
Real-Time Model Predictive Control for Shot
Aiming in a Physical Pinball Machine

Zachariah E. Fuchs Pavan Saranguhewa Michael Ikuru

Abstract—We examine the shot aiming problem in the context
of a physical pinball machine. A parametric switched mode
system model is constructed and parameter tuning techniques
are presented. A model predictive controller is developed that
leverages the tuned model, and experimental results using a
physical pinball testbed are examined. The developed controller
successfully aimed shots with sufficient precision to satisfy most
shot constraints within real-world, commercial pinball machines
and provides a good baseline level of performance to use as a
point of comparison for future aiming controllers.

I. INTRODUCTION

Playing pinball machines is a remarkably complex task
which requires a great deal of skill and finesse despite the
deceptively simple input of just pressing a right or left button.
The physical pinball system is governed by highly complex
and nonlinear dynamics as the ball is constantly ricocheting
off of different targets, ramps, or bumpers (some of which are
active elements). Furthermore, the scoring often has complex
rules and many different possible states. Therefore, the points
a particular shot produces are highly variable and depend on
the sequence of previous shots. However, the actual control
input is very simple and just represents a left or right flipper
activation.

Despite this complexity, there are several fundamental flip-
per skills that are universally useful, such as the dead flip, live
catch, drop catch, and post pass. Also, the general method of
aiming for particular shots on the playfield is similar across all
machines. However, the exact way you perform the different
flipper techniques is slightly different for each machine be-
cause the geometry of the flippers is not standard and can vary
considerably from game to game. Additionally, every game has
a different strategy for which sequence of shots and modes
to activate in order to maximize your expected score. These
characteristics make pinball a great platform to investigate
the use of machine learning and control theory techniques
to generate adaptable artificial intelligence strategies to play
games.

There has been previous work exploring the development
of automated pinball playing strategies. Much of the previous
work was done in simulation using reinforcement learning
techniques to learn black box flipper strategies [1]. Although
these techniques demonstrate the power of reinforcement
learning methods, like many other ML based game playing
AI [2], [3], [4], they often require extensive amounts of

Zachariah Fuchs, Pavan Saranguhewa, and Michael Ikuru are with the
Department of Electrical Engineering and Computer Science, University of
Cincinnati, OH

training data or test runs. This can become problematic when
attempting to train a controller on a real machine where each
training iteration may take several seconds to several minutes.
Even after the controllers are trained, it can be difficult to gain
insight into the underlying system or control behaviors. There
has been work on training a controller on a real machines as
well [5]. These experiments focused primarily on how long the
ball was kept from draining. Although this is a good heuristic
metric for successful pinball playing, it doesn’t capture the
controller’s ability to play strategically or make particular
shots. This work did contain some preliminary analysis of
shot aiming and achieved approximately a 50% success rate.
However, these were for fixed shots on a specific playfield and
only considered cradled initial conditions.

Skilled pinball play involves several layers of strategy,
planning, and control. The highest level of control uses a shot
map that may either be predefined or learned while playing
in conjunction with a rule-state estimator to plan a sequence
of shots to maximize the expected score. The expected score
is calculated using the probability of successfully making a
sequence of shots and how those shots progress through the
rule-states for that particular machine. In order to successfully
hit the desired shots, a flipper mode control selects a sequence
of pinball control techniques to gain control of the pinball and
move it to the desired flipper for the desired shot.

Pinball shot planning is similar to the development of shot
strategies in the Angry Birds video game [6], [7] in that
the selection of a launch trajectory triggers a sequence of
interactions that are dependent upon the nonlinear interactions
of different elements within the game environment. However,
the primary difference is that a player cannot directly choose
a shot angle and power when playing pinball. Instead the
player must choose the correct moment to activate flipper
to launch the ball along the desired launch trajectory as the
pinball approaches the flipper. The resulting launch trajectory
is dependent on a number of factors that are not directly
controlled by the player such as the incoming ball trajectory
and flipper geometry. Therefore, the player (or an automated
controller) must determine the optimal activation time based
on the given ball state and the desired launch angle. It
is therefore necessary to develop a shot aiming controller
before for any other higher-level strategic optimization can
be achieved. If a controller is unable to aim at desired shots,
it will be very difficult to efficiently explore the shot space
and rule-set of the game.

