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Abstract—The contextual bandit problem is a richer frame-
work than stochastic bandits that has many applications since
it allows the learner has access to additional information (the
“context”). This additional information can help predict the
expected utility of the different arms in many cases. Moreover,
combinatorial bandits are a class of bandit problem where the
space of possible arms to choose from has a combinatorial
structure. In this paper, we investigate the bandit problem where
we have both contextual information and there is a combinatorial
arm structure, which we call contextual combinatorial bandits
(CCMABs). We apply contextual combinatorial bandits to real-
time strategy (RTS) games, and study different algorithms to
solve CCMABs with different trade-offs of computational effi-
ciency and learning biases. Specifically, we focus on the problem
of determining map-specific game playing policies, and formulate
it as a CCMABs.

I. INTRODUCTION

The Multi-Armed Bandit (MAB) problems [1] are amongst
the most fundamental tools for modeling sequential decision
problems under uncertainty. The core problem MABs tackle is
the exploration vs. exploitation dilemma. In many applications,
additional information and problem-specific structure make the
problem richer and more challenging. Specifically, we look at
two extensions to the MAB problem, contextual information
and combinatorial structure. While both extensions have been
well-studied separately, in this paper, we are interested in the
scenario where we combine both, which we called contextual
combinatorial multi-armed bandits (CCMAB). The CCMAB
problem is challenging since both extensions add complexity
to the problem. We propose and compare a few strategies for
the problem using real-time strategy games as the testbed.

In classic stochastic bandit settings, the agent picks an
arm in each round, and observes a reward generate from
the underlining reward distribution of the arm. The goal is
to maximize the expected cumulative reward by balancing
exploration (learn more about arms that are less visited) and
exploitation (take advantage of known good arms). Also, the
performance of a bandit algorithm can be assessed through
its expected cumulative regret. Regret is defined as the gap
between the expected reward achieved by the algorithm and
the expected reward of the best arm. MAB problems have
been applied in many fields, including sequential clinical trials,
network optimization, economics, e.g. [2], [3].
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Contextual bandit is a more general setting than the stochas-
tic bandit setting for each iteration a context vector will
be observed before an arm is selected. Over the course of
learning, the context vector can be used to predict the reward
distribution of unseen or less explored arms. Contextual bandit
has been applied to many areas like online advertisement
placement [4] and recommender systems [5].

The Combinatorial Bandits problem is a class of bandit
problems with combinatorial arm structure. Specifically, unlike
stochastic bandits where there is only one arm being pulled at
each iteration, combinatorial bandits consist of multiple MABs
and the combination of multiple arms from different MABs
(called micro arms) forms the macro arm of the combinatorial
bandits. Combinatorial bandits have found many applications
like in network optimization and online ads placement [6], [7].

In this paper, we use real-time strategy (RTS) games as the
application testbed for contextual bandits. We use CCMABs
to find map-specific policies for unseen maps in RTS games.
To make the problem tractable, we define a policy space
defined by just six variables, one for each action type, and each
variable has six discrete possible values. Thus, finding a policy
means selecting one value for each variable. In a bandit setting,
if we consider each policy to be an arm, the bandit problem of
finding the best policy has a combinatorial structure. Moreover,
we are interested in the problem of generating policies for
unseen maps given a training set of maps, hence making the
problem also contextual. We evaluate our approach with a
collection of maps in the µRTS game simulator1.

The remainder of this paper is organized as follows. First,
we provide some necessary background on contextual bandits,
combinatorial bandits, and research in RTS games in Section
II. After that, we describe the contextual combinatorial bandit
problem and propose three approaches to the problem in
Section III. Then we demonstrate our experimental design and
results in Section IV. Finally, the paper closes with discussions
of the results, conclusions, and possible future work.

