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Abstract—Machine learning for procedural content generation
has recently become an active area of research. Levels vary in
both form and function and are mostly unrelated to each other
across games. This has made it difficult to assemble suitably large
datasets to bring machine learning to level design in the same
way as it’s been used for image generation. Here we propose
Generative Playing Networks which design levels for itself to
play. The algorithm is built in two parts; an agent that learns
to play game levels, and a generator that learns the distribution
of playable levels. As the agent learns and improves its ability,
the space of playable levels, as defined by the agent, grows. The
generator targets the agents playability estimates to then update
its understanding of what constitutes a playable level. We call this
process of learning the distribution of data found through self-
discovery with an environment, self-supervised inductive learning.
Unlike previous approaches to procedural content generation,
Generative Playing Networks are end-to-end differentiable and
does not require human-designed examples or domain knowledge.
We demonstrate the capability of this framework by training an
agent and level generator for a 2D dungeon crawler game.

Index Terms—Procedural Content Generation (PCG), Rein-
forcement Learning (RL), General Video Game AI (GVGAI),
Generative

I. INTRO

Learning to generate levels is an interesting problem that
combines an understanding of aesthetics and style along with
the functional requirements of playing a game. Optimization
and search based techniques can be very effective level
generators when a good objective is defined. This is challenging
to get right because many components, especially the aesthetic
parts, are difficult to objectively define. Machine learning
methods are very good at replicating visual patterns and
design patterns but they struggle with a lack of data and
often miss the importance of functional components in a level.
Machine learning methods can also struggle with discovering
new patterns which is often a key use for procedural content
systems. What is needed is an approach that learns directly
from interacting with the environment and can create its own
data. The algorithm interacts with the environment and learns
what patterns work and fail directly within the environment.
The benefit of such an algorithm is that a designer can design
the game rules and mechanics while the algorithm can find
interesting levels, or digital realizations of the game, allowing
a form of meta-game design.

We here introduce a novel unsupervised Procedural Content
Generation (PCG) method that we believe is the first to attempt
to address this goal. Unlike other machine learning techniques,
it does not require existing content to learn from or any existing
player data. Unlike other search and optimization techniques
it does not require access to game-playing agents, a forward-
model of the game, or a hand-designed fitness function. Our
algorithm, called Generative Playing Networks (GPN) only
requires a game definition, implemented as a game engine
that has a defined state and action space and returns when the
game has been won or lost. Based on this, GPN learns a level
generator that can generate playable, non-trivial levels.

Generative Playing Networks is setup as a competition
between two networks. One represents an agent that is trying
to learn to play a game and model the probability of success
at every game-state of the given game. This agent interacts
with the environment and attempts to learn a policy that gives
it a 100% chance of winning for every game-state. The second
network represents a generative function that is trying to learn
the distribution of game-states where the current agent has a
50% chance of winning. This forms a natural curriculum for
the agent while also producing level generators at increasing
playing difficulties. The system is fully differentiable with the
generator learning directly from the agent’s own estimates and
requires no content as the agent only plays levels designed by
the generator. The two form a symbiotic relationship where
the agent keeps expanding its definition of what’s winnable,
allowing the generator to keep challenging that definition.

We demonstrate this approach in a simple 2D dungeon
crawling game, which is part of the GVGAI suite of games.
However, the general framework could be applied to many
other problem classes, such as self-driving cars or environment
design.

II. RELATED WORK

Procedural Content Generation (PCG) in games is a name
for various methods that generate game content, such as maps,
quests, characters or textures. In particular, procedural genera-
tion of levels of various kinds is a commonly studied research
problem. This tracks an interest by the game development
community, where many video games include some form of
level generation [1].

PCG is also important to AI and in particular reinforcement
learning research, because it allows for the generation of
an arbitrary number of new environments. One benefit of978-1-6654-3886-5/21/$31.00 ©2021 IEEE



automatically generating many environments is for testing, as
well as encouraging, generalization in reinforcement trained
agents; it has been found that in many cases, trained agents
overfit to the environment they were trained on [2]. Several
authors have tried using some form of PCG to quantify or
increase generalization in reinforcement learning [3]–[5].

