A Genre-Specific Game Description Language
for Game Boy RPGs

Tamara Duplantis, Isaac Karth, Max Kreminski, Adam M. Smith, Michael Mateas
University of California, Santa Cruz
Santa Cruz, California
{tduplant, ikarth, mkremins, amsmith, mmateas} @ucsc.edu

Abstract—Existing game description languages (GDLs) aspire
to generality, but their focus on the specification of low-level
mechanics leaves game generators that target these GDLs in the
awkward position of having to invent combinations of mechanics
that work well together from scratch. As a result, many existing
game generators are good at producing games that contain
novel and surprising combinations of mechanics, but bad at
generating games that are readily interpretable by players as
cultural artifacts. To address this problem, we introduce the
concept of a genre-specific game description language (GSGDL): a
game description language that deliberately encodes assumptions
about a particular genre of games as a cultural form. As a proof
of concept, we demonstrate the use of an internal representation
of game structure used by the game creation tool GB Studio
as a GSGDL for top-down 2D roleplaying games targeting the
Game Boy. The use of this GSGDL gives us leverage to rapidly
iterate on game generation features targeting a specific game
genre and platform; to work with an existing toolchain that offers
graphical editing, code generation, and automated playtesting;
and to more readily generate games that are interpretable by
players as examples of a particular cultural form.

I. INTRODUCTION

Game generation—the development of computational sys-
tems that can generate entire videogames—is difficult because
it requires the orchestration of many different facets of game
design, including mechanics, level design, visual art assets,
narrative, and audio [1]. In successful games, these facets work
together in a complementary fashion to produce a coherent
play experience. In unsuccessful games, however, these facets
fall out of alignment with one another—resulting in games
that feel incoherent, uninterpretable, or even (in the worst
case) unrecognizable as games, dispelling the illusion of an
internally consistent game world.

Past approaches to game generation have often made use of
game description languages (GDLs), including VGDL [2] and
Cygnus [3], as generation targets. The use of GDLs simplifies
the process of generating executable games by allowing game
generators to produce high-level specifications of gameplay,
rather than low-level procedural code in a general-purpose
programming language. However, though these existing GDLs
permit the expression of a wide range of possible game
mechanics, the challenge of imbuing these novel mechanics
with reliably player-interpretable meaning—including through
the coherent integration of mechanics with other facets of

978-1-6654-3886-5/21/$31.00 ©2021 IEEE

videogames as a cultural form, such as narrative, level design,
visual art assets, and sound—remains open. As a result, game
generation systems targeting existing GDLs tend to be good
at generating novel and surprising game rulesets, but bad
at reliably generating games that are interpretable from the
perspective of a human player [4].

At the same time, non-academic game development com-
munities have developed a number of tools that aim to ease the
difficulty of game development. These tools are often meant to
be approachable to artists, designers, and other users who are
not primarily programmers by trade, and they tend to exchange
the fine-grained control of a general-purpose programming
language for improved authorial leverage in creating a specific
type of game. By deliberately encoding assumptions about
games as a cultural form—including assumptions about game
genre—these tools assist their users in creating artifacts that
are interpretable as games with a minimum of effort.

GB Studio'—a GUI-based game creation tool targeting
Game Boy role-playing games—is one such tool. Its internal
model of game structure represents the cumulative effort of
a hobbyist game development community to understand and
reify the essential features of Game Boy RPGs as a genre.
As developers in the community find themselves wanting to
include certain features in the games they are trying to create,
community discussions arise about how these features could be
supported by the tool, and popularly demanded features (such
as the ability to trigger a screenshake effect from a script,
or to create simple turn-based battle scenes) are rolled into
GB Studio or implemented as project templates that users can
import into their own projects.

The resulting model of game structure is holistic: rather than
focusing on the design of mechanics or instantial assets [5]
alone, GB Studio presents users with a conceptual framework
that relates assets to mechanics (and vice versa) in specific,
well-defined ways, enabling users to easily construct games
that creatively interleave different facets of game design while
remaining interpretable to players. Essentially, GB Studio
reifies the conventional configurations of operational logics [6]
that characterize Game Boy RPGs as a cultural form. Users
can rely on these proven proceduralist meaning-making strate-
gies to ensure their games are interpretable to players at a
high level, while improvising new settings, characters, stories,

Uhttps://www.gbstudio.dev/

puzzles, scene-specific mechanics, battle systems, inventory
systems, and other facets of game design for each new game
they create.

Can GB Studio guide game generators toward the creation
of coherent, interpretable games, just as it guides its human
users? We believe it can. To that end, we investigate the impli-
cations of treating GB Studio’s internal JSON representation of
game structure (the GBS format) as a machine-writable genre-
specific game description language (GSGDL) for Game Boy
RPGs. Our primary contributions include:

o The concept of genre-specific game description lan-
guages (GSGDLs): GDLs that deliberately encode genre-
conventional configurations of operational logics to ease
generation of player-interpretable games.

o GBS, a “found” GSGDL for Game Boy RPGs.

o Baseline approaches to game generation and machine
playtesting targeting GBS.

Though formal evaluation of the generated games is left to
future work, some games generated by the initial version of our
system are available to play online” via in-browser emulation
of the Game Boy platform.

