan is — where we assume the following general principles:

(i) Different strategies may impose different non-negative
step costs.

(ii) The same strategy may impose a different step cost
depending on the context it is used in.

(iii) Repeatedly applying the same strategy yields a lowered
step cost at each successive step (other things being
equal). Switching between strategies may involve ad-
ditional costs.

(iv) Using a strategy not previously used in the solving
process may impose an additional (one-time) cost. Thus,
using a smaller set of disparate strategies is always
preferable (other things being equal).

(v) The total cost of a plan (solution) is the summed cost
of its steps.

More formally, taking the above principles into account, we
specify our Sudoku solution cost metric as:

Wtotal =

N∑
i=1

((
1 +

(
1− am,i

Ui

))δ
θnm,iwm,i + ξm,iwm,i

)
(1)

where m indicates the strategy used, wm is the cost of the
strategy used (see Table I), N is the number of unassigned
variables at the beginning of the puzzle, Ui is the number

Table I
STRATEGY SPECIFIC COST, wm

wm

One-Dimensional Unique Candidate 1
Sole Candidate 3

Two-Dimensional Unique Candidate 5
Naked Double Candidate 10

of unassigned variables at step i, am,i is the number of
available moves for the chosen strategy, δ is the power of
the transformation function, θ is a cost decaying factor, nm,i
indicates the count of similar moves done before our move m
and finally ξm,i indicates the cost of learning a strategy.

In the first term of our equation,
(
1 +

(
1− am,i

Ui

))δ
, we

capture the context specific cost (see (ii)) for strategy m at
step i, indicating a higher cost with lower availability. The
strategy specific cost (see (i)) is lowered by repetitive use of
the same strategy through the decaying factor θnm,i (see (iii)).
The value for the learning factor (see (iv)) ξm,i was arbitrarily
set to 10 if we are using strategy m for the first time at step
i, otherwise it is 0.

One can think of the strategy-specific cost in Table I as
approximate of the different techniques’ sophistication level:
novice players easily apply the less costly ones, whereas
the more costly require added skill. Solutions, i.e., action
sequences, comprised chiefly of simple strategies, are un-
derstandable even to less skilled players. In contrast, more
advanced players would also comprehend a solution that uses
more sophisticated steps. The exact costs listed in the table
are per se inconsequential; instead, it is worth noting that
different strategies have different associate costs, which may
vary depending on the targeted user. For example, given
knowledge of the expert level of a user observing the solution,
unfamiliar strategies are made costly (even infinite) whereas
ones familiar to the user are cheap, thus ensuring that the
generated solution uses only strategies familiar to the user.

In this framework, when given a solution, it is naturally
explained as the sequence of actions taken annotated with the
strategy used and the cells involved. For example, in Figure
1, the explanations would be along the lines of: 9 added as a
sole-candidate (using all neighbor-constraints), 8 added as a
sole-candidate (using row- and box-constraints), and 1 added
as a sole neighbor (using a row-constraint).

It is important to note that our solver is not dependent on
using this exact cost-function formulation for evaluating its so-
lution paths. In theory, any metric will do that is monotonically
non-decreasing with an added number of actions. In practice,
however, we would like to capture the idea of varying mental-
efforts required for the human to discover and/or understand
different solutions, and thus we will model the cost on the
above-mentioned principles.

V. METHODS

A backtracking-based CSP solver can be used to solve
Sudoku puzzles efficiently. However, here the task is not only

to solve the puzzles but to do so in a manner explainable to
humans with different levels of expertise. One approach would
be to use a standard solver and then try to explain the outcome
post-mortem. Unfortunately, this is not guaranteed to succeed
as some of the steps taken in solving the puzzle might be
too intricate given the ability of the human observer, possibly
even based on multiple trial and error as opposed to human-
like deduction strategies. The solver must instead be biased
towards finding the simplest (best explainable) solution while
solving the puzzle using only human-like deduction strategies.
Here we present such a solver.

