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Abstract—We model team-versus-team contests with limited
team size and an open pool of team member candidates. In
this setting, candidates with a higher win rate against the open
pool may be considered the “meta.” Simply selecting the meta
candidates leaves the team open to be countered by off-meta
candidates which have lower overall win rates but high win
rates against the meta in particular. A central authority in
this model selects team members in hopes to counter the team
composition they believe will be selected by an opponent. We
present algorithms that generate a team of candidates based on
observed metas and given that both parties have knowledge of
pairwise election battle wins of the usable candidate pool. We
provide different methodology to generate teams and analyze
the teams generated by our algorithms using Pokémon GO team
compositions to test them.

Index Terms—Competitive Game Theory, Algorithm Design,
Candidate Selection, Team Formation Games, Epistemic Rea-
soning, Pokémon GO

I. INTRODUCTION

Throughout different genres of video games, there lies com-
petitive situations where there is a need to select candidates
that will come out victorious. Situations like this occur in
games such as League of Legends, where the player must
choose a champion to face off against other champions. It
could also occur in a political setting where a candidate must
be chosen to run in a primary election against a pool of
candidates. Even choosing players to pick in a pickup game
of baseball or volleyball could be considered as an instance of
this situation. When presented with a plethora of candidates
to choose from, it can be difficult to decide, especially when
there are so many factors involved. One must consider how
their candidate performs against other candidates, and must
think about which candidates their opponent will choose.

When choosing candidates, most players are not choosing
blindly. Many draw upon their knowledge of previous matches
or on their knowledge of other players’ preferences in order to
help decide which candidates to choose [1]. Players can also
share their knowledge of the game online and create websites
that can showcase various strategies or ranking of candidates.
This shared knowledge of a game can ultimately affect how
someone plays it [2], [3]. This, in turn, will lead to the forma-
tion of metas which define popular competitive strategies. With
this knowledge players can make more informed decisions and
refine their approach to team building.

A meta refers to outside knowledge of the game. This can
include strategy and knowledge of how the candidates rank
against each other. Metagaming, on the other hand, is when a
player uses this outside knowledge to their advantage to make
crucial gameplay decisions [4]. In League of Legends, certain
champions will become the meta picks because they perform
better than the majority of the other champions. In other words,
they will be picked more because of their better performance.
However, just because certain candidates are in a meta does
not mean they are necessarily the best set of candidates to
choose. There can be other meta strategies that have higher
win rates than what is in the current meta [5]. After some
time, champions that beat the established meta will start to
become more popular until they ultimately establish an new
meta. That means that the metas will rotate as each new meta
eventually gets replaced by a counter meta [6], [7].

We propose to utilize our knowledge of various metas,
observe the patterns of how they shift from one to the next,
and create balanced team compositions that give a greater
probability of winning. We refer to this problem model as
a Team Counter-Selection Game.

In Section II, we define the Team Counter-Selection Game
(TCSG) model. Section III outlines related work in team for-
mation games, epistemic reasoning, and competitive game the-
ory. Sections IV and V define exact algorithms for maximizing
either the coverage of a team or its win rate. Section VI details
a heuristic probabilistic approach for cases where information
is broadly known and choices need to be less predictable.
Sections VII details experimental results with our algorithms
to generate teams in the mobile game Pokémon GO. Finally,
we outline future work and conclusions in Sections VIII and
IX.

II. TEAM COUNTER-SELECTION GAMES

An instance of Team Counter-Selection Game (TCSG)
consists of:
• A: a set of candidates that Player 1 can choose from
• B: a set of candidates that Player 2 (the opponent) can

choose from
• M : a function over A × B. For any a in A and b ∈ B:

M[a][b] is 1 when a defeats b and 0 when otherwise.
• n: the team size to be generated
A solution to an instance of TCSG is C ⊆ A s.t. |C| = n.
In a TCSG, both players will select teams in hopes to defeat

one another in pairwise competitions between candidates.
For optimization problems in this setting, we consider the978-1-6654-3886-5/21/$31.00 ©2021 IEEE



perspective of Player 1 choosing a team to defeat Player 2.
A legal solution for Player 1 is a team of candidates C ⊆ A.
An optimal solution maximizes the probability that C defeats
the team D ⊆ B to be selected by Player 2.