II. RELATED WORK

A. Game Description Languages for Game Generation

The Stanford GDL [7], often known simply as GDL, is an
early game description language that permits the specifica-
tion of rulesets for two-player perfect-information competitive
turn-taking boardgames involving the placement of pieces on
a grid (such as chess, checkers, and Go). GDL was originally
intended to be used in the development of automated game-
playing systems, enabling developers of game-playing systems
to easily evaluate their approach against a large number of dif-
ferent game rulesets. It later served as an inspiration for a num-
ber of boardgame description languages, including the Ludi
GDL—a narrower and more focused boardgame description
language. Ludi was used to generate boardgames that human
players found compelling, including multiple commercially
published games [8]. Other GDLs for board games include
the Extensible Graphical Game Generator’s .egg format [9]
and the Zillions of Games .zrf format’.

VGDL [2] is a game description language inspired by GDL,
but targeting the automated playing and generation of 2D
arcade videogames rather than boardgames [10]. The game
Al research toolkit GVGAI [11] uses VGDL as a shared
representation of game structure between automated game-
playing and game generation systems. VGDL can represent
only a limited subset of arcade game rulesets; for instance,
VGDL hardcodes a fixed number of opaque control schemes
rather than allowing for the invention of new control schemes
from scratch, and permits game entities to interact with one
another only through collisions, rather than (for instance)
through quantitative resources.

Zhttps://isaackarth.com/games/rom_gen_test_5/
3https://www.zillions- of-games.com/

The Cygnus game description language [3] was developed
in response to VGDL’s limitations. Cygnus permits game me-
chanics to be defined as arbitrary compositions of triggers (e.g.
control events, entity collisions, and resource thresholds being
met or surpassed) and effects (e.g. setting entity movement
properties such as rotation or acceleration, adding or removing
entities, and altering resource values). As a result, Cygnus is
capable of expressing a strict superset of the games express-
ible in VGDL. Cygnus powers the abstract game generator
Gemini [3], which has been used to generate small arcade
games included in the narrative game Emma’s Journey [12]
as thematically appropriate procedural accompaniment to a
text-driven narrative. It also powers the Gemini-based mixed-
initiative game creation tool Germinate [13].

PuzzleScript [14], a GDL originally developed in a non-
academic context for use by human creators of top-down 2D
tile-based block-sliding puzzle games, has been used as a
target for both level generation [15] and full game generation
including the invention of novel mechanics [16]. Additionally,
the Inform 7 [17] and Ceptre [18] languages could both be
viewed as GDLs for narrative games. Inform 7 has been used
as a target for text adventure game generation as part of the
TextWorld framework [19].

B. Other Approaches to Game Generation

Not all game generators make use of explicitly defined
GDLs. One early approach to videogame generation by Nelson
and Mateas [20] generates WarioWare-esque microgames by
combining a few sets of stock mechanics with entity movement
behaviors constrained by common-sense knowledge of object
types from the ConceptNet [21] and WordNet [22] databases.
This approach served as an inspiration for the later Game-O-
Matic [23] and Gemini systems.

Another early approach by Togelius and Schmidhuber [24]
evolves arcade games within a search space defined by an
internal representation of game rules. However, this repre-
sentation is not externally exposed as a GDL. Smith and
Mateas’s Variations Forever system [25] similarly makes use
of an internal-only representation of game rule structure for
minigame generation, but instead uses answer set program-
ming to search the space for viable rulesets. The Gamika
system defines another space of minigames, but turns the task
of exploring the space over to a human user via casual creator
interaction patterns in Wevva [26] and other apps.

The evolutionary approach to game generation was car-
ried forward by Cook’s ANGELINA series of systems [27],
which have used a variety of internal representations of game
structure. More recent versions of ANGELINA [28] have
experimented with recontextualizing game generation as a con-
tinuous [29] and culturally engaged process, with ANGELINA
querying its Twitter followers for common-sense knowledge
about how game entities might be expected to relate to one
another; theming its games after news articles it consumes;
and entering its games into game jams.

WikiMystery [30], another experiment with culturally en-
gaged videogame generation, uses real-world data (specifically

€ndlr i i

Fig. 1. The GB Studio 1.2.1 interface, displaying the project file for the
generated game Crysopraise Yeti J[: Ocean of the Archmage. Scenes are
shown as rectangles in the project view. Entity properties, including scripts,
are accessed through the bar on the right.

Wikipedia data about networks of well-known historical fig-
ures) to generate murder mystery adventure games that evoke
a specific cultural context.

Machine learning approaches to the acquisition of game
design knowledge for game generation have recently come into
use [31]. Guzdial and Riedl [32] combine these approaches
with conceptual expansion to invent novel gameplay through
the recombination of mechanics learned from existing games.

Cook has recently argued [33] that game generation tools
intended to fit into human game development workflows
could benefit from targeting general-purpose programming
languages directly, rather than targeting a narrower GDL. Such
tools would need to both read human-authored code (perhaps
structured in a way that makes this code more amenable to
automatic analysis) and to emit human-readable code.