Existing approaches to procedural content fall into several
classes. Most commercial games rely on hand-coded, construc-
tive approaches [1]. A popular approach is to use evolutionary
algorithms or other population-based stochastic optimizers to
cast PCG as a search problem using a game specific fitness
score [6]. More recently, supervised and self-supervised
learning has been applied to PCG. Here, a model is trained on
existing game content, and can then be sampled to provide more
similar content [7]. The obvious downside of such approaches
is that they require training data in the form of similar game
content. The less obvious downside is that the trained models
might produce content that is stylistically similar to what they
were trained on, but not functional. To remedy this, one can
combine search-based approaches with self-supervised learning;
for example, the Latent Variable Evolution technique where
a generator is trained on existing content and an evolutionary
algorithm is used to find latent variables that make the generator
network produce content with desirable characteristics (such as
playable levels) [8], [9]. Very recently, the use of reinforcement
learning for generating game content has been proposed and
demonstrated [10]. Just like the search-based methods, PCG via
RL requires a quality metric to be used for a reward function,
but moves the computation from inference to training time.

Assuming that a PCG method uses some kind of objective or
reward function, the question remains what designs to reward.
One answer is learnability. By including a learning algorithm
in the evaluation function, levels can be optimized for learning
potential [11]. However, such a procedure is computationally
very costly. Another perspective is that of the POET system,
which attempts to achieve open-ended learning by keeping a
population of environments/levels and searching for new ones
that are of appropriate difficulty for the agents [12]. Similar
open-ended systems have come out contemporaneous with this
work that build a POET-like open ended system with RL agents.
In PAIRED, a generative agent builds environments that are
beatable by one RL agent and not by a second one, providing
a natural curriculum for the playing agents and the generator
agent [13]. In Adversarial Reinforcement Learning PCG, the
generator agent builds a level up learning from rewards, task
by task, as the playing agent succeeds at each task [14].

The system described here differs in several ways from
the previously proposed systems. It’s fully differentiable and
the level generator is updated with gradient descent directly
based on the performance of the agent allowing it to learn the
distribution of winnable levels directly from the agent. This
sets it apart from other systems where generators are based
on search, and also from the recent PCG via RL paradigm
where a non-differentiable reward function is used. Learning
directly from the agent network allows the generator to target
all possible inputs that achieve the appropriate difficulty. This

system is, to the best of our knowledge, the first one that does
not need a hand-designed objective or examples to learn to
generate real human playable levels.

III. GENERATIVE PLAYING NETWORKS

Generative Playing Networks (GPNs) form a symbiotic
relationship between two models, an environment generator G,
and an agent model. The agent model can further be broken
into an environment agent policy π and an environment value
estimator Q. Each model is a differentiable function with
parameters φ, θ, and ω, respectively. G is a generator function
with the objective of mapping some noise input, z, from the
distribution pz to the space of environment states that are
reasonably solvable by the agent i.e. environments that the
agent has a 5% chance of winning. The agent is an actor-
critic model consisting of both π and Q. The policy, π, maps
the environment state, S, from the distribution of possible
environment states for a game, pstates, to a discrete distribution
of the actions available. The state-action utility estimator, Q, is
trained to estimate the expected value for each possible action
given the current state. The expected value for state S can
then be calculated as the weighted average of the expected
values for each possible action the agent could take, as given
in equation 1.

U(s) =
∑
a∈A

π(s,a)×Q(s,a) (1)

With a definition for calculating the utility of a state, the game
between the agent and generator can now be defined. This
game is similar in nature to that from Generative Adversarial
Networks [15], except the relationship between the agent and
generator can be described as both cooperative and adversarial.
The agent is attempting to learn a policy that maximizes it’s
utility, while the generator is attempting to create environments
that challenge the agent. We can thus control the agent and
the quality of the generated content through controlling the
reward that the agent receives. With a negative total reward
for losing and a positive one for winning, the agent will
be trying to maximize it’s reward while the generator will
learn environments with an estimated utility of 0 as defined in
equation 2.

min
G

max
U

V (G,U) =Es∼pstates(s)[U(s)]+

Ez∼pz(z)[U(G(z))2].
(2)

The reason we refer to this relationship as symbiotic, is that
the agent and the generator initially cooperate as the agent
mostly gets negative rewards in the beginning. The generator
will be searching for environment designs that result in higher
rewards until it starts generating environments that the agent
can succeed in. At this point the agent is receiving positive
rewards, and the generator is searching for more challenging
environments to lower the total utility, this is where they start
competing. The generator is providing a curriculum for the
agent while the agent is providing a complexity measure for
the generator.
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Fig. 1. Generative Playing Networks consist of two primary loops; the agent loop and the generator loop. In the agent loop, the agent plays episodes of
generated environments. It is learning to estimate the expected total reward from a given state, given the current policy, while also learning an optimal policy
for each environment. The generator loop updates the generator to create challenging environments given the agent’s current abilities. The dashed lines represent
update loops that are not part of the core algorithm but which can help to stabilize training or utilize training data.