An exact algorithm for this problem is useful when you have
more information than your opponent. For instance, if you
know exactly which candidates your opponent will choose,
or their subset is significantly smaller than the open field,
an exact algorithm can determine the best counters for that
smaller subset. This is valuable if you anticipate your opponent
will choose their team from only a limited meta. We define
such solutions in Sections IV and V.

When every party participating in a competition has the
same information, and teams are not known in advance, agents
capable epistemic reasoning (reasoning about knowledge) may
attempt to choose candidates to counter likely choices of an
opponent. Consider if everyone used an exact algorithm to
do so. In this case, all parties would get the same best team.
When everyone gets the same best team it makes it easy to
predict these teams and counter them. But then, knowing that
they know that we know, we might choose to counter their
counter. How many levels deep should this counter-picking
go? A probabilistic approach is designed to work against
counter-picking by not necessarily guaranteeing the choices
made. Candidates are weighted so that you can get a good
team while not being so easily predictable. We define such a
solution in Section VI.

III. RELATED WORK

Epistemic reasoning is a standard concept in competitive
game theory [8]. It has been studied in the context of teamwork
in multi-agent systems [9] and in modeling reasoning in
competitive play for general Bayesian games with limited
knowledge [10]. A broadly generalized model for multi-agent
epistemic planning considers the team formation problem in
terms of agents, atomic fluents, actions, states, and goal con-
ditions [11]. To our knowledge, epistemic reasoning has not
yet been applied to our simplified competitive team formation
model. In our model, the goal condition is always to defeat
the opponent’s unknown team based upon the known results
of pairwise contests between candidates. Epistemic reasoning
in our setting is from the perspective of the player forming
the team rather than that of the team member candidates.

In “Multiwinner Elections With Diversity Constraints”, the
authors looked at the computational complexity of choosing a
committee which meets certain constrains such as performance
requirements or gender diversity [12]. We similarly select can-
didates in a form of multi-winner election, but our constraints
are simplified to maximizing wins rates in pairwise contests
against opposing teams.

There is also a notion proposed of the Condorcet winner,
which is defined as a candidate who wins against all of their
pairwise elections. However, in most applicable cases, there
won’t be a Condorcet winner. Elkind, Lang, and Saffidine
define a Condorcet winning set which is a collection of
candidates who dominate a majority of the other candidates

[13]. Similarly, if a Condorcet winner exists in a TCSG
instance, then this candidate should be chosen for any team.

Our work is structured similarly to “Team Contests With
Multiple Pairwise Battles”. In this work, the authors propose
a model for team contests where two equal-size teams of
candidates are matched against each other. Each candidate
on one team is matched to an opponent on the other team
in a component battle. The results of each component battle
are independent from each other. In other words, a team
member winning or losing in one component battle won’t have
any effect on future component battles. The winning team
is decided by which side wins the most component battles
[14]. The work in our paper is modeled in a similar nature
to this, where we compare candidates in separate independent
component battles. However, instead of having a candidate
matched to only one candidate on the opposing team, we
observe how a candidate compares to every other candidate
on the opposite team.

When looking at candidates to assemble a team, it is
important to know how they perform against each other. One
way is to gather match data like in the previously mentioned
studies. A different way to simulate a match between two
candidates. Montes proposes a battle simulation for Pokémon.
This simulation takes two Pokémon as input that will battle
each other in a one on one match. The simulation will make
a decision tree that will consider all legal moves the Pokémon
can make. It will then analyze each node in order to determine
the Pokémon’s best action [15]. Using this can help you
determine which Pokémon will win the one on one fight. In our
testing that we describe later in the paper, we use a different
battle simulator provided by the website PvPoke in order to
collect the data for our tests [16].

Team building algorithms have been considered for a variety
of games. “How Does He Saw Me? A Recommendation
Engine for Picking Heroes in Dota 2” uses a machine learning
algorithm to determine the best candidates based on a given
enemy team. By taking in both the team compositions and the
results of over 50,000 top rated matches, Perry and Conley’s
greedy search algorithm outputs the list of available candidates
sorted by descending probability of victory [17]. While Perry
and Conley optimize individual heroes against an individual
composition, we seek to optimize a composition against an
entire field of possible compositions the player may encounter.