III. PROBLEM SPACE DEFINITION

We want to generate Game Boy role-playing games that
center on the exploration of a navigable graphical environment,
consisting of a set of scenes linked to one another by collision-
triggered or interaction-triggered doorways and containing
interactable entities of the types that are common to the genre
(including non-player characters, readable wall signs, tog-
gleable switches, and so on). NPCs and other entities should be
able to present players with textual dialogue or descriptions on
interaction, and players should be able to make choices among
several fixed options within dialogue sequences. Additionally,
a scripted narrative throughline should be presented to the
player as they progress through a sequence of key interactions.
Examples of the kinds of explorable overworlds that we would
like to capture include those found in Pokémon Red [34], The
Legend of Zelda: Link’s Awakening [35], Final Fantasy Legend
II [36], and Great Greed [37].

Neither VGDL nor Cygnus seems appropriate to encoding
games of this type. VGDL allows the specification of level
layouts, sprites, and how sprites behave when they collide
with each other [38], while Cygnus generalizes VGDL in
several ways, including through the incorporation of resource

logics that allow entity behaviors to depend on and alter the
values of quantitative resources [3]. However, neither language
offers any built-in means of presenting dialogue boxes, menus,
or characters emoting. Transitions between linked scenes in
a larger persistent world are outside the vocabulary of both
languages. Additionally, RPGs tend to tightly interleave narra-
tive, level design, sprite design, and interaction: for instance,
NPCs often have character-specific dialogue and movement
sequences that are triggered by interacting with them, that
only make sense if certain objects are present in the room,
and that vary based on player input at designated interaction
points. These scripted ‘“cutscenes” are hard to express in
languages developed to express arcade game mechanics, where
it’s generally assumed that there are a small number of
distinct entity types that behave in consistent ways throughout
the game, rather than many entities with highly situational
behaviors, each appearing in only a few scenes. Though these
constructs could perhaps be expressed as combinations of
low-level operations available in existing GDLs—for instance
by defining scene transitions as collision-triggered Cygnus
rules that remove all currently active entities and immediately
place a new set of entities to construct a new scene—the
expression of these basic player-facing concepts as elaborate
compositions of lower-level operations inhibits the ability of
game generators to reason about these concepts directly.

One way to frame these difficulties is through the lens
of operational logics (OLs). The theoretical framework of
operational logics attempts to describe how videogames create
meaning by connecting computational processes to representa-
tional strategies, forming low-level operational logics that can
be composed to create playable models. Mateas and Wardrip-
Fruin [39] provided the first full characterization of OLs;
Osborn, Wardrip-Fruin and Mateas [6] later refined the notion
of OLs by providing a catalog of common foundational logics
and an account of how OLs compose. For our purposes, OLs
are useful because they describe the relationship between game
mechanics and representational strategies in a way that permits
us to capture the foundational elements of Game Boy RPGs as
a cultural form. Sets of formal characteristics that are common
to recognizable categories of games might in some contexts
be referred to as game genres—a term that has been critiqued
for its vagueness [40]. Therefore, we want a more precise
definition of exactly what we mean when we refer to Game
Boy RPGs as a genre. In the remainder of this paper, we use
the term “genre” to refer to a conventional configuration of
operational logics in relation to one another. This sense of
“genre” is roughly equivalent to Lessard’s “high-level design
pattern formations” [41], but formalized in terms of OLs.

From the OLs perspective, Game Boy RPGs present a
navigable overworld consisting of a number of scenes, con-
nected to one another by linking logics. Collision volumes
attached to graphical representations of doorways or corridors
trigger the operation of these linking logics when activated,
transporting the player character from one scene to the next.
Interaction with NPCs and other entities relies on a conven-
tional playable model of interaction proxemics, consisting of

a structural synthesis of collision logics (used to determine
whether the player character is touching another entity), entity-
state logics (used to determine whether the player character
is facing the contacted entity), and control logics (used to
trigger interactions when the player presses a specific button).
Within each interaction, a progression logic is used to trigger
an ordered sequence of dialogue boxes, character emotes,
character movements, and other changes to the game state.
Additionally, within these sequences, players may be presented
with menus backed by a selection logic, enabling them to make
choices that impact the outcome of the sequence as a whole.
Finally, persistence and progression logics are used to craft a
high-level narrative arc by causing the game world to evolve
in a scripted way as the player completes key interactions.

This perspective helps characterize why existing GDLs are
insufficient for our purposes. As Beaupre et al have pointed
out [42], the operational logics expressed by games in the
popular GVGAI framework for “general” game playing and
generation are in fact quite limited. This is due in part to the
GVGAI framework’s reliance on VGDL, which was designed
to express the mechanics of arcade games and consequently
does not provide language features relevant to, for example,
the expression of the narrative facet of adventure games.
Cygnus makes similar arcade game-specific assumptions about
desired OLs. Altogether, it is this mismatch between the
configurations of OLs presumed by existing GDLs and those
conventional to Game Boy RPGs as a genre that prompted us
to seek out an alternative language: one that better supported
the genre conventions we wanted our generator to target.