II. BACKGROUND

Multi-armed bandit problem (MAB) is a class of problems
where an agent facing a number of choices tries to balance
the exploitation of existing knowledge and exploration of new
knowledge. MAB has been studied in many topics such as
clinical trials and ad-placement. The classic model is stochastic

1https://github.com/santiontanon/microrts978-1-6654-3886-5/21/$31.00 ©2021 IEEE



Algorithm 1: Stochastic Bandits

for each round t do
1. agent picks arm vt
2. agent observes reward rt for the chosen arm vt.

Algorithm 2: Contextual Bandits

for each round t do
1. agent observes a context σt
2. agent picks arm vt
3. reward rt observed for the chosen arm vt.

bandit, which assumes a discrete, finite number, denoted as K,
of arms for the agent to choose between at each time step t
(the total time horizon is denoted as T if given). And each
arm a has a reward distribution ra. The pseudocode is shown
in Algorithm 1. Most importantly, stochastic bandit assumes
the reward distributions of the arms are independent and
identically distributed (IID). However, in many applications,
depending on the nature of specific problems, some general-
ization of stochastic bandits or specialized algorithmic design
are required. In this section, we briefly introduce contextual
bandits, combinatorial bandits, and why they are important in
the application of RTS games.

A. Contextual Bandits

Contextual bandit is a generalization of stochastic bandits.
In contextual bandits, rewards in each round depend on a
context σ, which is observed by the agent prior to making
a decision in each round. The general procedure a contextual
bandit algorithm uses is shown in Algorithm 2. Contextual
bandits make a different IID assumption: reward rt is drawn
independently from some distribution parameterized by the
(σt, vt) pair.

Contextual bandits are designed for the problem where
agents can observe the context of arms and infer the rewards
distribution of unseen arms. There has been a lot of work
in this area, which includes algorithms such as LinUCB [8],
Epoch Greedy [9], EXP4 [10], and EXP4.P [11]. There
are similarities between the traditional supervised learning
and contextual bandits. In the terminologies of classification
problems, each context σt is an example, and the arms are the
different labels for the example. Each label has an associated
cost or reward. We can form a standard binary classification
problem that there is one correct label with reward 1, and
rewards for all other labels are 0. The key difference between
the contextual bandit setting and standard supervised learning
is that only the reward of the chosen action is revealed. Also,
we can establish connections to reinforcement learning (RL).
A 1-state RL problem is basically just a bandit. Contextual
bandits are one step further than the stochastic bandits towards
RL in that they consider the generalities across the states but
the states do not have temporal relations so there is no credit-
assignment problem. However, the problem of contextual ban-

dits with combinatorial arm structure remains under-studied.
We will describe the combinatorial bandits next.

B. Combinatorial Bandits

Combinatorial multi-armed bandits (CMAB) is a bandit
problem specially designed to deal with inputs with combi-
natorial structure. Specifically, we use the following definition
in this paper [12]. Specifically, a CMAB is defined by:
• A set of n variables X = {X1, . . . , Xn}, where variable
Xi can take Ki different values, Xi = v1i , . . . , v

Ki
i

• A reward distribution R : X1 × · · · × Xn → R that
depends on the value of each of the variables.

• A function G : X1 × · · · × Xn → {true, false} that
determines which variable value combinations are legal.

Each vi is called a micro arm or local arm, and each
legal combination of local arms is called a macro arm or
global arm Vt. The problem is to find a legal macro arm that
maximizes the expected reward. Strategies to address CMABs
are designed to iteratively sample the space of possible macro
arms. Some existing work are MLPS [13], LSI [14], and
Naı̈veSampling [15].

In terms of types of feedbacks in combinatorial bandits most
of the existing work belongs to the semi-bandit type, where
the player observes the outcomes of selected micro arms in
each round. In this paper, we consider the bandit feedback,
where the player only observes the reward of the global arm
but no outcome of any local arm.