In “Team Recommendation for the Pokémon GO Game Us-
ing Optimization Approaches,” the authors test three different
optimization algorithms that select an ideal team when given
an opposing team [18]. Our model differs in that the opposing
team is not known in advance.

“A Time-Efficient Competitive Pokémon Team-Building
Algorithm” focuses on building an optimal team in Pokémon
given user input of a Pokémon they are interested in using
on their team, and then builds the team around that Pokémon.
By using typing, base stat total, and how popular a candidate
is in the meta, a candidate scoring system is created that
is unique to the main series of Pokémon games. This work
optimizes around the a priori preferences of the player [19].



Our algorithms instead uncover new candidates and team
compositions the player may not have otherwise considered.

IV. MAXIMIZING COVERAGE

Maximizing coverage means to select C ⊆ A that defeats
the greatest number of different candidates in B. The rationale
is to increase the probability you will be faced with a favorable
match-up. The MaximizeCoverage greedy local search algo-
rithm (see Algorithm 1) iteratively selects a ∈ A maximizing
the number of unbeaten candidates in B that a defeats.

TABLE I
TCSG INSTANCE WHERE A = [U,V,W], B = [V,W,X,Y,Z] AND M IS

DEFINED BY THE BOOLEAN MATRIX WHERE M [i][j] = 1 WHEN i DEFEATS
j AND M [i][j] = 0 OTHERWISE.

V W X Y Z
U 1 1 0 1 0
V 0 0 1 1 0
W 0 0 0 1 1

TABLE II
MODIFIED TCSG INSTANCE FOLLOWING FROM TABLE I AFTER FIRST
ITERATION OF MAXIMIZECOVERAGE HAS SELECTED CANDIDATE U .

V W X Y Z
U 0 0 0 0 0
V 0 0 1 0 0
W 0 0 0 0 1

Algorithm 1 MaximizeCoverage (matrix A, matrix B, matrix
M , float c)
Team[]
M [0] = M
for all i team candidates do
BestCandidateV alue
for all a candidates ∈ A do
bCandidateSum
for all b candidates ∈ B do
bCandidateSum += M[a][b]

end for
if bCandidateSum >BestCandidateV alue then

BestCandidateV alue = bCandidateSum
Team[i] = b

end if
end for
M [i] = M [i− 1]
for all a candidates ∈ A do

for all b candidates ∈ B do
if M [i][BestCandidate][b] == 1 then
M [i][a][b] = 0

end if
end for

end for
end for

MaximizeCoverage runs in time O(n|A||B|). Calculating
the total wins for a single candidate requires O(|A||B|)
operations to sum total wins for each a ∈ A over B and
then update the battle matrix. This update removes the utility
for beating candidates covered by the newest team member
(see Tables I and II). This process is performed once for each
of n selected candidates.

V. MAXIMIZING TEAM WINS

Maximizing team wins means to generate a team that
maximizes the number of team compositions it defeats. We
assume that candidates in a team will face enemy candidates
one on one in independent matches and that the results of one
match have no impact on the next. The rationale is to increase
the number of compositions the chosen team can defeat.

Let C ⊆ A and D ⊆ B be two teams. We say that the
battle score of A against B is equal to the total number of
wins candidates in A achieve against candidates in B. For
example, if A =i, j, B =x, y, i defeats x and y, and j defeats
y, then the battle score of A against B is equal to 3. We say
that A defeats B when the battle score of A is greater than
the battle score of B.

CheckIfTeamWins (see Algorithm 2) computes the battles
scores for two teams G and H given the battle matrix M . It re-
turns true if G defeats H and false otherwise, with ties treated
as a loss for G. The time complexity of CheckIfTeamWins is
O(n2) as |G| = |H| = n.

MaximizeTeamWins (see Algorithm 3) compares each team
composition G ⊆ A to each composition H ⊆ B. Each
iteration, a winCounter is accumulated for G equal to the total
number of compositions from B that G defeats. If G has a
greater winCounter than the previous best, G is stored as the
new best team. We continue this process until we have checked
every possible team composition G ⊆ A. The algorithm then
returns the team maximizing winCounter.