IV. GBS: A GENRE-SPECIFIC GDL

GB Studio is a GUI-based game creation tool that targets
the Nintendo Game Boy. Our Game Boy RPG generation
pipeline uses GB Studio’s internal JSON representation of
game structure—which we call GBS—as a machine-writable
genre-specific game description language (GSGDL) (Fig. 2).
A GSGDL, by analogy to domain-specific programming lan-
guages, is a GDL that sacrifices generality for ease of use
in generating a particular kind of game. GBS specifically
trades generality for suitability to Game Boy RPG generation
by directly encoding key features of the Game Boy RPG as
a cultural form—including interactable NPCs with scripted
interaction sequences, an overworld consisting of spatially
linked scenes, and interactive menus—as language features.

GBS games are structured around five major types of entity.

Scenes are rectangular virtual spaces within which the
player and actors may exist. Every scene has a background
consisting of 8-by-8 pixel tiles and a collision map defining
which tiles block movement by the player and actors. Scenes
are linked together by scripts that move the player to a specific
scene when run, and they can be pushed onto and popped off of
a scene stack. This stack mechanism essentially allows scenes
to contain child scenes, which the player can enter and return
from without losing the state of the parent scene.

The player is an avatar controlled by the human player,
represented by a specific sprite or sprite set. Every scene pro-

"scenes": [{
"id": "SebsHouse",
"backgroundId": "...",
"width": 20, "height": 18,
"collisions": [255, 255, 25, 248...1,
"actors": [{
"spriteSheetId": "...", "animSpeed": "3",
"movementType": "randomFace",
"moveSpeed": "1",
"direction": "down", "x": 8, "y": 7,
"script": [
{"command": "EVENT_TEXT",
"args": {"text": "Have you seen my keys?",
"avatarId": "..."}},
{"command": "EVENT_MENU",
"args": {"layout": "dialogue",
"variable": "O",
"optionl": "Yes",
"option2": "No"}}
]
1y
"triggers": [{
"x": 17, "y": 0, "width": 2, "height": 1,
"script": [
{"command": "EVENT_SWITCH_SCENE",
"args": {"sceneId": "StansHouse",
"x": 1, "y": 16,
"direction": "up",
"fadeSpeed": "2"}}

Fig. 2. A lightly edited example of GBS syntax specifying a game that
contains a single scene, a single actor with a dialogue script triggered by
interaction, and a single trigger that takes the player to an adjacent scene
when entered.

vides a specific start location at which the player will appear
when the scene is entered. The player can then be moved
around the scene via the directional input buttons and made
to interact with actors via the interact button (conventionally
the A button, or Z in an emulator using a keyboard).

Actors are interactable entities represented by a specific
sprite or sprite set, which can move around within a scene.
When the player faces an actor and presses the interact button,
the script attached to the actor (if any) is executed. Four basic
movement types can be applied to actors: static, or fixed
in place; face interaction, like static but turning to face the
player when interacted with; random rotation, or periodically
changing facing direction at random; or random movement, i.e.
periodically changing direction and moving around the scene.
All but the static movement type are intended to replicate com-
mon forms of NPC behavior in Game Boy RPGs. Additionally,
more complex movements can be achieved through scripts.

Triggers are areas that run a script when entered by the
player. They consist of one or more 8px by 8px tiles, and are
often used to link scenes together and to trigger cutscenes.

Scripts are sequences of commands that run when a specific
interaction takes place. They can be attached to scenes (run-
ning when the player enters the scene), to actors (running when
the player interacts with the actor), or to triggers (running

when the player enters the trigger). Additionally, scripts can
set other scripts to be run whenever a specific console button is
pressed or on a repeating interval, and they can trigger scripts
attached to actors as though the player interacted with the actor
in question. Scripts offer both branching and looping control
flow constructs and commands for manipulating values stored
in variables, allowing them to function as a general-purpose
programming language. However, they also offer RPG-specific
commands, such as displaying text in a dialogue box (with
a parameter to control the typeout speed) or displaying a
menu that blocks execution until the player selects one of
several options. Accordingly, scripts are often simple and
unconditional, consisting of a single command that displays
several lines of text in sequence, for instance to simulate the
player reading a sign or talking to an NPC.

In addition to these mechanical entity types, GBS also
defines a set of fixed roles for assets (including visual and
audio assets) that, together with the limitations of the Game
Boy as a target platform, impose a degree of aesthetic con-
sistency on generated games. Sprites designated as emotes
will appear above the target actor when triggered by an
appropriate script command; Ul elements, such as the selection
cursor and text box borders, can be visually redesigned while
continuing to play a fixed interaction role; and spritesheets
for actors that are capable of rotation must provide variant
sprites for the four cardinal directions in which an actor can
be facing. These representational conventions help support the
mechanical conventions that the GBS language imposes.

Together, the genre-specific mechanical and communicative
features of the GBS GDL can be interpreted as reifying the dis-
tinctive configurations of operational logics that characterize
Game Boy RPGs as a genre. Scenes are connected spatially by
linking logics, whose operations are triggered by collision log-
ics or scripted interaction sequences; dialogue boxes, emotes,
character movements, and menus can be triggered by single
script commands; and so on. Basing design on a known-good
high-level configuration of operational logics can be helpful
to a game generator in the same way that deciding to work
within a specific genre can be helpful to a human designer:
the genre structure provides a set of recognizable conventions
within which to work, closing off many possible alternative
configurations of logics but ensuring that a coherent assem-
blage of mechanics does not have to be discovered through
painstaking trial and error. Meanwhile, though the scripting
capabilities of the GBS language permit the specification of
novel mechanics, the affordances of the language guide both
human authors and game generators toward scripts that mostly
follow the conventions of the Game Boy RPG.