A. Strategy Abstraction

Our approach selects a (variable, value) pair iff that assign-
ment can be deducted using one of the previously mentioned
human-like Sudoku solving strategies. Although we lose the
ability to solve Sudoku boards that cannot be solved using
only those strategies, that is inconsequential as such solutions
would be non-explainable. Furthermore, once a strategy has
been chosen, say a sole candidate, that strategy is applied
repeatedly before potentially switching to a new strategy. A
parameter batch size controls the number of repetitions.

One can think of a chosen strategy and batch size as a
macro-action, that is, instead of the action filling out a single
grid cell, it fills out multiple cells at once. Not only does
such an approach imitate how humans solve the puzzles (as
supported by both the Sudoku literature, e.g. [17], and results
from a general human-style solving model [13]), but it also
reduces the search space significantly (roughly sm/b where s is
the amount of Sudoku strategies and m is the amount of empty
cells, and b is the batch size). However, using a batch size
larger than one does potentially sacrifice optimality; that is,
the algorithm might overlook a lowest-cost solution (according
to our metric). For example, when exploring a higher-cost
action, the algorithm is forced to repeatedly apply that high-
cost action, even if lesser-cost actions become available as an
aftereffect of a previous application of the high-cost action.

B. The Search Algorithm

The pseudo-code in Algorithm 1 describes the search, where
each recursive call to the search function does the following:
(1) for each available strategy we apply (up to) batch size many
moves (not transitively considering those that arise from using
the strategy); (2) the cost of the (partial) solution is computed
using our cost function; (3) we recurse into the search once
more with the changes from applying that strategy; (5) we
undo everything from applying the strategy and try the next.

The search is depth-first branch-and-bound-like, keeping
track of the least costly solutions found so far and pruning
where applicable. It also uses a transposition table, for avoid-
ing reexploring the same state if reached via two different
paths, and macro-actions to reduce the search space. A signif-
icant characteristic is that the actions allowed for the algorithm
are always explainable in terms of Sudoku strategies. Given
that the algorithm has at its disposal sufficiently advanced

Algorithm 1 Searching for a least-cost path
1: map tt {transposition_table}
2: fbest =∞
3: function Search(s, g, strategies)
4: if Terminal(s) then
5: {Keep track of best solution so far}
6: if g < fbest then
7: fbest = g
8: return 0
9: if g ≥ fbest then

10: {A more costly path, no need to explore further}
11: return ∞
12: if s in tt then
13: {h* already found for s}
14: if g + tt(s) < fbest then
15: fbest = g + tt(s)
16: return tt(s)
17: subtree_costs = []
18: for all strategy in strategies do
19: {Get batch many moves for a given strategy}
20: actions = GetActions(strategy)
21: ApplyActions(s, actions)
22: c = CostFunction(s, actions)
23: h = Search(s, g + c, strategies)
24: UndoActions(s, actions)
25: subtree_costs.append(c+ h)
26: tt(s) = h∗ = min(subtree_costs)
27: return h∗

strategies to progress in each step, it is complete (i.e., always
finds a solution).

VI. RESULTS

Here we provide an empirical evaluation of our solver, both
in terms of solution understandability and run-time perfor-
mance. We also look at search-space properties of interest.

A. Experimental Setup

To evaluate our solver, we used an online tool qqwing [12]
to generate Sudoku puzzles of varying difficulty (simple, easy,
and intermediate), the difference being the sophistication level
of the strategies required to solve the puzzles. We gathered
50 puzzles for each of the three chosen difficulty levels. All
experiments were run on a AMD Ryzen 5950 CPU.

B. Solution Understandability

We start with an example, depicted in Figure 3. The Sudoku
board is close to completion with multiple ways to continue.
Tables II and III show two such alternative continuations:
the former — proposed by our algorithm — uses only a
single relatively straightforward strategy, whereas the latter
alternates between several strategies of varied sophistication
levels, which our algorithm estimates to be the most costly
according to our cost function.