C. Real-Time Stratey Games and µRTS

Real-time strategy (RTS) is a sub-genre of strategy games
where players aim to defeat their opponents (destroying their
army and base) by strategically building an economy (gather-
ing resources and building a base), military power (training
units and researching technologies), and controlling those
units. The main differences between RTS games and tradi-
tional board games are: they are simultaneous move games
(more than one player can issue actions at the same time),
they have durative actions (actions are not instantaneous), they
are real-time (each player has a very small amount of time to
decide the next move), they are partially observable (players
can only see the part of the map that has been explored,
although in this paper we assume full observability) and they
might be non-deterministic.

RTS games have been receiving an increased amount of
attention [16] as they are more challenging than games like Go
or Chess in at least three different ways: (1) the combinatorial
growth of the branching factor [15], (2) limited computation
budget between actions due to the real-time nature, and (3)
lack of forward model in most of research environments like
Starcraft. Specifically, in this paper, we chose µRTS as our
experimental domain, as it offers fast simulations suitable for
testing bandit algorithms.
µRTS is a simple RTS game designed for testing AI tech-

niques. µRTS provides the essential features that make RTS
games challenging from an AI point of view: simultaneous and
durative actions, combinatorial branching factors and real-time
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Fig. 1: A screenshot of µRTS, highlighting the units controlled
by each of the two players.

decision making. The game can be configured to be partially
observable and non-deterministic, but those settings are turned
off for all the experiments presented in this paper. We chose
µRTS, since in addition to featuring the above properties, it
does so in a very minimalistic way, by defining only four unit
types and two building types, all of them occupying one tile,
and using only a single resource type. Additionally, as required
by our experiments, µRTS allows maps of arbitrary sizes and
initial configurations.

There is one type of environment unit (minerals) and six
types of units controlled by players (bases, barracks, workers,
and light, heavy and ranged military units). Additionally, the
environment can have walls to block the movement of units. A
example screenshot of game is shown in Figure 1. The squared
units in green are Minerals with numbers on them indicating
the remaining resources. The units with blue outline belong
to player 1 and those with red outline belong to player 2. The
light grey squared units are Bases with numbers indicating the
amount of resources owned by the player, while the darker
grey squared units are the Barracks.

µRTS policies can have many forms. For the purpose of
studying CCMAB, we parameterize the policy with six vari-
ables, each of which represents the probability of making one
type of action. For each variable, we discretize the probability
to six buckets to represent it from low to high. Therefore, we
have a policy space with combinatorial structure. The policy
determines the behavior of all of the units throughout a game.
And the context provided to the agent is a feature vector
describing the map. We introduce the policy parameterization
and context generation in detail in Section III. In this paper,
our aim is to learn from a training set of maps and see if the
agents can predict the reward distribution of new maps and
choose suitable map-specific policies.

III. CONTEXTUAL COMBINATORIAL BANDITS

In this section, we describe the contextual combinatorial
multiarmed bandits (CCMAB) [17]. The problem deals with
the situation where the bandit problem with combinatorial
structure and a context is given before observing the reward.
The context given can be at different levels of the combina-
torial bandits. First, a context can be given at the macro arm
level which potentially used to infer reward distribution of
other macro arms. Second, contexts can be given at the micro
arm level and the learning agent should combine these context
to infer reward of other macro arm. For this paper, we focus
on the first scenario where a context is given at the macro arm
level.

In CCMAB, The reward rt in each round t depends both on
the context σt and the chosen macro arm Vt. And Vt consist
of a set of n micro arms Vt = {v1t , . . . , vnt }.

The difference between CCMAB and contextual bandits is
that in contextual bandits there is a single variable representing
the arm to choose, while in CCMAB there are n variables to
choose values for, defining a combinatorial space. And the
difference between CCMAB and combinatorial bandits is that
in combinatorial bandits, the reward r only depends on the
chosen combination of n variables and in CCMAB the reward
depends on both the context vector σ and the the chosen
combination of arms.