V. GAME GENERATION VIA GB STUDIO

As a proof of concept for our approach, we built a simple
constructive game generator that targets GBS (Fig. 3). Further
description of the generated games is available in our demon-
stration paper about the generator itself [44]. The success of
this generator at producing interpretable games, despite its
relatively simple architecture in comparison to other game

Pool of
scene
templates

scene generation

assemble project

scenes

generated
scenes

generated
sprites

generate title

title and intro
screens

| assemble project

* backgrounds

variables

1 actors

E triggers

1 scripts
connect scenes !

1 collisions

spriteSheets

GB Studio

convert to

template

scene
template

Fig. 3. The generative pipeline in version 1.0 of the generator. The generator
starts with a user-supplied pool of scene templates (as Python functions)
and executes the functions, creating the data for the scenes and associated
assets. The generated scenes are then connected by creating bi-directional
links between scenes. As a separate process, the title of the game (generated
via Tracery [43]) is used to generate the title screen. The generated data is
assembled into a project data structure, which is written to disk and then read
into GB Studio, which compiles the project into a ROM. The scene template
functions can be hand-written, or can be extracted from other GB Studio
project files with a Python script.

settings

GB Studio

l music

custom events
| compile to ROM |

Scene Stack

Automatic
Generation

Starting Interface
Screens

(if included)

N —————

Fig. 4. Diagram of the basic layout of Broken Oak Magician, a generated
game. Execution begins with the intro and title screens (top left), from which
the player can start a new game or load a saved game. New games start
in the scene the generator has designated as the starting room. The scenes
are connected via scripts on trigger volumes, creating bidirectional links.
Additional interface scenes and modes (menus, combat, etc.) can be accessed
using GB Studio’s scene stack, but Broken Oak Magician doesn’t use these
more advanced scene-switching features.

generators, demonstrates the benefits of using a GSGDL as
a target for game generation.

Generation is based on a template-and-mixin model. The
generator first selects several region modules (e.g., the “forest”,
“sewer”, and “temple” regions) from a list of available regions.
Then, for each of the selected regions, it calls the region’s
catalog () function, which returns a sampled subset of
appropriate scene templates from the region’s template library.
Scene templates are Python functions that generate high-level
scene geometry, including backgrounds and collision maps.
Once the scene templates are selected, each template is invoked
to generate a single scene.

The template library currently contains 70 templates, most
of which were hand-authored using the graphical GB Studio
interface. To templatize these hand-authored scenes, we use a
Python script that accepts a GBS file as input, analyzes the
scenes present within it, and generates a Python function for
each scene that is capable of producing slight variations on that
scene’s basic geometry when invoked—essentially conducting
a simple generativist reading [45] of the human-crafted exam-
ple scenes. These automatically-templatized functions can be
further hand-modified to increase their expressive range. A few
templates, however, are defined algorithmically, and generate
a completely new scene geometry (such as a procedural maze)
each time they are invoked.

All scene templates include one or more marked connection
points (such as doors, ladders, and offscreen-pointing corri-
dors), tagged with a list of scene types to which this scene may
be connected via this connection point. Connection points with
matching tags are randomly connected to one another, forming
one sub-graph of interconnected scenes per region. For each
connection, a trigger is placed in the connected scenes at each
end of the connection. Attached to this trigger is a script
containing a single EVENT_SWITCH_SCENE command that
will move the player to the appropriate location within the
connected scene.

Scenes that connect one region to another region are treated
specially, and used to implement both visually smooth tran-
sitions between regions and a succession of locked gates
that limit progression through the game world. Traversing
a connection from one region to the next first checks to
determine whether a specific flag variable, corresponding to
the acquisition of a particular key item, has been set. Key
items are placed within certain scene templates, and exactly
one scene containing a key item is generated per region; key
items can be collected by interacting with a representation
of the item itself, with a particular NPC who carries the
item, or by entering a certain trigger to “pick up” a key item
from the ground. This limits progression from one region
to the next until the player collects the key item within
that region. Because scene-to-scene links are implemented as
scripts, the script for a particular link can easily be modified
to add narrative or progression elements, including additional
dialogue or a conditional “lock” that determines whether the
link can be traversed.

We evaluate the traversability of the scene graph as a whole

Fig. 5. A subset of the scenes placed in the generated game Broken Oak
Magician, demonstrating how the templates are turned into finished scenes
with trigger-based connections between the scenes. The layout of scenes in the
project view is arbitrary. At places where a scene can connect to another scene,
its scene generation function adds a trigger with an EVENT_SWITCH_SCENE
script command that points at the scene (blue boxes with arrows). A later pass
selects pairs of self-referencing triggers and swaps destinations, creating bi-
directional links (indicated with blue dotted lines). Collision areas, derived
from the original template scene, are highlighted in amber.

via a depth-first search to ensure that a path can be found
from the beginning of the game world to the end. Then
we augment scenes by placing randomly chosen mixins at
certain marked-up decoration points. Mixins include wander-
ing animals, humorous road signs, and NPCs; for instance,
a mentor figure who tells the player about their quest can
be placed placed in one of the first few rooms of the game.
Dialogue for NPCs is generated via a Tracery [43] grammar
containing template variables, which are then swapped out for
game-specific strings, such as the name of the game’s primary
MacGuffin. The art assets for mixin NPCs are randomly drawn
from a pool of possible NPC sprites. Additionally, another
templated Tracery grammar is used to generate the game’s
title, which is typeset and rendered out as an image for use as
a title screen.