This paper specifically focuses on the development of a
Shot Aiming Controller (SAC), which represents a low-level
flipper control mode that would be activated by a flipper-mode

978-1-6654-3886-5/21/ $31.00 ©2021 IEEE

selection controller. The SAC is developed using traditional
model estimation and model predictive control methods. In
this framework, the motion of the pinball is modeled as a
switch mode system using three different dynamic models cor-
responding to three different phases of the shooting scenario.
The controller aims the ball towards a target by selecting when
to transition between the phases of the game. Three parametric
models are developed for each mode and the parameters are
tuned using data collected by playing the machine. Using the
tuned models, the controller can calculate the optimal moment
to flip the pinball by projecting the current state estimate
forward through the system models. By utilizing traditional
system modeling and control techniques, the controller can
exploit system and dynamic information and greatly reduce the
amount of required training data or test runs. Additionally, the
trained controller and developed system models can be further
analyzed to gain insight into the general behavior of the system
and control strategies.

We begin by describing the rolling shot scenario in Section
II. The experimental setup and parameter estimation methods
are described in Section III. The shot aiming controller is
developed in Section IV, and its performance is evaluated in
Section V. Concluding remarks and a brief discussion of future
work is provided in Section VI.

II. ROLLING SHOT SCENARIO (RSS) SYSTEM MODEL

This paper focuses on the shot aiming controller for the spe-
cific scenario in which the ball is rolling down the ball guide
and flipper. We will refer to this as the rolling shot scenario
(RSS). Although only considering the RSS may seem like a
restrictive assumption, the RSS is a very common scenario
while playing real-world pinball games, and represents the
ideal shooting situation for controlled play. Rarely are accurate
shots made while the ball is rolling freely around the playfield.
Instead, other flipper techniques are used to gain control of the
ball and move the ball into the RSS. These other techniques
are modeled using separate control modes within the overall
pinball control framework and will not be discussed in this
paper. Generally, there are three primary events that lead to
RSS scenario, which are illustrated in Figure 1:

1) The ball enters an inlane and rolls down the lane guide
to the flipper.

2) The ball returns along a rail after making a ramp shot,
is dropped into the inlane, and then rolls down to the
flipper.

3) Other flipper techniques are utilized to capture and hold
the ball with an activated flipper. When the flipper is
released, the ball rolls down the flipper.

The RSS can be divided into three distinct phases as shown
in Figure 2. In the first phase, referred to as the rolling phase,
the pinball rolls down the ball guide and onto the flipper. The
second phase, referred to as the flip phase, begins when the
player activates the flipper causing it to rotate and accelerate
the ball towards the top of the playfield. The second phase ends
and the third phase, referred to as the launch phase, begins
when the flipper reaches the end of it’s stroke, at which point
the flipper stops and the ball rolls across the pinball playfield

Fig. 1: Prelude Trajectories for the Rolling Shot Scenario [8]

until striking a target or being diverted by other playfield
elements such as ball guides or ramps.

This three stage model can be represented as a switched dy-
namical system, in which a distinct set of differential equations
governs the behavior of the ball within each phase. We define
the moment when the system switches from the rolling phase
to the flip phase as the flip time tF , and we define the moment
the system switches from the flip phase to the launch phase as
the launch time tL. The player controls the transition from the
rolling phase to flip phase by activating the flipper. The state
of the ball at tF provides the initial condition for the flip and
eventual launch phase, which uniquely determines the path of
the ball. Therefore, the SAC aims the ball by activating the
flipper at the appropriate moment (corresponding to the state
of the ball) to strategically transition between phases.

If we have accurate dynamic models for all three stages,
model predictive control methods can be utilized to calculate
the optimal moment to activate the flipper to shoot the ball
towards a desired target. In practice, these models vary from
machine to machine, which causes every pinball machine to
play slightly differently. There is a wide variety of lower
playfield configurations with different ball guides and flipper
geometries. Additionally, there are different types of flipper
mechanisms as well as coil strengths that can change the
launch characteristics. Pinball machines can also be setup with
different playfield pitches. Lastly, even if two machines were
identical when first configured, mechanical wear over the life
of the machine and even coil heating during a single game
can cause the machines’ dynamics to diverge. Therefore, it
is necessary to develop methods that can adaptively tune the
underlying system models using data collected while playing

Rolling
Phase

Flip
Phase

Launch
Phase

tF

tL

Fig. 2: Rolling Shot Scenario (RSS) Trajectory Phases

the particular game of interest, and then use these tuned
models within the control framework to aim shots.