To measure the performance of the strategies to address
CCMAB, we use the notion regret, which is the difference
between the expected reward of the selected macro arm Vt,
and the expected reward of an optimal macro-arm V ∗. There
are many ways to compute the regret and the most commonly
used and what we used in this paper is the cumulative regret,
which is the sum of differences between r∗ and the reward
obtained by the selected macro arms at each iteration.

RT =

T∑
t=1

(r∗ − rt)

Thus, in our problem settings, we will optimize the CCMAB
for T iterations to find the best macro arm with the lowest
cumulative regret or highest cumulative rewards.

We present and compare three approaches for contextual
combinatorial bandits: naı̈ve aggregation, pair-wise aggrega-
tion, and contextual global optimization approach.

A. Naı̈ve Aggregation

In naı̈ve aggregation, we make the naı̈ve assumption that
reward distribution of the macro arm can be factored by
estimating a reward distribution for each micro-arm, i.e. we
assume the reward for each micro-arm is independent. Because
of the naı̈ve assumption, we can break down the CCMAB to
n contextual bandit problems. As shown in Algorithm 3, at
each round t, the agent first observes a context vector σt.
σt has d dimensions to represent d features of the context.
Then each micro MAB observes σt and pick a micro arm
vnt according to pre-defined contextual bandit algorithm. For
example, if we use contextual bandit algorithms with a policy



Algorithm 3: Naı̈ve Aggregation

for each round t do
1. macro MAB observes the context σt
2. each micro MAB Xn picks an arm vnt according

to learner LXn

3. macro MAB Vt picks the combination formed
by {v1t , . . . , vnt }.

3. reward rt observed for the chosen marcro arm,
and rt is fed back to each vnt .

class as mentioned before. A policy is based on a machine
learning model L, and the learning algorithm is used to predict
the mean reward. The macro arm is selected as the legal
combination of micro arms with the highest sum of mean
rewards. Since we have n micro MABs, for each micro MAB
Xn we have a learner LXn .The reward rt observed is fed back
to each bandit policy of micro MABs.

The advantage of naı̈ve aggregation is that thanks to the
naı̈ve assumption, the problem is simplified from O(Kn) to
O(nK), with n being the number of micro MABs and K
being the number of arms of each micro MAB. However, the
efficiency we gained is because of we trade-off the interde-
pendence between the local MABs. Thus, the next technique,
called pair-wise aggregation, tries to bring back some of the
interdependence on top of the naı̈ve aggregation.

B. Pair-Wise Aggregation

As we have discussed, the naı̈ve aggregation trade-off inter-
dependence of micro MABs for efficiency. Here we describe
pair-wise aggregation that brings back partial interdependence.
We consider a pair of micro arms of two different micro MABs
{aXn

i , aXm
j } to be an arm in the pair-wise MAB. Thus, for a

macro MAB with n K-armed micro MABs, the number of
legal pairs will be O(K2n2). And each macro arm Vt picked
at time t, will generate training examples of K2 pairs.

Algorithm 4 demonstrates how pair-wise aggregation works.
On top of naı̈ve aggregation, we build pair-wise learners on
the side and pick arms by merging the two. First, the agent
observe the context vector σt and reveal σt to both micro
MAB learners L and all the relevant pair-wise learners P . L
and P will separately predict the expected reward. Then we
can pick the macro arm according to the prediction. Finally,
the observed reward is revealed to L and P to update the
learners.

The advantage of adding pair-wise dependence is that it is
a more realistic modelling of many real world problems. For
example in the news placement example, it is very likely that
the news showed together are in the same category or theme.
Adding modeling of pair-wise relations allows us to capture
some interdependence of the micro MABs.

C. Contextual Global Optimization

In this section we describe a simple approach of incorpo-
rating the full interdependence between the micro arms. In

Algorithm 4: Pair-Wise Aggregation

for each round t do
1. macro MAB observes the context σt
2. each micro MAB Xn picks an arm vnt according

to learner LXn and all relevant pair-wise learner
PXn×Xm

3. macro MAB Vt picks the combination formed
by {v1t , . . . , vnt }.