Once the generated game design is finalized, it is sent
to GB Studio for compilation. To write our internal Python
representation of GBS to a .gbsproj file that GB Studio
can consume, we first reify our generator’s internal entity IDs
into GUIDs (globally unique identifiers) for GB Studio, as
GB Studio uses GUIDs for cross-referencing between scripts
and entities. We create a folder for image and audio assets,
so that GB Studio knows where to locate them, and copy all
assets referenced by the game (including scene backgrounds
produced by the scene generation step of our pipeline) to the
asset folder. The Python game data structure is then translated
to JSON for export to a .gbspro] file.

Finally, we load the generated . gbsproj file into GB Stu-
dio and invoke its compilation pipeline to produce a playable
ROM. GB Studio’s frontend is a cross-platform Electron
application, while its backend is built on top of the Game
Boy Developer’s Kit (GBDK), an open source set of tools
and libraries. GBDK is mostly implemented in C and uses

the Small Device C Compiler (sdcc) to compile ROMs that
will run on the Game Boy Z80 architecture used by the Game
Boy hardware. The resulting ROM can then be loaded into a
Game Boy cartridge using a cartridge programmer or run in the
browser via emulator. This is an advantage of the maturity of
the Game Boy emulation ecosystem, and one way our research
benefits from our focus on a platform with extensive in-the-
wild support from developers.

VI. MACHINE PLAYTESTING WITH GO-EXPLORE

The capacity for machine playtesting of generated games
is a desirable feature for a game generation pipeline. Game
generators can make internal use of machine playtesting
to evaluate and improve their unfinished game designs, for
instance as a means of determining fitness in evolutionary
approaches to game generation. External evaluators can use
machine playtesting on a generator’s final output to gauge the
generator’s success. And human users of mixed-initiative game
creation tools can use machine playtesting to identify problems
with their game designs. The GVGAI framework uses VGDL
as a target for machine playtesting to enable the machine
playtesting of generated rulesets; however, we do not need
to implement a comparable GBS-specific machine playtesting
infrastructure in order to enable machine playtesting of our
games. Instead, we take advantage of the existing ecosystem
of machine playtesting tools for compiled Game Boy ROMs.

We use the Open Al Gym Retro API [46] to step through
the execution of a game frame-by-frame, providing different
controller inputs over time (as one might expect of the forward
execution model for games in the VGDL representation). We
apply the Go-Explore algorithm [47] (one of many available
automated game exploration methods [48]) to find samples of
diverse pathways through the game’s state space. By running
this exploration process for some duration (e.g. for one minute
of wall-clock, during which about one hour of virtual game-
play is simulated), we can render short videos (e.g. 10 seconds
of gameplay) demonstrating samples of gameplay in which
the agent appears to optimize for exploration. Even though the
exploration algorithm makes use of random button pressing as
the main input strategy, the algorithm records the sequences
which successfully made progress towards touching previous
unseen gamestates. Chains of such sequences demonstrate
making rapid progress through the different screens of the
game, including by successfully solving simple generated
lock-and-key puzzles that act as gates to progression.

Though this approach to machine playtesting is well-suited
to evaluating the reachability of areas and content in generated
games, it is not as well-suited to evaluating other aesthetic or
experiential aspects of gameplay. Future efforts to develop ma-
chine playtesting tools for GBS games may leverage the GBS
description of game structure to augment ROM-based playtest-
ing systems with further understanding of game structure—
perhaps enabling these tools to assess features of game design
such as puzzle difficulty or narrative pacing. Additionally,
machine playtesting of Game Boy RPGs created by a simple
constructive generator (such as the generator presented here)

may be used to establish a baseline of comparison for future
approaches to the generation of GBS games.

VII. DISCUSSION AND CONCLUSION

We have presented GBS: a novel, machine-writable genre-
specific game description language (GSGDL) for Game Boy
RPGs. This language was extracted from the internal represen-
tation of game structure used by the GUI-based game creation
tool GB Studio. Unlike previous game description languages,
GBS is well-suited to the expression of multi-layered RPG
structures, enabling even a relatively naive game generator to
produce games that are recognizable by players as examples
of the Game Boy RPG as a cultural form. To demonstrate
the expressive capabilities of the GBS language, we have
presented a simple constructive game generator targeting GBS.
We have also shown that an existing machine playtesting
system for Game Boy games can be straightforwardly applied
to the ROMs produced through compilation of GBS games.