In the following subsections, we develop parametric dy-
namic models for each of the RSS phases, which will be later
tuned to match a particular machine using collected data.

A. Rolling Phase
In the Rolling Phase, we utilize a relative coordinate system

to describe the position of the ball as it rolls down the
guide and flipper. Although the ball is moving about a two-
dimensional playfield, the ball guide restricts its motion along
a line. Therefore, the state of the ball is represented using a
signed distance coordinate, d, and speed coordinate, ḋ. The
complete state of the ball is then defined as d := (d, ḋ)T .
The distance is measured along the rolling path and the
origin is placed at the intersection of the rolling path and
a line through the flipper pivot point which is perpendicular
to the top edge of the flipper. An illustration of the rolling
coordinate system is shown in Figure 3. With this coordinate
system, we can represent the scenario as a ball rolling down
a frictionless inclined ramp whose motion is modeled by the
dynamics: d̈ = γd, where γd is an acceleration term caused by
gravity. The precise value of γd is a function of playfield pitch
(inclination), ball guide geometry relative to the playfield,
and the mass and rotational inertia of the ball. As mentioned
before, the pitch and ball guide geometry are machine specific.
However, they are constant, which allows the combination of
these unknown system characteristics into the single unknown
parameter γd.

Given an initial state d0 := (d0, ḋ0) and defining the initial
time t0 = 0, the dynamics can be integrated forward in time to
develop time dependent functions for both position and speed:

d(t;d0, γ) = γ
2 t

2 + ḋ0t+ d10 (1)

ḋ(t;d0, γ) = γt+ ḋ0. (2)

We define the moment the flippers are activated as tF and the
corresponding state of the ball as d(tF) = (dF , ḋF).

B. Launch Phase
We will momentarily skip over discussion of the flip phase,

and first develop the motion model for the launch phase. In

d

Fig. 3: Rolling Phase Coordinate System

this phase, the ball is able to roll freely about the playfield
until it strikes an object. Therefore, the ball moves in both the
x and y directions and we use a Cartesian coordinate system to
describe the position and velocity of the ball x = (x, ẋ, y, ẏ).
The dynamics are modeled as

ẍ = γx and ÿ = γy, (3)

where γx and γy are the gravitational acceleration terms in
the x and y directions, which are dependent on the playfield
pitch and ball characteristics. Given initial conditions xL :=
(xL, ẋL, yL, ẏL), the dynamics are integrated forward in time
to generate time dependent trajectories:

x(t) = γx
2 t

2 + ẋLt+ xL (4)
ẋ(t) = γxt+ ẋL (5)

y(t) =
γy
2 t

2 + ẏLt+ yL (6)
ẏ(t) = γyt+ ẏL. (7)

When a pinball machine is correctly setup, the playfield should
be leveled from left to right. Therefore, there should be
minimal to no acceleration in the x-direction: γx ≈ 0. Also,
the ball is typically launched at high speed in the mostly y-
direction, ẏL � ẋL, because there is limited range of motion
in the x-direction due to the geometry of the playfield. Since
the majority of the initial speed is in the y-direction and the
resulting trajectory is relatively short in duration before it
hits an object on the playfield, the initial velocity typically
overshadows the acceleration term within the y-component
of the state equation models: |ẏLt| � |γy2 t

2|. Under these
assumptions, the system dynamics can be approximated using
a constant velocity model:

x(t) ≈ ẋLt+ xL and ẋ(t) ≈ ẋL (8)
y(t) ≈ ẏLt+ yL and ẏ(t) ≈ ẏL. (9)

Using the constant velocity models, we create a linear function
relating the x and y components of state:

g(x, y) = x− ẋL

ẏL
y + ẋL

yL
ẏL
− xL = 0

= x− β1y − β0, (10)

where β1 := ẋL

ẏL
and β0 := −ẋL yLẏL +xL are the shot trajectory

characteristics that define the path of the ball after launch.