Which continuation is more logical? Although there is no
definite answer, then the former is easier to comprehend and

Table II
LEAST COSTLY PATH FOUND TO SOLVE THE BOARD IN FIGURE 3.

COST 33

Available Moves Chosen Moves
sole 1d unique 2d unique naked Strategy Value Square

3 2 5 1 1d unique 5 I1
4 3 6 1 1d unique 5 E3
4 3 7 1 1d unique 8 E1
4 3 6 1 1d unique 2 H1
4 2 6 0 1d unique 8 H3
3 1 5 0 1d unique 3 H7
3 2 4 0 1d unique 3 E8
3 2 3 0 1d unique 2 E7
2 2 2 0 1d unique 2 I8
1 1 1 0 1d unique 7 I7

Table III
MOST COSTLY PATH FOUND TO SOLVE THE BOARD IN FIGURE 3.

COST 342

Available Moves Chosen Moves
sole 1d unique 2d unique naked Strategy Value Square

3 2 5 1 naked 7 I7
2 2 4 0 sole 8 H3
3 3 5 1 naked 5 E3
3 3 4 1 naked 8 E1
2 2 3 0 2d unique 5 I1
2 2 4 0 sole 2 H1
2 2 4 0 sole 3 H7
2 2 3 0 1d unique 3 E8
2 2 2 0 2d unique 2 E7
1 1 1 0 2d unique 2 I8

can be explained to humans of even novice solving abilities
(as it requires only one relatively straightforward strategy).
There are two one-dimensional unique candidates available to
start with, I1 and H71. Our solver proposes to fill I1, then E3
becomes a new one-dimensional unique candidate, and so on
until the puzzle is solved. The solution shown in the latter
table is much less approachable, requiring jumping between
four different strategies and is possibly even incomprehensible
to most novice human solvers. On the contrary, expert human
solvers might find such an explanation preferable.

1We use a board coordinate system where the rows are indexed top-to-
bottom by the letters A–I, and the columns left-to-right by digits 1–9.

Figure 3. Unsolved board with 10 remaining moves

Figure 4. Number of available moves for the least-cost path for three puzzles with different move-availability: simple (left), easy (middle), intermediate (right)

800 900 1000
0

100

200

300

400

500

Fr
eq

ue
nc

y

700 800 900 1000
0

200

400

600

600 700 800 900
Cost

0

1000

2000

3000

4000

5000

6000

Fr
eq

ue
nc

y

500 600 700
Cost

0

50

100

150

200

250

Costs of explored paths per puzzle

Figure 5. Costs of the various paths explored during the search, for four
puzzles.

C. Solution Cost Analysis

The understandability of the possible solutions to a puzzle
may vary greatly, as we saw. Figures 4 and 5 cast some
more light on this. The former shows the availability of
different strategies as the search progresses (the board fills up),
whereas the latter shows the cost distributions of all possible
solutions to four different puzzle instances. The distributions
take different shapes, although in all four the tails are slim,
that is, there are only a few very low-cost and high-cost cases.

The availability of strategies (moves) varies throughout the
search, this gives us insight into the difficulty of the given
solution. A solution that has few available moves throughout
the search can in general be considered harder than one with
an abundance of possible continuations at each step. For the
more simple puzzles the board is open, that is, there are

300 400 500 600 700 800
0

10

20 Simple

300 400 500 600 700 800
0.0

2.5

5.0

7.5
Fr

eq
ue

nc
y

Easy

300 400 500 600 700 800
Cost

0.0

2.5

5.0

7.5 Intermediate

Distribution of best costs per difficulty level

Figure 6. Resulting distributions of the best costs found from solving 50 tables
of each difficulty levels: Simple(top), Easy(middle), and Intermediate(bottom)

multiple simple moves available, whereas for the intermediate
board there is frequently only a few possible continuation.
For example, we see in Figure 4 rightmost graph that at one
point the only continuation is to use a Naked Double strategy,
highlighting the difficulty of that puzzle.