For game generation researchers, the potential benefits of
targeting a game platform and genre supported by an active
community of practice are many. Channels for distributing
GB Studio games to the public already exist; for instance,
many such games have been made available through the
itch.io indie game hosting platform, which provides tagging
features to make games discoverable to potential players and
allows for the hosting of a web emulator capable of playing
Game Boy ROMs in the browser. Because approachable
development tools for Game Boy RPGs already exist, there is
immediate potential for educational impact in the deployment
of undergraduate-facing design-assistance tools that use the
GDL as a game sketching language. Even in its raw JSON
form, the GBS GDL is approachable enough that several high-
school-aged research interns were successfully able to hand-
write GBS templates to add to our generator. And finally,
in attempting to develop more sophisticated game generators
targeting GBS, we can draw on a sizable existing corpus
of premade games (both GB Studio projects and Game Boy
ROMs) as training data. All of these advantages increase the
potential that our future work will be impactful due to its
engagement with a living game development ecosystem.

We have argued that genre-specific game description lan-
guages, which encode genre-conventional configurations of
operational logics, can help to address the problem of or-
chestration in game generation. One path forward for research
in game generation, therefore, involves the formalization of
game genre from an OLs perspective, followed by the devel-
opment of GSGDLs that accurately capture the conventional
configurations of OLs that characterize genres of interest. This
future work, too, stands to benefit from engagement with
existing communities of practice. Because GBS was created
by a particular community of game development practice to
enable creation of the specific kinds of games they sought to
create, it can be viewed as a communal repository of game
design knowledge pertaining to a particular target platform
and genre. We believe that it may be fruitful to learn from

other existing hobbyist game development communities in the
process of attempting to develop new GSGDLs.

More generally, it is our hope that future work in game
generation will more actively engage with videogames as a
multifaceted cultural form. Some existing game generators,
such as ANGELINA, have attempted to generate culturally res-
onant games, but many important creative facets of games—
including the narrative dimension of role-playing games—still
tend to be sidelined by a perspective on game generation
that treats automated game design primarily as a problem
of inventing novel rulesets. Videogames create meaning not
through rules alone, but through the creative interleaving of
abstract computational processes with representational strate-
gies. Consequently, we believe that our automated game design
systems—including the languages they target—must embody
a holistic perspective on games as cultural artifacts if they are
to generate games that players find meaningful.

ACKNOWLEDGMENT

We would like to thank Science Internship Program interns
Sachita Kashyap, Vijaya Kukutla, Aaron Lo, Anika Mittal,
and Harvin Park for their contributions to the game generator.
Thanks also to the anonymous reviewers for their thoughtful
feedback on this and earlier versions of this paper.

REFERENCES

[1]1 A. Liapis, G. N. Yannakakis, M. J. Nelson, M. Preuss, and R. Bidarra,
“Orchestrating game generation,” /IEEE TOG, vol. 11, no. 1, 2018.

[2] T. Schaul, “A video game description language for model-based or
interactive learning,” in Proc. IEEE CIG, 2013.

[3] A. Summerville, C. Martens, B. Samuel, J. Osborn, N. Wardrip-Fruin,
and M. Mateas, “Gemini: bidirectional generation and analysis of games
via ASP,” in Proc. AIIDE, 2018.

[4] J. C. Osborn, M. Dickinson, B. Anderson, A. Summerville, J. Denner,
D. Torres, N. Wardrip-Fruin, and M. Mateas, “Is your game generator
working? Evaluating Gemini, an intentional generator,” in Proc. AIIDE,
2019.

[5] M. Treanor, B. Schweizer, I. Bogost, and M. Mateas, “The micro-
rhetorics of Game-O-Matic,” in Proc. FDG, 2012.

[6] J. C. Osborn, N. Wardrip-Fruin, and M. Mateas, “Refining operational
logics,” in Proc. FDG, 2017.

[71 M. Genesereth, N. Love, and B. Pell, “General game playing: Overview
of the AAAI competition,” Al Magazine, vol. 26, no. 2, 2005.

[8] C. Browne and F. Maire, “Evolutionary game design,” IEEE TCIAIG,
vol. 2, no. 1, 2010.

[9] J. Orwant, “EGGG: the extensible graphical game generator,” Ph.D.

dissertation, Massachusetts Institute of Technology, 2000.

M. Ebner, J. Levine, S. M. Lucas, T. Schaul, T. Thompson, and

J. Togelius, “Towards a video game description language.” Schloss

Dagstuhl-Leibniz-Zentrum fuer Informatik, 2013.

D. Perez-Liebana, J. Liu, A. Khalifa, R. D. Gaina, J. Togelius, and S. M.

Lucas, “General video game Al: A multitrack framework for evaluating

agents, games, and content generation algorithms,” IEEE TOG, 2019.

J. Garbe, M. Kreminski, B. Samuel, N. Wardrip-Fruin, and M. Mateas,

“StoryAssembler: an engine for generating dynamic choice-driven nar-

ratives,” in Proc. FDG, 2019.

M. Kreminski, M. Dickinson, J. Osborn, A. Summerville, M. Mateas,

and N. Wardrip-Fruin, “Germinate: A mixed-initiative casual creator for

rhetorical games,” in Proc. AIIDE, 2020.

S. Lavelle, “Puzzlescript,” http://puzzlescript.net, 2013.

A. Khalifa and M. Fayek, “Automatic puzzle level generation: A general

approach using a description language,” in Proc. CCGW, 2015.