Fig. 4: Pinball Testbed

C. Flip Phase

The launch position (xL, yL) and launch velocity (ẋL, ẏL)
are determined by the nonlinear flip dynamics between tF and
tL. These dynamics are highly nonlinear, but they are deter-
ministic given a flip state dF = (dF , ḋF). It is not necessary
to develop an explicit dynamic model for this phase because
the details of the transitional trajectory bectween tF to tL are
inconsequential for aiming the shot. Instead, it is sufficient to
develop a mapping function that provides the β0 and β1 that
describe the launch trajectory when the flipper is activated at
dF . We define these functions as β0(dF) = β0(dF , ḋF) and
β1(dF) = β1(dF , ḋF) and refer to them as the flip functions.
Note that these mapping functions are dependent on both the
position, dF , as well as the speed, ḋF , at the moment of
flipper activation. This is because the flipper actuation is not
instantaneous, and the ball continues to roll along the flipper
during the actuation. If the ball has a higher speed at the
beginning of the flip, it will travel further towards the tip of the
flipper before leaving, which creates a very different trajectory
than if it is stationary or rolling slowly.

III. EXPERIMENTAL SETUP AND PARAMETER ESTIMATION

The rolling dynamics described by (1) and (2), the flip
mapping functions β0(dF) and β1(dF), and the launch tra-
jectory (10), fully define the behavior of the RSS. However,
the rolling acceleration parameter γd and flip functions β0(dF)
and β1(dF) are unknown a priori for a given pinball machine.
Additionally, the initial state at the beginning of the rolling
phase d0 may not be known either. Therefore, these system
parameters must be estimated online while playing the game.
There are variety of techniques that could be implemented to

estimate each of the these system components, but we discuss
the specific estimation techniques used for this paper in the
following sections.

A. Experimental Setup

In order to develop and test our pinball control architecture,
we designed and constructed the pinball testbed shown in
Figure 4. This playfield has a standard lower playfield con-
sisting of two flippers, two inlanes, two outlanes, and two
slingshots. The playfield also has a ball trough that captures
drained balls and feeds them to a launch lane on the right
side. This launch lane uses a solenoid controlled autolauncher
to launch the ball onto the playfield. For the experiments in
this paper, a halfpipe ramp was installed in the launch lane
to load the ball into a feed rail, which drops the ball into the
right inlane and initializes the RSS. Several different feed rails
were designed so that the ball can be initialized at different
positions and velocities in order to test the SAC under different
conditions. The flippers, ball trough solenoid, and autolaunch
solenoid are controlled by a custom designed microcontroller
board that was developed for a pinball mechatronics course
taught at the University of Cincinnati [8]. This microcontroller
communicates via a USB interface with a control PC, which
performs the image processing and SAC calculations. No
physical targets or ramps were installed in the upper playfield
so that virtual targets could be created within the software
to test a variety of possible target positions. The ball trough,
autolauncher, and feed rail allow the system to automatically
and repeatably test the SAC in controlled scenarios in order
to evaluate its performance. Although we plan to implement
and evaluate the controller in real-world, commercial pinball
machines in the future, it would be difficult to accurately
control the shot conditions in a repeatable manner without
extensive modifications to the machine. Also, the use of virtual
targets allows for wider variety of shot configurations while a
traditional pinball machine would have a fixed shot layout.

A camera was mounted above the playfield to track the
ball in real time. For this paper, we utilized a FLIR Blackfly
S BFS-UE-32S4C color camera which has a resolution of
2048x1536 at 120 frames per second. The aspect ratio of the
playfield does not perfectly match the resulting image format,
and as a result, the playfield does not fully occupy to the full
image. For the lens used in this configuration, the playfield
occupies a 1700x800 region of the camera image, which
results in a physical resolution of approximately .015”/pixel
or 67 pixels/inch. The ball is detected in each frame using a
series of image processing techniques such as lens correction,
background estimation and subtraction, and circle and contour
detection. The detection algorithm runs at the full camera
frame rate and produces a ball position measurement at each
frame. Although the image processing steps are critical to the
performance of the overall system, the details do not fit within
the page limitations of this paper.

B. Rolling Phase State Estimation

After processing, each camera frame provides a position
measurement of the ball. This measurement contains positional

measurement errors caused by relative motion between the
camera and playfield, finite resolution of the camera, and
inaccuracies within the image processing pipeline. The ball
state within the rolling phase, d, is described using both the
ball position and speed, where a single frame only provides
positional information. Applying direct difference methods
between ball positions in subsequent frames could provide an
estimate of speed, but difference methods are prone to amplify-
ing measurement noise. Therefore, it is necessary to implement
an estimation algorithm that simultaneously estimates both the
ball position and speed. Ideally, the estimator should utilize
the system information provided by the parametric dynamic
model (1)-(2) to improve the state estimate if possible.