3. reward rt observed for the chosen macro arm,
and rt is fed back to each vnt and PXn×Xm

Algorithm 5: Contextual Global Optimization

for each round t do
1. macro MAB observes the context σt
2. Pick the macro-arm Vt according to the context
σt using the context learner L as
argmaxVt∈XL([σ, Vt]).

3. reward rt observed for Vt.
4. Construct training example {[σ, Vt], rt} and feed
it back to the context learner..

this strategy, we “flatten” the combinatorial structure and only
consider the macro arms. We refer to this method as contextual
global optimization. For a problem with context vector σ that
has d dimension and m possible values in each dimension, the
number of contexts is O(md). And for combinatorial bandits,
the number of macro arms is O(Kn). To apply contextual
global optimization, we construct context-macroarm vectors,
which consist of the concatenation of the context vector σ
to the vector representing a given macro-arm, and then we
can train a machine learning model (the context learner L)
to predict the expected reward of a given macro-arm in a
given context by learning to predict the reward given this
context-macroarm vector. Essentially we convert the CCMAB
problem into a contextual bandit problem where the macro-
arm is represented by the specific micro-arms that compose
the macro-arm.

Specifically, during the bandit optimization process, we first
receive the context vector σ, then we select the macro arm
according to the contextual learner. When the reward rt is
observed, we construct a training example as {[σ, Vt], rt} =
{[σ1, . . . , σd, v1t , . . . , vnt ], rt}. This example is given to a con-
text learner, which is retrained every iteration with the set of
collected training examples to enable the model to generalize.
The learner can be any machine learning model like a decision
tree, a Bayesian net, neural network depending on the need
(for simplicity, we used decision trees in our experiments,
which gave us the best tradeoff of speed/performance in our
experiments given the amount of data we collect).

By applying contextual global optimization we convert the
problem to a contextual bandit problem with O(Kn) arms and
context space of O(md). In this way, we have the benefit of
capturing the full interdependence of the micro MABs and



we can apply contextual bandit algorithms like ε-greedy with
classification algorithms, as shown in Algorithm 5.

When applying ε-greedy, in each iteration, we have ε chance
picking a random arm, and 1− ε chance, we find the one for
which the context learner predicts the highest reward given the
current context. This requires an argmax operation on L. While
some differentiable models allow for an implementation of
such argmax operation in an efficient way, in our experiments
with a decision tree, we just iterate over all possible macro
arms and obtain the one for which L reports the highest reward
(this can implemented more efficiently than full iteration over
the complete combinatorial macro-arm space, by iterating over
the set of leaves of the decision tree, for example).

IV. EXPERIMENTS AND RESULTS

In this section, we describe the experimental setup and
report results. In order to evaluate the three methods described
above, we perform experiments in µRTS. A collection of
6 maps of different starting configurations are selected as
our different “contexts”. The goal is to use proposed bandit
algorithms to choose good parameterized stochastic game-
playing policies for a new map they had not seen before. To
test this, we train the learning models of our bandits in five of
those maps, and then we test them in the sixth, unseen, map
in a leave-one-out setting.

A. Policy Parameterization

We employ a simple stochastic parameterization of the
policy, where we define a weight vector w = (w1, ..., w6),
where each of the six weights wi ∈ [0, 1] corresponds to each
of the six types of actions in the game:
• NONE: no action.
• MOVE: move to an adjacent position.
• HARVEST: harvest a resource in an adjacent position.
• RETURN: return a resource to a nearby base.
• PRODUCE: produce a new unit (only bases and barracks

can produce units, and only workers can produce new
buildings).