Algorithm 2 CheckIfTeamWins (Team ~G, Team ~H , BattleMa-
trix[])
battleScoreG← 0
battleScoreH ← 0
for all g candidates ∈ ~G do

for all h candidates ∈ ~H do
if M[g][h] == 1 then
battleScoreG++

else
battleScoreH++

end if
end for

end for
if battleScoreG > battleScoreH then

return True
else

return False
end if



Algorithm 3 MaximizeTeamWins (Set ~A, Set ~B, matrix M )
bestTeam = null
bestTeamWins← 0
for all G candidates ∈ A do
winCounter ← 0
for all H ∈ B do

if CheckTeamWins(G,H,M) == 1 then
winCounter++

end if
end for
if winCounter >bestTeamWins then

bestTeamWins← winCounter
bestTeam← G

end if
end for
return bestTeam

When going through MaximizeTeamWins, the number of
team compositions in a meta will equal

C(n, r) = P !
n!(P−n)!

where P is the population of candidates in a meta and n is
the size of the team. Because of this, the time complexity for
finding every team composition will be

OPn

n!

In other words, finding all team compositions for metas A and
B will be

O |A|
n

n!

and
O |B|

n

n!

respectively. With this, we can observe that the overall time
complexity of MaximizeTeamWins is

O |A|
n|B|nn2

n!2

where |A| ≥ n and |B| ≥ n. When the team size n is
some constant c, the time complexity of MaximizeTeamWins
simplifies to the polynomial

O|A|c|B|c

VI. WEIGHTED PROBABILITY TEAM GENERATOR

By giving weighted probabilities to candidates, we generate
teams which may sacrifice higher win rates in exchange for
being more difficult to predict. This strategy is valuable when
both the player and the opponent may employ epistemic
reasoning in attempting to counter-select candidates for their
teams. We expect this process to have worse performance than
MaximizeTeamWins (Algorithm 3 ) in terms of maximizing
the % of the meta covered but to have greater success in
practice when faced with counter-selection.

WeightedProbabilityTeamGenerator starts out by generating
the weights of all the candidates in meta A by using the Gen-
erateWeights function. GenerateWeights has a time complexity

of O(|A||B|) as it must sum the weights of each candidate in
A by comparing them against each candidate in B.

In Table III, we can see that U ’s value is 3, while V and
W ’s values are 2, so the weighted probability for candidate U
would be 3/(3 + 2 + 2). Once we find the weight values for
every candidate in A, we then randomly choose the candidate
based on this weighted probability. Next, similarly to how we
handled the Maximum Coverage Algorithm, we modify M to
remove the influences of previous team member in C. With
a new modified version of M in Table IV, we continue the
process starting from generating the weights of every candidate
in B based on the new modified version of M [i].

TABLE III
TCSG INSTANCE FOLLOWING FROM TABLE I WITH TOTAL VALUES AND

WEIGHTS COMPUTED.

V W X Y Z Total Weight
U 1 1 0 1 0 3 0.43
V 0 0 1 1 0 2 0.28
W 0 0 0 1 1 2 0.28

TABLE IV
TCSG INSTANCE FOLLOWING FROM TABLE II WITH TOTAL VALUES AND

WEIGHTS COMPUTED.

V W X Y Z Total Weight
U 0 0 0 0 0 0 0
V 0 0 1 0 0 1 0.5
W 0 0 0 0 1 1 0.5

Algorithm 4 GenerateWeights (Set ~A, Set ~B, BattleMatrix[])
Weights[]
TotalValue = 0
for all a candidates ∈ ~A do

CandidateXSum = 0
for all b candidates ∈ ~B do

CandidateXSum += BattleMatrix[a,b]
end for
Weights[x] = CandidateXSum
TotalValue += CandidateXSum

end for
for all a candidates ∈ ~A do

Weights[a] = Weights[a]/TotalValue
end for
return Weights[a]

After GenerateWeights returns, the WeightedProbablyTeam-
Generator randomly selects a candidate from A with probabil-
ity based upon the candidate’s computed weight. This random
selection is performed in O(1). Next we modify the battle
matrix to remove the influences of the candidate we have
chosen. This is done in O(|A||B|). This process repeats for n
iterations, selecting one new team member each iteration. The
overall time complexity of WeightedProbabilityTeamGenera-
tor is O(n|A||B|).