We then hypothesize that the generated environments will
go from, simplistic, to interesting for humans, to unrealistically
challenging if the agent is able to gain superhuman performance.
Once the algorithm reaches the “interesting for humans” stage,
it can be stopped and the generator can be used for sampling
many possible reasonable level that can be human curated or it
can be searched, via Latent Variable Evolution [8], [9] for even
more specific environments. An overview of the algorithm is
given in figure 1 and is defined in full in algorithm 1.

A. Agent Training Loop

1) Reinforcement Learning Algorithm: As already discussed,
the agent is an actor-critic model that uses reinforcement
learning to learn a policy and value function. It is important to
have both an actor and a critic in order to properly estimate
the expected value of a state. To learn an optimal policy we
use advantage actor-critic, as the advantage function has been
shown recently to be an effective and stable way to update the
actor in many situations [16], [17]. The advantage of an action
is simply the difference in value between the new state and
the old state. The critic is then typically updated incrementally
based on temporal difference (TD) learning [18]. Since we’re
using the agent to evaluate environments, we cannot simply
use the standard critic update.

The agent is used for evaluating environment designs, and as
such, it is important that the agent can provide a usable utility
for every state of a simulation. In a TD update, the value of
state St is given as U(St) = R(St) + γU(St+1) where γ is
the discount on future rewards and R(St) is the reward at St.
If γ < 1, then the reward will only be able to propagate a short

distance backwards in time. In a video game environment with
lots of frames, even with a γ very close to 1, the reward is
only propagated back a few seconds worth of time. With any
discount, very little to no reward from the end of an episode
can propagate to the beginning of an episode. Since we need to
use our agent to evaluate level designs, and a level is equivalent
to the game state at t = 0, this is a problem. Thus, for the
agent to be able to evaluate environment designs, γ must be 1.

This is problematic as it is very difficult to train an agent
without discounting future rewards. Without a discount there
is very little pressure for the agent to find an optimal path; all
possible paths to a reward have the same utility. A random
chance of failure for longer solutions help counter this but it’s
still difficult to learn under these circumstances. We propose to
instead explicitly learn the expected value of a state as outlined
in equation 1.

In actor-critic, the algorithm is trying to maximize the
function [18]:

Uπ(S) = E[
N∑
n=0

γnR(Sn)]

=

N∑
n=0

E[γnR(Sn)]

=

N∑
n=0

γnE[R(Sn)]

(3)

St is a random variable and the expectation of the total utility
is equivalent to the expectation of the reward at each state. In



Algorithm 1 Generative Playing Networks (Optional components
in blue)

Input: Differentiable policy πθ(a|S), utility function
Qω(a|S), encoder Eψ(S), and state generator Gφ(z).
Algorithm parameters: απ : 2.5e − 4, αQ : 2.5e − 5,
αR : 5e − 5, αG : −4, m : 128, policyupdates : 1m,
generator updates: 10, diversity updates: 90, pre-training
steps: 20m
Extensions: update model every n steps (n=5), train with
small entropy, train with 16 parallel workers, 30% of elite
envs kept, human envs sampled 50% of episodes
Initialize weights and pre-train agent
repeat
z ∼ minibatch m from pz(z)
S ← Gφ(z)
Create new environments from generated states
Keep top k levels from previous loop {see III-A3}
for number of policy updates do

Select environment
S ← initialize environment
H ← Eψ(S)
repeat
A ∼ πθ(·|H)
Take action A, observe R, S′ {see equation 5}
H ′ ← Eψ(S

′)
V ′ ← πθ(·|H ′) ·Qω(·|H ′) {If S′ is terminal, 0}
δ ← R+ V ′ −Qω(A|H)
V ← πθ(·|H) ·Qω(·|H) + πθ(A|H) · δ
Adv ← V ′ − V {If S′ is terminal, R− V }
ω, ψ ← ω, ψ + αQδ2∇Qω(A|Eψ(S))
θ, ψ ← θ, ψ + απAdv∇ log πθ(A|Eψ(S))
Rec← −

∑
c Sc logGφ(Eψ(S))c

φ, ψ ← φ, ψ + αRRec∇Gφ(Eψ(S))
H ← H ′

until S′ is terminal
for number of generator updates do
z ∼ minibatch m from pz(z)
H ← Eψ(Gφ(z))
V ← πθ(·|H) ·Qω(·|H)
φ← φ+ αG ( Vm )2∇φV

end for
for number of diversity updates do
z ∼ minibatch m from pz(z)
H ← Eψ(Gφ(z))