• ATTACK: attack an enemy unit that is within range.
A policy is totally represented by the vector w. During

gameplay, the action for each unit is selected proportionally to
this weight vector. To choose the action for a given unit, the
following procedure is used: given all the available actions
for a unit, a probability distribution is formed by assigning
each of these actions the corresponding weight in w, and
then normalizing to turn the resulting vector into a probability
distribution. If the weights of all the available actions are 0,
then an action is chosen uniformly at random. Notice that this
defines a very simple space of policies, but as we will see
below, it is surprisingly expressive, and includes policies that
are stronger than it might initially seem.

B. Bandit Optimization of Gameplay Policy

We discretize each value wi in w to six values
[0, 1, 2, 3, 4, 5]. Thus, the optimization of the policy can be
modeled as a combinatorial bandit where the macro MAB

is all of the possible policies and each macro arm consists
of six micro MABs with six micro arms to represent the
discretized values. The reward are calculated from the game
play results against our target bot called RndBiased bot,
which is built-in intro µRTS. RndBiased is actually ex-
pressible in our space of policies. It is a biased random agent
where HARVEST, RETURN, and ATTACK has five times the
weights than other action types (approximate weight vector
[0.06, 0.06, 0.28, 0.28, 0.06, 0.28]).

To test whether the optimized contextual combinatorial
bandit can generalize to unseed contexts, we employ the leave-
one-out cross validation technique, which means we select one
of the maps as testing map, train the agent on the rest of the
maps, and repeat the optimization for each map. Thus, the
optimization cycle works like this:

1) A random map from the training set is chosen and the
corresponding context vector σ is revealed to the agent.

2) The policy picked by the bandit algorithm will play 10
games against the target bot in the chosen map.

3) The average winrate is recorded as the reward and
revealed to the bandit algorithm.

This optimization process is repeated for 10000 iterations.
After the optimization, the context vector of the testing map
is revealed to the bandit. The selected testing policy will run
1000 games against target bot in the testing map. And the
average winrate is recorded as final performance of the bandit
algorithm for further comparison.

Additionally, we add two more baseline algorithms for
comparison: naı̈ve sampling (with global optimization) [15]
and naı̈ve sampling without global optimization. The two
algorithms serve as ablation studies of the contextual bandits,
because they captures the combinatorial structure but not the
contextual information. Naı̈ve sampling is a combinatorial
multiarmed bandit strategy that is not contextual, hence it will
just find the best macro-arm in the set of training maps, and
use that in the test map, without adapting the policy to the
test map. Naı̈ve sampling without global optimization is the
same as Naı̈ve sampling, but removing the global MAB (this
is to have a direct non-contextual comparison to our Naı̈ve
Aggregation approach).

We select six maps, listed below, as our set of context maps.

• Map 1: 8x8/basesWorkers8x8A.xml: In this map of size 8
by 8, each player starts with one base and one worker.
Games are cut-off at 3000 cycles.

• Map 2: 8x8/FourBasesWorkers8x8.xml: In this map of
size 8 by 8, each player starts with four bases and four
worker. Games are cut-off at 3000 cycles.

• Map 3: OneWorker8x8.xml: In this map of size 8 by 8,
each player starts with one worker and more resources.
Games are cut-off at 3000 cycles.

• Map 4: FourWorker8x8.xml: In this map of size 8 by 8,
each player starts with four workers. Games are cut-off
at 3000 cycles.

• Map 5: FourRanged8x8.xml: In this map of size 8 by
8, each player starts with four ranged units. Games are



TABLE I: Cross-validated winrates for naı̈ve aggregation, pair-wise aggregation, contextual global optimization, and two
baseline algorithm based on naı̈ve sampling.