Algorithm 5 WeightedProbabilityTeamGenerator(A,B,M, n)
for all Candidates, i in Team do
M [0] = M
Weights = GenerateWeights(A,B,M [i− 1])
Team[i] = RandomlyChooseCandidate(A,Weights)
M [i] = M [i− 1]
for all Candidate, a, in A do

for all Candidate, b, in B do
if M[i][Team[i]][b] == 1 then

M[i][a][b] = 0
end if

end for
end for

end for

VII. TESTING AND RESULTS

A. Experimental Methodology

We tested the efficacy of our algorithms by simulating
team selection in Pokémon Go player versus player battles.
Pokémon Go is a popular mobile game where players col-
lect, trade, and battle with different species of avatars called
Pokémon [20]. A Pokémon GO battle consists of two players
each battling with a team of 3 Pokémon taken from their
individual collections. The exact membership of an opponent’s
collection is unknown to the player, and battle teams are
not revealed until the battle begins. It is known in advance
which species of Pokémon should win in pairwise match ups
given perfect play and expected moves. Therefore, a player
can choose a battle team based upon epistemic reasoning on
which team the opponent is likely to use.

In our experiments, P is the set of all Pokémon species
available in the game. Since 1 versus 1 match-ups are prede-
termined by the game data, we can obtain a square matrix M
of pairwise match ups for candidates in P . We implemented
Meta Generator in Python 3 using an Excel sheet as input.
Our data for M comes from the website PvPoke.com [16].
PvPoke is an open source website that is used to rank Pokémon
and simulate player versus player match-ups directly from the
Pokémon Go GameMaster file. By going to the battle section
of the website, you can choose to do a matrix battle, and you
can select Pokémon to test. It is possible to export this data
from the website into a spreadsheet. It outputs a table similar
to our model that shows how every Pokémon performs against
every other Pokémon in the matrix. Figure 1 below shows an
example of a matrix battle on PvPoke.com. Every Pokémon’s
performance in a battle is listed in the matrix as an integer
called a battle rating. If this number is above 500, that means
the Pokémon has won.

We tested several different groups of candidates using
WeightedProbabilityTeamGenerator and MaximizeTeamWins.
Each of our tests pulled Pokémon from one of the three
leagues, or pools of candidates, found in the game. These
are the Great League, Ultra League, and Master League. The
league you participate in determines which subset of Pokémon

Fig. 1. Example of Battle Matrix using the Great League Meta candidate
pool on PvPoke.com

in P you can use. Each Pokémon has a calculated number
called CP, which is an integer that rates how strong that
Pokémon is in battle. Pokémon with 1500 CP or less can
participate in Great League, Pokémon with 2500 CP or less
can participate in Ultra League, and in Master League there
is no cap to the CP. Some of these leagues also have special
rule sets that limit the kinds of Pokémon you can use on your
team, called a cup. For example, in the premier cup, legendary
and mythical Pokémon are banned from participating, which
allows the creation of a different meta than the “open” leagues.
In addition to pairwise matchup data, PvPoke offers ratings
of Pokémon in the various leagues and cups based upon their
relative win rates and the frequency which which they are used
in practice. These ratings give us a baseline for comparing the
results of our algorithms.

Seven runs of the MaximizeTeamWins algorithm for teams
of size two were tested using subsets of the Great League
meta. The Great League meta consists of the top 48 candidates
from GO Battle Log. GO Battle Log ranks Pokémon based
upon user submitted usage data [21]. We generated each
subset using a procedure called IterativeMetaGenerator (see
Algorithm 6) which determines the set of candidates defeating
at least c percent of the previous iteration. We took c = 0.5.

Given a set of candidates, we refer to the subset of can-
didates which are currently being utilized by the population
of players as the current “meta.” The IterativeMetaGenerator
simulates “waves” of changes in the meta as players attempt
to counter recently seen teams.