D. Puzzle Difficulty vs. Cost Metric

The puzzles we used for our evaluation were all pre-labeled
with a difficulty ranking of simple, easy, or intermediate.
Figure 6 shows the distribution of best solution costs, as
measured by our cost metric, over all puzzles, and how it
relates to the pre-labeled difficulty ranking. The puzzles in the
more difficulty-ranked puzzle categories have higher solution
costs in general, although there is some overlap. Table IV gives
the mean- and median-cost for each category.

Table IV
COST OF DIFFICULTY CATEGORIES

Difficulty mean median std

Simple 411 402 38
Easy 501 496 66
Intermediate 630 632 86

Table V
OVERVIEW OF STRATEGIES BEING USED IN LOWEST AND HIGHEST BEST

COSTS FOUND FOR GIVEN DIFFICULTY

Lowest Best Cost Highest Best Cost
Simple Easy Inter Simple Easy Inter

1d unique 17 12 19 13 18 11
sole 15 36 19 11 8 11
2d unique 0 0 0 15 1 14
naked 0 0 0 0 0 1

Cost 319 384 400 500 671 806

To illustrate what the variability in the different costs in
Figure 6 might indicate, we show in Table V the solutions
statistics for the highest and lowest costs for each difficulty
level. The solutions with a lower cost are able to solve
the puzzle by using fewer strategies and using the simpler
strategies relatively ofter.

E. Run-Time Analysis

One of the configuration parameters to the algorithm is the
batch size, that is, the maximum number of actions to perform
of a single strategy before considering switching to a different
one. A batch size of one indicates that one can freely switch
between strategies (as in regular search), a batch size of two
makes the algorithm apply that strategy twice (as a single
macro-action), if available, before trying the next one, etc.
A batch size of infinity means that all available application
of a given strategy are played as a single macro-action. The
main purpose of the batched actions is both to improve the
algorithm’s run-time efficiently, but also to have it mimic better
how humans typically solve the puzzles (repeatedly apply the
same strategy while available). Figure 7 shows the average run-
time of the algorithm using different batch sizes. The general
trend is that the run-time decreases with increased batch size,
however, there is an interesting anomaly when going from
batch size one to two, which increases the run-time. 2

VII. RELATED WORK

There exists an extensive research literature on model in-
terpretability (e.g., see [8] for a survey) whereas research into
the explainability of (heuristic) search is still in its infancy.

In the context of intelligent autonomous agents, particularly
in planning [2], the ability of an agent to explain the reasoning
behind its decisions has been labeled explainable agency [10],
and which requires four distinct abilities: (i) the agent must be

2We have investigated this further, including ruling out (the best we can)
that this is caused by incorrect program behaviour. As of now we do not have
an bullet-proof explanation for this somewhat unexpected behaviour.

INF 12 8 6 4 3 2 1
batch_size

0

20

40

60

80

100

120

140

Se
co

nd
s

Average search time given batch size

Figure 7. Time / batch size runtime

able to explain decisions made during plan generation, (ii) re-
port which actions it executed at different levels of abstraction,
(iii) show how actual events diverged from planned ones and
what adaptions were necessary, and, finally, (iv) communicate
its decisions and reasoning effectively in a formalism natural to
humans. Furthermore, work on explainable agency in systems
based on heuristic search tends to distinguish between two
types of self-explanations: process vs. preference oriented. The
former emphasizes the (thought) process leading to finding
the solutions, whereas the latter focuses on the solutions
themselves without concerns about how they were found [10].
In this paper, we focused on the former.