Kalman filtering techniques are commonly used in track-
ing scenarios [9], [10], and they provide a powerful toolset
for combining information from state measurements (in this
case position) with dynamic model information. In order to
initialize the Kalman filter, a state estimate must be used as
a starting point. For this application, an initial state estimate
can be generated by performing a least square error fitting
between a series of state measurements and the dynamic model
(1). Once an initial state estimate is generated, the tracker can
then switch to the Kalman filtering mode for the remainder
of the rolling phase until the flipper is activated. The Kalman
filter would then need to be reinitialized each time the ball
entered the rolling phase.

Additionally, Kalman filtering methods require reasonably
accurate noise models for the dynamics and sensor measure-
ments in order to generate estimates with high confidence.
Unfortunately, the noise generated by errors within the image
processing pipeline is highly nonlinear with heavy tailed
distributions, which correspond to occasional glitching errors.
These glitching artifacts are rare, but they produce large
measurement errors which can drive large changes in the
Kalman filter estimate. If we were tracking the ball over a
long duration, special preprocessing methods could be used
to identify these glitches and minimize their effects on state
estimation. However, we are only tracking the ball for a
short duration before the flipper is activated and the state
transistions to the next phase. Through experimentation it was
found that simply updating the least squares dynamic model fit
provided accurate estimations which were also robust to outlier
measurements caused by the occasional image glitching. Since
the rolling phase has a relatively short duration, the number
of samples remains small and the least squares fit could be
computed within the 120 FPS requirement. Therefore, we did
not utilize a Kalman filter tracker for the results in this paper.
However, we are looking at modifications for future work.

To estimate the state of the ball, we fit the polynomial
parametric rolling phase dynamics (1) by performing a least
squares error minimization. We define the ball trajectory
estimate, d̂(t; zi), and the corresponding estimated speed,
ˆ̇
d(ti; zi), at time ti corresponding to the ith image sample
as

d̂(t; zi) = z2t
2 + z1t+ z0 (11)

ˆ̇
d(t; zi) = 2z2t+ z1, (12)

where the parameters zi := {z2, z1, z0} are found by mini-
mizing the error function:

zi := arg min
z

i∑
j=1

(dj − d̂i(tj ; z))2. (13)

If needed, the polynomial coefficients could be used to es-
timate the initial state and system parameter γd within the
parameterized system model (1)-(2). However, the controller
only needs an estimate of the state value, which is found by
evaluating the trajectory estimate at the current sample time
ti. This state estimate will then be used within the SAC to
determine when to activate the flipper.

C. Flip Transition Function Estimation

In order for the SAC to predict the launch trajectory when
activating the flipper at state d, it must utilize accurate
mapping functions for β0(d) and β1(d). These functions
could be estimated using a variety of model estimation tech-
niques. After preliminary data analysis, it was found that
using a third-order, two-variable polynomial model provided
a sufficiently accurate fit for this application. In this model
each of the flip functions is parameterized using coefficients
bj = {bj0, bj1, . . . , bj9}, and the estimated flip function
β̂j(dF) is defined as

β̂j(dF) = b19d
3
F + b18ḋ

2
F + b17d

2
F ḋF + b16dF ḋ

2
F + b15d

2
F

+ b14ḋ
2
F + b13dF ḋF + b12dF + b11ḋF + b10.

(14)

The flip model is trained using a collection of M test
flips, where each test flip fi :=

(
d
(i)
F , β

(i)
0 , β

(i)
1

)
consists of

the flip state and the resulting measured launch parameters.
For each flip, the resulting launch trajectory is measured by
sampling the position along the trajectory then fitting the
linear trajectory model (10) using Deming regression. Deming
regression is used because the x and y measurement errors in
the image processing are assumed to be independent. Three
examples of a Deming regression fits are shown in Figure 9.
The measured ball positions are indicated by the black markers
and the Deming fit is indicated by the red line. We define
the collection of training data as S := {f1, f2, . . . , fM}. The
coefficients are found by minimizing the error function

bj = arg min
bj

∑
f∈S

βj − β̂j(dF ;bj) (15)

for each j ∈ {0, 1}. The collection of test flips can be collected
online and updated while actively playing the game, or they
could be collected in a preliminary training phase by flipping
at several distances and speeds in order to sufficiently sample
the state. The experiments discussed in this paper utilizes
an initial training set of twenty-seven sample flips which
consists of nine distances for each of the three entry scenarios
described in Figure 1. Two example flip function estimates are
shown in Figure 5 and Figure 6. These flip function estimates
were generated using eighty-one test flips (three flips x nine
distances x three initial positions). It can be seen that the third
order models fit the collected data very closely and the beta
values are very consistent.