B. Iterative Meta Example

Consider a modified version of the Rock, Paper, Scissors
game. In this variation, a fourth object called “Rock++” is
included. Rock beats Scissors, Paper beats Rock, Scissors
beats Paper, and Rock++ beats both Rock and Scissors. In this
example, we let c = 50% and D[0] = {Rock, Paper, Scissors,
Rock++}. In the first iteration, the algorithm generates a meta
D[1] = {Rock++, Paper} countering D[0] as seen in Table V.

The next iteration in Table VI considers the value of the
entire field against the previous meta, D[1]. Because we only
expect the meta Paper and Rock++ to be played, only these
two objects have value to be defeated. As a result, Rock++



Algorithm 6 Iterative Meta Generator (int |P |, matrix M , float
c)
D = [[1,1,1,1,....,|P |-1] {Matrix of values of D, where
candidates in D meet the minimum percentage of c from
previous iteration}
E = [[]] {Where each array is the percentages that a
candidates defeats the previous candidate}
I = 0 {Previous Iteration}
while D[I]! = D[i] from i = 0 to i < do

int TotalCandidatesOfPreviousIteration = 0;
for all x candidates ∈ P do

TotalCandidatesOfPreviousIteration += D[I][x]
end for
for all x candidates ∈ P do

sum = 0
for all y candidates ∈ P do

sum += M [x][y] ∗D[I][y];
end for
if (sum/TotalCandidatesOfPreviousIteration) > c then

set value of candidate to 1 in D[I+1] then set
candidate’s percentage in E[I+1]

end if
end for

end while
return D and E

becomes obsolete and {Paper, Scissors} becomes the meta
D[2].

TABLE V
META GENERATED IN ITERATION 1 INCLUDES PAPER AND ROCK++.

Rock Paper Scissors Rock++ Sum % D
Rock 0 0 1 0 1 25 0
Paper 1 0 0 1 2 50 1

Scissors 0 1 0 0 1 25 0
Rock++ 1 0 1 0 2 50 1

TABLE VI
META GENERATED IN ITERATION 2 INCLUDES PAPER AND SCISSORS.

Paper Rock++ Sum % D
Rock 0 0 0 0 0
Paper 0 1 1 50 1

Scissors 1 0 1 50 1
Rock++ 0 0 0 0 0

TABLE VII
META GENERATED IN ITERATION 3 INCLUDES ROCK, SCISSORS, AND

ROCK++

Paper Scissors Sum % D
Rock 0 1 1 50 1
Paper 0 0 0 0 0

Scissors 1 0 1 50 1
Rock++ 0 1 1 50 1

There are a finite number of combinations of D[I]. Reaching
a duplicate meta forms a closed loop. In this example the 4th
iteration duplicates the 1st iteration, forming a loop as seen
in Table VIII. This gives us a set of 4 metas to consider; the
initial meta plus the metas formed in iterations 1, 2 and 3.

TABLE VIII
METAS GENERATED IN ITERATIONS [0, 1, 2, 3, 4]. BECAUSE 1 AND 4 ARE

IDENTICAL METAS, THIS FORMS A LOOP OVER ITERATIONS 1,2 AND 3.

0 1 2 3 4
Rock 1 0 0 1 0
Paper 1 1 1 0 1

Scissors 1 0 1 1 0
Rock++ 1 1 0 1 1

C. Experimental Results

Tables IX, X, XI, XII describe the results of our experi-
ments. In each table, each row represents a trial attempting to
counter a single meta. % P is the percentage of Pokémon from
the population which are found in the meta we are attempting
to counter in that trial. % T is the percentage threats (according
to PvPoke battle simulations) not found in that meta. % M is
the percentage of Pokémon from that meta which our selected
team has coverage for; meaning that at least one Pokémon on
our selected team can defeat that percentage of Pokémon from
the meta. Finally, we simulated battles between our selected
team and each possible team from the current meta. % W is
the percentage of all such teams that our selected team defeats.