The challenges arising in explaining planning systems are
outlined in [5], and the gap between current planning al-
gorithms and human problem-solving acknowledged. Some
concrete preliminary steps towards plan explainability are
also taken. Interactive (or human-in-the-loop) planning, where
computer agents actively participate with humans in the plan
generation, do use both some plan-recognition and human-
understandable explanation capabilities [3]. Also, recent work
on a fully autonomous planning system, which is capable of
some rudimentary plan explanations, uses a greedy algorithm
to generate so-called minimal plan explanations by searching
over the space of abstract models. [16]

For CSPs, the main focus has been on deriving efficient con-
straint propagation techniques (see e.g. [14] for an overview),
with little attention paid to how a solution is found. In many
cases, this is perfectly acceptable as the goal is simply to find a
good solution (performance-based approach), whereas in other
cases —like the one we studied here— such an approach is
not helpful because understanding the solution process is the
main goal (process-based approach). A few notable exceptions
falling into the latter category, include using domain-specific
constraints to solve logic puzzles to find more human-like
solutions [15], and using an user-understandable tree-hierarchy
in an explanation-based constraint programming system [9].

There has also been some recent work in theorem proving
systems in generating more human-style proofs for elementary

mathematical problems [7].
In Sudoku, the MITS system [1] is an intelligent au-

tonomous tutor that acts interactively with a student to com-
plete a puzzle. It retains a model of acceptable next actions
using a dynamic strategy graph that is continuously adapted
throughout the game. Either the tutor or the student can
direct how to play (mixed-initiative). Good Sudoku [6] is a
commercially available Sudoku app. It uses a custom puzzle
generator to generate puzzles with varying difficulty, e.g.,
requiring specific strategies. These puzzles are accompanied
by an algorithm that runs in the background and provides hints
while the player solves the puzzle.

VIII. CONCLUSIONS AND FUTURE WORK

Many intelligent decision-making systems employ both
models and search as an integral part of their decision-making
process. The decisions made by such systems must ideally
be transparent, verifiable, and, where applicable, instructive
for humans. The research focus of XAI has so far mostly
been limited to model interpretability, in particular, providing
insights into concepts learned by (deep) neural networks.

In this work, we put the focus on the search part of the
decision-making process. We use Sudoku as our test-bed and
provide a solver — a hybrid of a heuristic- and constrained-
based — that biases the search towards finding solutions
that are easily explainable to humans with different levels of
domain expertise. We provide a concrete method for achieving
this and show that such a solver is feasible in our test domain.
We also provide an analysis of various aspects of the search-
and solution space to better reveal the challenges faced by the
solver.

There are several avenues for taking this work further. In
particular, it would be of interest to compare more quanti-
tatively the solutions generated by our strategy-aware solver
to those generated by a traditional constraint-based Sudoku
solver. For example, how understandable are the solutions as
judged by our perceived mental-cost metric or, more ideally,
by human players. The model we currently use for estimating
solution difficulty could also be further refined, for example,
based on observing better how humans play. Finally, the
domain of Sudoku is just our first stop on the journey into
exploring explainability issues in constraint- and heuristic-
based search.

The plan also is to generalize the proposed techniques to
be more widely applicable. Coarsely speaking, the algorithm,
as is, applies to other state-based problem domains where: (i)
the search task is to find a solution, as opposed to finding
an optimal one, and; (ii) a monotonically non-decreasing cost
metric applies for evaluating the perceived understandability
of the different solutions path, and (iii) there is a close
correspondence between the understandability of individual
actions in the solution path and how easily the solution can be
explained as a whole (for example, we assume that explaining
the solution is achievable by explaining each individual action
in the solution independently). Sudoku conforms nicely to the
above restrictions and, therefore, is ideal as a first domain for

research into explaining heuristic-search processes. A natural
next step is to move to a somewhat more challenging search-
based problem domain where some of the above conditions
are relaxed. For example, such an approach could potentially
be useful in planning, in particular for tasks where some
subsets of actions are preferable over others from a human-
style solving point of view, even though all suffice to solve
the planning task.

REFERENCES

[1] Allan Caine and Robin Cohen. Tutoring an entire game with dynamic
strategy graphs: The mixed-initiative sudoku tutor. JCP, 2(1):20–32,
2007.