Fig. 5: Flip Function Parameter Fit: β0

Fig. 6: Flip Function Parameter Fit: β1

IV. THE SHOT AIMING CONTROLLER (SAC)

The estimated flip functions provide a mapping from ball
state to launch trajectory, which can be used to predict the
ball path when the flipper is activated. In order for a flip
controller to successfully hit a targeted shot, it must generate
a launch trajectory that passes through the target position
xT = (xT , yT):

g(xT , yT) = xT − β1yT − β0 = 0. (16)

Using the third degree polynomial estimates for the launch
functions (14) provides a two-dimensional cubic constraint:

g(dF ;β̂0, β̂1, xT , yT) = xT − β̂1(dF)yT − β̂0(dF)

= k9d
3
F + k8ḋ

3
F + k7d

2
F ḋF + k6dF ḋ

2
F + k5d

2
F

+ k4ḋ
2
F + k3dF ḋF + k2dF + k1ḋF + k0

= 0, (17)

where
kj =

{
−b10yT − b00 + xT j = 0
−b1jyT − b0j j > 0

. (18)

The shot constraint function (17) creates a curve within the
flip space composed of admissible combinations of dF and
ḋF that generate launch trajectories passing through the target
position. These curves are not constant value contours of the
β̂0 or β̂1 functions. As the ball moves down the flipper (change
in d-component), the shot will start with a different offset (β0

T0

T1

T2

(a) Playfield Shots

g1(dF)
g2(dF)

g3(dF)

d(t)

dF1

dF2

dF3

(b) β0(d) Shot Constraints

g1(dF)
g2(dF)

g3(dF)

d(t)

dF1

dF2

dF3

(c) β1(d) Shot Constraints

Fig. 7: Shot Examples

term) from the target and need to follow a different angle
(β1 term) towards the target position. Therefore, both the β0
and β1 coefficients within the launch trajectory will need to
be adjusted. Three example targets are shown in Figure 7a.
The targets’ locations on the playfield are indicated by blue
markers in Figure 7a and the example shot trajectories that hit
the targets are indicated by red lines. Figure 7b and Figure 7c
show the estimated flip functions, β̂0(d) and β̂1(d). In these
figures, the collection of states that satisfy the target constraint
functions, gi(dF), corresponding to Target Ti are represented
by the blue curves. The black curve labeled d(t) represents
an example trajectory of the ball rolling down the flipper and
satisfies the rolling phase dynamics defined by (1).

The ball state will follow this curve moving from left to right
as the ball rolls down the guide and flipper. Unfortunately, we
cannot control d or ḋ directly during the rolling phase of the
RSS because the behavior of the system is governed by the
state equations (1)-(2), which have no control input. Instead,
the controller must continually monitor the ball state and
activate the flipper when the state satisfies the shot constraint
(17) for the desired target location. This occurs when the
rolling phase trajectory intersects the shot constraint curve (17)
within the flip space. These points are indicated by the red
markers labeled di and correspond to the optimal flip state to
hit Target Ti. It’s interesting to note that the Target positions
correspond to points in the playfield space and curves in the
flip space, while launch trajectories correspond to lines in the
playfield space and points in the flip space.

A particular rolling phase trajectory is dependent on the
initial position, d0, and initial velocity, ḋ0, of the ball when
it begins rolling down the ramp. If we were able to perfectly
measure these initial conditions (as well as perfectly estimate
all the system parameters and assume that there was no system
noise), we could immediately calculate the optimal flip time t∗F

corresponding to the intersection state d∗F := d(t∗F ;d0,xT)
s.t. g(d∗F ; β̂0, β̂1, xT , yT)) = 0. Unfortunately, our state
measurements are not perfect due to noise and precision
limitations of the camera and image processing algorithms.
Additionally, we do not have infinite precision in timing the
flipper activation because we are sampling the state at discrete
times, which means the optimal flip time would occur between
samples. Although we are currently investigating the use of
external triggers to synchronize the camera sample rate and
microcontroller timing, there is not currently a way for precise
intersample timing control. Therefore, our current hardware
configuration only allows for flipper activation when a frame
is sampled. The discretization of time introduces a potential
aiming error which we measure as the perpendicular signed
distance between the launch trajectory and the target point.
The expected error for a launch trajectory resulting from a
flip at dF is calculated as

e(dF) = xT−β̂1(dF)yT−β̂0(dF)√
β̂2
1(dF)+1

. (19)

When dF = d∗F , the numerator goes to zero resulting in zero
error.