TABLE IX
MAXIMIZETEAMWINS DUOS GREAT LEAGUE META (48 POKÉMON)

Trial # % P % T % M % W
1 20.83% 100.00% 90% 77.78%
2 37.50% 85.70% 94.44% 84.97%
3 43.75% 91.67% 80.95% 73.81%
4 47.92% 80.00% 91.30% 69.17%
5 50.00% 69.20% 90.48% 75.72%
6 56.25% 8.30% 92.59% 73.50%
7 58.33% 90.00% 96.43% 71.96%

For the Great League Meta with teams of size 2, Table IX,
MaximizeTeamWins averaged 90.88% coverage over seven
trials with an average win rate of 75.27%. We noted one
outlying case in trial 6 where the team chosen in this case
(Shadow Machamp and Swampert) happens to have many
potential threats, which prevent it from performing well in
practice. Both have lower defense, higher attack power and
neither could survive long enough to reach its damage potential
without a more defensive Pokémon to back them up.

In the Master League Premier Cup Meta, Table X, we tested
teams of size 3 for a meta of 26 candidates. The average
coverage was 100.00% over six trials with an average win
rate of 97.33%. This was a surprising increase in the quality
of performance when the team size increased from 2 to 3. We
believe that the brute force algorithm was better able to exploit



weaknesses in the meta with this additional team member and
that perhaps only 2 Pokémon would have trouble covering
each others weaknesses entirely.

TABLE X
MAXIMIZETEAMWINS TRIOS MASTER LEAGUE PREMIER CUP (26

POKÉMON)

Trial # % P % T % M % W
1 15.38% 100.00% 100.00% 100.00%
2 23.08% 100.00% 100.00% 100.00%
3 30.77% 90.00% 100.00% 91.07%
4 42.31% 88.89% 100.00% 98.79%
5 46.15% 77.78% 100.00% 94.09%
6 53.85% 57.14% 100.00% 100.00%

In the Great League Kanto Cup and Master League Premier
cup, we tested the efficacy of the WeightedProbabilityTeam-
Generator algorithm.

For the Great League Kanto Cup meta, Table XI, we tested
teams of size 2 for a meta of 31 candidates. The average
coverage was 77.04% over 9 trials with an average win rate
of 86.62%. We noted one outlying case in trial 4 where %
coverage decreased dramatically. The team chosen in this case
(Shadow Victreebel and Alolan Ninetails) suffers a similar fate
to Shadow Machamp and Swampert in experiment 1. Both
duos are low defense, high attack, and are unable to amass
their potential together.

For the Master League Premier Cup meta, Table XII, we
tested teams of size 3 for a meta of 26 candidates. The average
coverage was 96.03% over 6 trials with an average win rate
of 97.85%. One outlying case in trial 5 comes from a team
consisting of Gengar, Electivire, and Snorlax. This team tends
to be weak against Ground-type Pokémon, which are more
prevalent in this meta. We still found significant improvement
with team size 3 compared to team size 2 with the second
algorithm.

TABLE XI
WEIGHTEDPROBABILITYTEAMGENERATOR DUOS KANTO CUP (48

POKÉMON)

Trial # % P % T % M % W
1 29.03% 71.43% 66.67% 91.67%
2 29.03% 80.00% 88.89% 72.22%
3 29.03% 80.00% 77.78% 97.22%
4 41.94% 16.67% 53.84% 96.15%
5 41.94% 40.00% 69.23% 87.18%
6 41.94% 62.50% 76.92% 64.10%
7 32.26% 50.00% 80.00% 86.67%
8 32.26% 100.00% 100.00% 86.67%
9 32.26% 71.43% 80.00% 97.78%

TABLE XII
WEIGHTEDPROBABILITYTEAMGENERATOR TRIOS MASTER LEAGUE

PREMIER CUP (26 POKÉMON)

Trial # % P % T % M % W
1 23.08% 88.89% 100.00% 95.00%
2 23.08% 83.33% 100.00% 95.00%
3 46.15% 42.86% 83.33% 100%
4 46.15% 60.00% 100.00% 98.18%
5 53.85% 18.18% 92.86% 98.90%
6 53.85% 44.44% 100.00% 100%

In experiment 1 using the MaximizeTeamWins algorithm
for duos in the Great League meta, Azumarill was the most
frequently selected team member. On these tests Azumarill
appeared in our duo team compositions seven out of twenty-
three times, or around 30.4% of our total Great League duo
tests done. According to GO Battle Log, Azumarill can be seen
on over 6.3% of competitive teams while also being ranked
number two overall on PvPoke’s rankings [21]. Although
being a popular choice does not necessarily imply being a good
candidate to select, our MaximizeTeamWins duos did line up
with our expectations that Azumarill was going to perform
well. In this case, our algorithm’s results seem to match the
consensus of the players.