[2] T. Chakraborti, A. Kulkarni, S. Sreedharan, D. E. Smith, and S. Kamb-
hampat. Explicability? legibility? predictability? transparency? privacy?
security? the emerging landscape of interpretable agent behavior. In
Proceedings of the Twenty-Ninth International Conference on Automated
Planning and Scheduling (ICAPS 2019), pages 86–96. AAAI Press,
2019.

[3] T. Chakraborti1, K. P. Fadnis, K. Talamadupula, M. Dholakia, B. Sri-
vastava, Jeffrey O. Kephart, and R. K. E. Bellamy. Visualizations
for an explainable planning agent. In Proceedings of the Twenty-
Eight International Conference on Automated Planning and Scheduling
(ICAPS 2018), pages 5820–5822. AAAI Press, 2018.

[4] Conceptis. Conceptis Sudoku solving techniques, 2019. Ac-
cessed on 19-11-2019, https://www.conceptispuzzles.com/index.aspx?
uri=puzzle/sudoku/techniques.

[5] M. Fox, D. Long, , and D. Magazzeni. Explainable planning. In IJCAI
2017 Workshop on Explainable Artificial Intelligence (XAI), 2017.

[6] Zach Gage and Jack Schlesinger. Good Sudoku is software for
generating and solving Sudoku puzzles, 2008. Accessed on 29-06-2021,
www.playgoodsudoku.com.

[7] M. Ganesalingam and W. T. Gowers 0001. A fully automatic theorem
prover with human-style output. J. Autom. Reasoning, 58(2):253–291,
2017.

[8] Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini,
Fosca Giannotti, and Dino Pedreschi. A survey of methods for explain-
ing black box models. ACM Comput. Surv, 51(5):93:1–93:42, 2019.

[9] Narendra Jussien and Samir Ouis. User-friendly explanations for con-
straint programming. In Anthony J. Kusalik, editor, Proceedings of the
Eleventh Workshop on Logic Programming Environments (WLPE’01),
Paphos, Cyprus, December 1, 2001, 2001.

[10] Pat Langley, Ben Meadows, Mohan Sridharan, and Dongkyu Choi.
Explainable agency for intelligent autonomous systems. In Satinder P.
Singh and Shaul Markovitch, editors, Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence, February 4-9, 2017, San
Francisco, California, USA, pages 4762–4764. AAAI Press, 2017.

[11] A. K. Mackworth. Consistency in networks of relations. Artificial
Intelligence, 8:99–118, 1977.

[12] Stephen Ostermiller. QQwing is software for generating and solving
Sudoku puzzles, 2005. Accessed on 19-11-2019, www.qqwing.com.

[13] Radek Pelánek. Difficulty rating of sudoku puzzles: An overview and
evaluation. CoRR, abs/1403.7373, 2014.

[14] Francesca Rossi, Peter van Beek, and Toby Walsh, editors. Handbook
of Constraint Programming, volume 2 of Foundations of Artificial
Intelligence. Elsevier, 2006.

[15] Mohammed H. Sqalli and Eugene C. Freuder. Inference-based constraint
satisfaction supports explanation. In William J. Clancey and Daniel S.
Weld, editors, Proceedings of the Thirteenth National Conference on
Artificial Intelligence and Eighth Innovative Applications of Artificial
Intelligence Conference, AAAI 96, IAAI 96, Portland, Oregon, USA,
August 4-8, 1996, Volume 1, pages 318–325. AAAI Press / The MIT
Press, 1996.

[16] S.Sreedharan, S.Srivastava, and S. Kambhampati. Hierarchical expertise-
level modeling for user specific robot-behavior explanations. In Pro-
ceedings of the Twenty-Eight International Conference on Automated
Planning and Scheduling (ICAPS 2018), pages 4829–4836. AAAI Press,
2018.

[17] Paul Stephens. Mastering Sudoku week by week. Duncan Baird
Publishers, 2007.