Using the expected error function (19), we implement a
model predictive control strategy that extrapolates the current
state estimate one sample step ahead to predict shot constraint
crossings. Let ti be the current sample time, ti−1 be the
previous sample time, and ti+1 = ti + ∆t be the expected
future sample time, where ∆t is the sample period. The
current state estimate, d̂i, is found by evaluating the current
polynomial trajectory approximation and derivative at ti:

d̂i = d̂(ti, zi) = z2t
2
i + z1ti + z0

ˆ̇
di =

ˆ̇
d(ti, zi) = 2z2ti + z1

Similarly, the previous and extrapolated state estimates, d̂i−1
and d̂i+1, are found by evaluating the current polynomial fit
at the corresponding times:

d̂i+1 = d̂(ti+1, zi)

d̂i−1 = d̂(ti−1, zi).

The estimated error at each time is found by evaluating the
error function using the corresponding state estimates:

êj = e(d̂j) ∀j ∈ {i− 1, i, i+ 1}. (20)

Although it is difficult to prove analytically without closed
form expressions for the flip functions, the error function
is monotonic as the ball rolls down the flipper. Detecting
a crossing of the flip constraint is equivalent to detecting a
change in sign of the error function. Using the previous error,
current error, and future error values, there are three possible
scenarios that dictate whether or not the flipper should be
activated. The flipper activation rules are outlined below.

1) sign(ei) 6= sign(ei−1): Flip constraint crossing in the
previous time interval. Activate flipper.

2) sign(ei+1) 6= sign(ei): Anticipated flip constraint cross-
ing in the upcoming sample interval.

a) |ei+1| >= |ei|: Future error is larger than current
error. Activate flipper.

b) |ei+1| < |ei|: Future error is smaller than current
error. Do not flip.

3) sign(ei+1) = sign(ei) = sign(ei−1): No crossing de-
tected or anticipated. Do not flip.

V. EXPERIMENTAL RESULTS

The estimation techniques and SAC were tested using the
pinball testbed described in Section III-A. To evaluate the
performance of the system, the SAC was aimed at the three
targets in Figure 7a multiple times. The resulting trajectory
was recorded and the perpendicular error between the launch
trajectory and virtual target position where measured. Three
different initial conditions were used during these tests to
emulate the three scenarios that lead to the rolling shot
scenarios depicted in Figure 1. Each scenario was run twenty
times for each Target resulting in sixty trials per target. Three
examples of measured trajectories are shown in Figure 9. In
this figure, the virtual target locations are indicated by the
cyan circles. The expected launch trajectory is indicated with
a green line. The measured ball positions are indicated by
the black markers, and the resulting fitted launch trajectory is
indicated by the red line.

A histogram of the measured error for each collection of
the Target trials is shown in Figure 8. Although the error is
nonzero, the performance is adequate for playing a real-world
pinball machine. Targets within a real pinball machine are
not singular points. Instead they have nominal widths which
provides a margin of error. Most openings for ramp and orbit
shots are between 2” and 2.5” wide. A pinball is 1.0625”
wide and must pass inside this opening without striking the
sides, which means that a ramp shot has a margin of error
of approximately ±.5 to ±.75 inch. Standup targets usually
range from .5 to 1.5 inches wide. Since the pinball can strike
the target with a glancing blow, this provides a margin of
error of ±.75” to ±1.25”. Targets on the far right and left
sides of the machines (similar to the position of Target 0) are
either large standup targets or collections of multiple smaller
targets arranged in a line. Typically these shots require far less
precision to strike and can have margins of errors from ±.75”
all the way up to ±2.5” for the largest targets like the side
targets in Figure 1.