Fig. 2. The top five Pokémon in Great League according to PvPoke.com as
of 4/7/21. Note that Azumarill is ranked 3rd out of 667 possible candidates.

Both algorithms were able to discover surprising candidates
in the Master League Premier meta. MaximizeTeamWins
discovered Shadow Gardevoir in five out of the eight total
tests. With it being ranked 24th out of the 26 “meta” candidates
by PvPoke, it was not expected to be chosen the most often.
Shadow Gardevoir was often paired with two other candidates,
Togekiss and Gyarados. In trial 1, the team of Shadow
Gardevoir, Togekiss, and Gyarados held to be the strongest
team composition versus the meta, holding 207 wins out of
the 220 possible team compositions and 100% coverage over
the candidates we sought to cover. This same team was seen
again with MaximizeTeamWins in the fourth trial, winning
against 163 out of the 165 possible team compositions and
also holding an 100% coverage over candidates we sought



to cover. In experiment 4, WeightedProbabilityTeamGenerator
also discovers Shadow Gardevoir in two unique teams for
Master League Premier cup. In trial 2, Shadow Gardevoir was
paired with Dragonite and Shadow Metagross allowing each
to cover the others’ weaknesses. In trial 6, Shadow Gardevoir,
Machamp, and Rhyperior provided two sources of protection
against Gardevoir’s weakness to the steel typing, allowing it
to become a powerful and unexpected closer.

VIII. FUTURE WORK

We structured our model so our algorithms did not have
to rely on in-game information in order for our solutions
to be more applicable to many different situations. However,
in Pokémon Go there are mechanics that allow the team of
candidates to influence the game decision based on game
mechanics of hit points (HP) and stored energy that transfer
over to the next candidate when the first candidate goes down.
Future work can focus upon correctly diminishing the value
of a candidate across multiple match-ups based on specified
game mechanics. More work can also be done to test the
efficiency of the team compositions that are generated from the
algorithms. Since it costs many resources to build these teams
in Pokémon Go, it is difficult to test the teams made in-game.
However, there is an online Pokémon Go PvP Battle Simulator
that has not been released to the public yet named Project
Grookey [22]. Once this is complete, teams can be made
and tested at no cost instead of creating curated tests using
PvPoke battle matrix data and scoring metrics. An algorithm
may also be developed to use probability to determine the
correct meta that a player is in using data from previous
matches. This algorithm could be used in conjunction with
IterativeMetaGenerator to give an accurate prediction of what
meta the opponent is using. With that information, we would
be able to better pick a team to counter the current meta.
Future work will also consider larger metas and team sizes
and expand upon the application of iterative metas.

IX. CONCLUSION

We looked at both heuristic and exact algorithms to gen-
erate teams of various sizes in scenarios involving multi-
ple candidate selection. We considered the exact algorithms
MaximizeCoverage and MaximizeTeamWins and the heuristic
algorithm WeightedProbabilityTeamGenerator. We compared
the effectiveness of MaximizeTeamWins (MTW) to Weighted-
ProbabilityTeamGenerator (WPTG). For teams of size 2 with
a pool of 48 Pokémon, MTW achieved a significantly higher
% coverage of the meta, averaging 90.88% versus 77.04%.
By contrast, WPTG outperformed MTW in terms of win rate
on these trials, averaging 86.62% versus 75.27%. For teams
of size 3 with a pool of 26 Pokémon, MTW and WPTG
had very similar and much higher results. Interestingly, both
algorithms appear to perform better both in terms of coverage
and win rates on this data set. Similarly, the difference between
their quality became smaller. We are interested to see if this
remains true in other games with larger team sizes, such as
MOBA games with teams of size 5. Additionally, the size of

the original meta may be a factor. Additional testing on larger
populations for the original meta is warranted. The WPTG
algorithm has an added benefits of both being faster than brute
force and of being harder to predict due to the probabilistic
nature of its choices in team formation.
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