Naı̈ve Agg. Pair-wise Agg. Contextal Global Opt. NS w/o. Global Opt. NS w. Global Opt.
Map 1 0.839 0.886 0.587 0.851 0.759
Map 2 0.528 0.515 0.898 0.487 0.524
Map 3 0.738 0.738 0.747 0.728 0.735
Map 4 0.922 0.922 0.932 0.910 0.914
Map 5 0.946 0.941 0.949 0.939 0.941
Map 6 0.903 0.914 0.907 0.921 0.915

Average 0.812 0.819 0.836 0.806 0.798
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(a) t-SNE Plot for Map1
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(b) t-SNE Plot for Map2

Context. global
CCMAB-NA
CCMAB-PA

NS-w/o. global
NS-w. global

(c) t-SNE Plot for Map3
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(d) t-SNE Plot for Map4
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(e) t-SNE Plot for Map5
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(f) t-SNE Plot for Map6

Fig. 2: t-SNE visualizations for the policies selected by the five algorithms in the six maps over ten runs.

cut-off at 3000 cycles.
• Map 6: TwoRangedLight8x8.xml: In this map of size 8

by 8, each player starts with two ranged units and two
light units. Games are cut-off at 3000 cycles.

The context vector calculated for the maps is simple: a
vector of the number of each type of units for either player.
For example, Map 1 has the corresponding context vector
[1, 0, 1, 0, 0, 0].

C. Implementation Details

In this part, we describe the implementation details for the
three algorithms. Overall, we use decision trees as the machine
learning model as our policy learner. The reason is that during
the bandit optimization, the dataset is often unbalanced, and
decision trees are less sensitive to unbalanced dataset. Also, the
computational complexity of training and testing decision trees

are low comparing to more complicated methods. Specifically,
we use the J48 model provided by Weka.

For naı̈ve aggregation, we trained a J48 classifier for each
micro arm. Thus, in total we have K · n = 36 classifiers. We
uses ε-greedy to balance exploration and exploitation, which
means for each iteration we have ε probability of selecting
a random macro arm, and 1 − ε probability of selecting
the best macro arm. We use a linearly decaying ε in our
experiments, starting at ε = 0.5 and reaching ε = 0.00 in
the last optimization iteration. In naı̈ve aggregation, the best
macro arm is the combination of the micro arms with best
winrate separately. Thus, we perform a greedy selection of
micro arms to construct the best macro arm.

For pair-wise aggregation, we have two parts. The first part
is identical to the naı̈ve aggregation model. The second part
we have the modelling for pair-wise relations. We train one
J48 classifiers for each pair of micro arms from different



Fig. 3: Example visualization of the decision tree trained from contextual global optimization.

macro MABs. In total, we have n(n−1)
2 ·K2 = 540 classifiers.

Exploration/exploitation is the same as naı̈ve aggregation, the
same reward will be revealed the pair-wise learners. For naı̈ve
aggregation, greedy selection will give us the macro arm with
highest average winrate. For pair-wise aggregation, we go over
all combinations to find the macro arm with highest average
score. Once we have the naı̈ve aggregation and the pair-wise
score for each macro-arm, we just calculate the average score
for each macro-arm and select the one with the highest score.
Again, notice that this requires iterating over all possible
macro-arms (which is feasible in our experiments), although
mode efficient ways to do this process will be devised in future
work.

For contextual global optimization, we simply have one
classifier that takes the context-macroarm vector as the input.
Again, we use ε-greedy to balance exploration and exploita-
tion, with linearly decaying ε starting at ε = 0.5 and going
down to zero. When we are making exploitation selections,
the macro arm of highest predicted winrate with respect to
the current context is selected. The picked augmented macro
arm and reward received together will be the training examples
for the classifier.

D. Experimental Results

In our experiments we compare the policies resulting from
the different bandit strategies using the cross-validated win
rate against the target bot. As we can see in Table I, the best
performing method overall is global contextual optimization
with 0.836 total winrate and being the best bot in four maps.
The next is pair-wise aggregation strategy with 0.819 total
winrate, followed by naı̈ve aggregation with 0.812 winrate.
We can see that considering the interdependence between the
micro MABs are clearly helpful for the performance of the
optimization, since pair-wise aggregations outperformed naı̈ve
aggregation, and global optimization outperformed pair-wise
aggregation. Moreover, the contextual global optimization
approach performed the best or close to the best in all maps
except for Map 1 (we explain the reason for this below).