C.-U. Lim and D. F. Harrell, “An approach to general videogame

evaluation and automatic generation using a description language,” in

Proc. IEEE CIG, 2014.

G. Nelson, “Inform 7,” http://inform7.com, 2019.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]
(21]

[22]

[23]
[24]

[25]

[26]

[27]
(28]
[29]

[30]

[31]
[32]
(33]

[34]
(35]

(36]
(37]
[38]
[39]
[40]
[41]
[42]
[43]

[44]

[45]

[46]

[47]

(48]

C. Martens, “Ceptre: A language for modeling generative interactive
systems,” in Proc. AIIDE, 2015.

M.-A. Coté, A. Kadar, X. Yuan, Q. Kybartas, T. Barnes, E. Fine,
J. Moore, R. Y. Tao, M. Hausknecht, L. E. Asri, M. Adada, W. Tay,
and A. Trischler, “TextWorld: A learning environment for text-based
games,” CoRR, vol. abs/1806.11532, 2018.

M. J. Nelson and M. Mateas, “Towards automated game design,” in
Proc. AI*IA, 2007.

H. Liu and P. Singh, “ConceptNet—a practical commonsense reasoning
tool-kit,” BT Technology Journal, vol. 22, no. 4, 2004.

P. Singh, “The public acquisition of commonsense knowledge,” in Proc.
AAAI Spring Symposium: Acquiring (and Using) Linguistic (and World)
Knowledge for Information Access, 2002.

M. Treanor, B. Blackford, M. Mateas, and 1. Bogost, “Game-O-Matic:
Generating videogames that represent ideas,” in Proc. PCG, 2012.

J. Togelius and J. Schmidhuber, “An experiment in automatic game
design,” in Proc. IEEE CIG, 2008.

A. M. Smith and M. Mateas, “Variations Forever: Flexibly generating
rulesets from a sculptable design space of mini-games,” in Proc. [EEE
CIG, 2010.

E. Powley, M. Nelson, S. Gaudl, S. Colton, B. P. Ferrer, R. Saunders,
P. Ivey, and M. Cook, “Wevva: Democratising game design,” in Proc.
AIIDE, 2017.

M. Cook, S. Colton, and J. Gow, “The ANGELINA videogame design
system—part I,” IEEE TCIAIG, vol. 9, no. 2, 2016.

——, “The ANGELINA videogame design system—part II,” IEEE
TCIAIG, vol. 9, no. 3, 2016.

M. Cook and S. Colton, “Redesigning computationally creative systems
for continuous creation,” in Proc. ICCC, 2018.

G. A. B. Barros, M. Green, A. Liapis, and J. Togelius, “Who killed
Albert Einstein? From open data to murder mystery games,” IEEE TOG,
2019.

J. C. Osborn, A. Summerville, and M. Mateas, “Automated game design
learning,” in Proc. IEEE CIG, 2017.

M. Guzdial and M. Riedl, “Automated game design via conceptual
expansion,” in Proc. AIIDE, 2018.

M. Cook, “Software engineering for automated game design,” in Proc.
IEEE CoG, 2020.

Game Freak, “Pocket Monsters: Red,” [Game Boy cartridge], 1996.
Nintendo, “The Legend of Zelda: Link’s Awakening,” [Game Boy car-
tridge], 1993.

Square, “Final Fantasy Legend 1I,” [Game Boy cartridge], 1990.
Namco, “Great Greed,” [Game Boy cartridge], 1992.

T. S. Nielsen, G. A. Barros, J. Togelius, and M. J. Nelson, “Towards
generating arcade game rules with VGDL,” in Proc. IEEE CIG, 2015.
M. Mateas and N. Wardrip-Fruin, “Defining operational logics,” in Proc.
DiGRA, 2009.

M. Treanor and M. J. Nelson, “Order-fulfillment games: An analysis of
games about serving customers,” in Proc. FDG, 2019.

J. Lessard, “Game genres and high-level design pattern formations,” in
Proc. FDG, 2014.

S. Beaupre, T. Wiles, S. Briggs, and G. Smith, “A design pattern
approach for multi-game level generation,” in Proc. AIIDE, 2018.

K. Compton, B. Kybartas, and M. Mateas, “Tracery: an author-focused
generative text tool,” in Proc. ICIDS, 2015.

I. Karth, T. Duplantis, M. Kreminski, S. Kashyap, V. Kukutla, A. Lo,
A. Mittal, H. Park, and A. M. Smith, “Generating playable RPG ROMs
for the Game Boy,” in Proc. FDG, 2021.

M. Kreminski, I. Karth, and N. Wardrip-Fruin, “Generators that read,”
in Proc. FDG, 2019.

A. Nichol, V. Pfau, C. Hesse, O. Klimov, and J. Schulman, “Gotta
learn fast: A new benchmark for generalization in RL,” arXiv preprint
arXiv:1804.03720, 2018.

A. Ecoffet, J. Huizinga, J. Lehman, K. O. Stanley, and J. Clune, “Go-
explore: a new approach for hard-exploration problems,” arXiv preprint
arXiv:1901.10995, 2019.

Z. Zhan, B. Aytemiz, and A. M. Smith, “Taking the scenic route:
Automatic exploration for videogames,” in Proc. KEG, 2019.