There is a clear difference in accuracy between the different
test shot results in Figure 8 as well as the different initial con-
dition Scenarios. Targets 1 and 2 represent common locations
for ramp type shots. From Figure 8b, the SAC could make a
2” ramp located at Target position 1 shot consistently except
for one outlier with an error of ≈1.25”. It is believed that
this bad shot was a result of OS induced delay in sending the
fire command via the USB port. A ramp or target located at
position 2 would also be made with a high probability.

The SAC had a much harder time hitting Target 0 with low
error values as seen by the wider distribution of error values
in Figure 8a. There are two contributing factors for this larger
error. First, the SAC must wait until the ball is closer to the
tip of the flipper to make these shots. This means the ball is
moving faster, and there is larger increase in both the d and
ḋ state components between state samples. Therefore, there

1.25 1.00 0.75 0.50 0.25 0.00 0.25 0.50
Error (inches)

0

2

4

6

8

10

12

14

Co
un

t

Target 0 Test Shots
Scenario 1
Scenario 2
Scenario 3

(a) Target 0 Shot Errors

1.25 1.00 0.75 0.50 0.25 0.00 0.25 0.50
Error (inches)

0

2

4

6

8

10

12

14

Co
un

t

Target 1 Test Shots
Scenario 1
Scenario 2
Scenario 3

(b) Target 1 Shot Errors

1.25 1.00 0.75 0.50 0.25 0.00 0.25 0.50
Error (inches)

0

2

4

6

8

10

12

14

Co
un

t

Target 2 Test Shots
Scenario 1
Scenario 2
Scenario 3

(c) Target 2 Shot Errors

Fig. 8: Target Test Results

is a higher likelihood the flip constraint crossing will occur
further away from samples which results in less fidelity in
control. Second, any delay in transmitting the USB command
to flip will result in a greater error because the ball is moving
at a higher speed. Unfortunately, these are limitations of
the current hardware system. We are currently developing a
synchronization technique which allow much more precise
interframe timing, which will greatly improve the shot timing
precision. Despite the larger error, most types of shots in Target
location 0, would generally be larger standup targets or more
open orbit shots, which generally have larger margins of error.
Therefore, even the current level of performance would be
sufficient to play a real-world machine.

Fig. 9: Test Shot Examples

VI. CONCLUSION AND FUTURE WORK

Overall, the SAC performed well and provides a good
baseline level of performance to use as a point of comparison
for future aiming controllers. The use of traditional estimation
and control techniques provides valuable insight into the un-
derlying system behavior and the key limitations on controller
performance. Future work will explore other flip function
estimation methods such as neural networks or support vector
machines.

REFERENCES

[1] N. Winstead, “Some explorations in reinforcement learning techniques
applied to the problem of learning to play pinball,” in Proceedings of
the AAAI-03 Workshop on Entertainment and AI/A-Life, 1996, pp. 1–5.

[2] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, and G. Ostrovski,
“Human-level control through deep reinforcement learning,” Nature, vol.
518, no. 7540, pp. 529–533, 2015.

[3] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton et al., “Mastering
the game of go without human knowledge,” nature, vol. 550, no. 7676,
pp. 354–359, 2017.

[4] A. Kumar, K. Jani, and N. K. Sahu, “A comparative study of various
artificial intelligence based agents for the game of angry birds with and
without splitting,” in Journal of Physics: Conference Series, vol. 1694,
no. 1. IOP Publishing, 2020, p. 012001.

[5] A. Metcalf, “Pinball: High-speed real-time tracking and playing,” 2011.
[6] J. Renz, X. Y. Ge, M. Stephenson, and P. Zhang, “AI meets Angry

Birds,” Nature Machine Intelligence, vol. 1, no. 7, p. 328, 2019.
[7] M. Stephenson, J. Renz, X. Ge, and P. Zhang, “The 2017

AIBIRDS Competition,” pp. 1–11, 2018. [Online]. Available:
http://arxiv.org/abs/1803.05156

[8] Z. Fuchs, “Pinball applications for engineering education,” in American
Society of Engineering Education Annual Conference. ASEE, 2021.

[9] S.-K. Weng, C.-M. Kuo, and S.-K. Tu, “Video object tracking using
adaptive kalman filter,” Journal of Visual Communication and Image
Representation, vol. 17, no. 6, pp. 1190–1208, 2006.

[10] H. A. Patel and D. G. Thakore, “Moving object tracking using kalman
filter,” International Journal of Computer Science and Mobile Comput-
ing, vol. 2, no. 4, pp. 326–332, 2013.