The two baseline methods that do not consider contextual
information have the worst performance. Interestingly, Naı̈ve
Sampling without global optimization slightly outperformed
Naı̈ve Sampling with global optimization, with 0.806 and
0.798 winrate respectively, probably due to overfitting.

Then we used t-SNE [18] to visualize the resulting macro
arms of the algorithms in the six maps, shown in Figure 2.
Sub-figure (a) to (f) in Figure 2 represents the results in
Map 1-6 respectively. And in each sub-figure, the results of



each algorithm is labeled with a different color. There each
algorithm is run 10 times, thus for each algorithm, there are
10 points representing results from separate runs. A clear
phenomenon we can observe in this visualization is that the
result of the global contextual optimization are quite different
from the ones of other algorithms. In fact, contextual global
optimization almost always selects the macro arm that are
effectively equivalent to [0, 0, 0, 0, 0, 1] across all of the maps.

The reason can be found from the visualization of one of the
trees that were learned in our experiments, shown in Figure 3.
In this decision tree, any policy with the first two element
being 0 and the last element greater than 0 will be classified
to win with high conviction. Due to the order in which we
search the macro-arms for selecting the best, this results in
selecting the macro-arm mentioned above. Our interpretation
is that the decision tree finds a solution that is performing
well and generalizable in most of the maps that we use. And
Map 1 is an example of this solution fails to generalize. We
believe this phenomenon occurs as the set of maps we used for
experimentation are not varied enough as for the model to learn
generalizable policies, and context learner often learned that
the [0, 0, 0, 0, 0, 1] policy does well in all maps. Hence, this
points out the need for a more varied training set. However, it
is worth noting that it is interesting that such a simple strong
policy exists in the space and Naı̈ve Sampling did not find
it. We believe this is because the machine learning model is
able to perform generalizations such as (“arm 1 > 2”) that
the probabilty estimation procedure done in Naı̈ve Sampling
cannot capture.

V. DISCUSSION AND CONCLUSIONS

In this paper we have introduced the CCMAB problem,
which corresponds to the bandit problem with contextual in-
formation and combinatorial arm structures. Then we proposed
three strategies to tackle the CCMAB problem: naı̈ve aggre-
gation, pair-wise aggregation, and contextual global optimiza-
tion. The three strategies consider no micro arm interdepen-
dence, partial micro arm interdependence, and full micro arm
interdependence. Specifically, naı̈ve aggregation only consider
micro MABs separately and does greedy aggregation. Pair-
wise aggregation adds the pair-wise relations of the micro
MABs upon the naı̈ve aggregation. Lastly, contextual global
optimization consider the full interdependence by treating
combinatorial structure of arms as additional contexts.

Then we designed experiments in µRTS to compare the
three strategies. Specifically, the task is to find the best map-
specific game-playing policies whose parameterization have
the combinatorial structures in unseen maps given a set of
training maps. The result showed that the more interdepen-
dence that the strategy considers, the better performance it can
obtain. Also, through the t-SNE visualization, we observed
that the strategy that considers the full interdependence of
the micro arms generate policies that differ more from the
ones that does not consider full interdependence or contextual
information.

For future work, we believe there are still large space for
improvements for the CCMAB strategies. For example, the
scalability of the algorithms can be crucial in more complex
problems, as our implementations often rely on macro-arm
enumeration. Also, for exploration/exploitation balancing, we
simply used ε-greedy strategies. Further, we want to study
the regret bounds of these algorithms, which we did not
study in this paper, where we limited ourselves to empirical
experimentation. Finally, we want to apply our solution to the
CCMAB problem to domains like player modeling, where
MAB approaches have shown promise [19] and to Monte
Carlo Tree Search, by selecting contextualized policies for
either the tree policy or the default policy.
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modeling via multi-armed bandits,” in International Conference on the
Foundations of Digital Games, 2020, pp. 1–8.