D ← (Ha−Hb)
2

m for m random pairings of Hi

φ← φ+ αGD∇GEψ(Gφ(z))
end for

end for
until User deems environments acceptable
The gradient-based updates can use any standard gradient-
based learning rule. We used Adam in our experiments.

a typical TD update, the Q function learns this expected value
through small updates, basically keeping a running average.
This then requires many visits to a state to learn the true
expectation of R(St) , and many more to learn the true utility
when γ = 1. Since we know the policy distribution π, we can
calculate

E[R(Sn)] =
∑
a∈A

π(a|S) · E[R(San+1)]. (4)

Then the expectation of Sat+1 can be represented by Q and
the probability of an action is π.

Algorithm 1 outlines the update step as variable V . By
bootstrapping the expected reward from the policy function,
the agent can more easily learn it. In practice, the agent should
also be more likely to learn the optimal path. Policy functions
are almost never 100% certain about an action and thus taking
multiple steps will naturally discount a future reward from the
longer route due to the small uncertainty the policy holds.

While not the main focus of the work, this approach also
seems less sensitive to the scale of environment rewards. There
is no discount factor that needs to be tuned to match the scale
of the rewards to make sure the reward can propagate far
enough back in time.

2) Agent Reward: For the game, laid out in equation 2,
to work, the agent cannot be allowed to learn from the
environment’s built-in rewards (e.g. game score). Instead the
simulator’s rewards should be captured and the agent simply
given a reward for winning or losing. If a level doesn’t compile,
the agent instantly loses. In its purest form, this approach is
environment independent with 1 point for winning and -1 point
for losing. The agent is able to pursue an expected reward of 1
while the generator is able to try and keep the agent’s expected
reward at 0.

R(Sn) =


1 if agent wins
−1 if agent loses
0 else

(5)

If the environment is too difficult to learn in this restricted
reward setup, it can be modified to allow more frequent rewards.
One modification, that is still domain agnostic, is to scale the
reward for winning and losing by two, and then provide a
reward of 1

N anytime the environment tries to return a reward.
The agent could also be rewarded for surviving longer or
winning quickly. These modifications maintain that a positive
score is still only achievable by winning and the environment
is able to help the agent with more frequent rewards. The
generator will also be able to target these rewards as well
when learning to make levels with a given expected value. If
necessary, the win and loss rewards could be further scaled
and custom rewards could be used for a given domain. This
is one way that domain knowledge could be added into this
approach.

3) Environment Selection: During the agent update loop,
the agent will play one episode of a environment and then
randomly select a new environment from the mini-batch of



environments generated. The agent will keep re-sampling from
the given minibatch until it has completed a specified number
of updates and then the generator will be updated and the
minibatch of levels will be replaced with a new set.

To assist with training, two methods can be used with
the standard selection; pretraining and elitism. Pretraining
is the case where you have access to some example data
and can train the networks in a semi-supervised setup. With
pretraining, the agent can only select from a curated set of
well designed environments until the agent has learned to solve
them. This gives the generator a valid direction to learn from
at the beginning, otherwise it is essentially generating random
environments at the beginning.

The second assistance comes from an elitism mechanism
that keeps the most useful environments around. There are
two components to this elitism. The first is to assume that
the hand-curated environments are elite and to re-sample them
periodically after the pretraining stage. The second is to persist
environments that the agent is still learning to play.

After the agent has finished its update loop, the environments
can be ranked according to the average reward the agent
received. The levels are ranked by the distance to zero of
their average score. This is to simulate the generator which is
attempting to output levels with an expected reward of zero
but this is more stable as the levels are known for sure to have
that reward. Once the environments are ranked, the top ones
are kept based on a specified percentage of environments to
recycle each time.

4) State Reconstruction: To give the generated environments
a more human-designed appearance when trained in a semi-
supervised setting, the generator can also learn directly from
the curated environments. This is done during the agent loop.
When the agent encodes the state, this encoding can be passed
into the generator, as a latent variable, and the generator can
be tasked with reconstructing the input like an autoencoder.
For this reason, we actually define the agent as three networks:
a policy network, a utility network, and an encoder network
that encodes the state and feeds into the first two networks.

This can help constrain the generator to the manifold of
possible levels (according to the agent) that look similar to
human designed levels. This has been shown to be true with
adversarial examples for classifiers, that random noise can
cause a network to activate in the same way as the natural
images it is trained on [19]. For this reason, if a classier is
used to train a generator, the most likely outcome is a random
pattern [20]. Training the generator to also be a decoder can
help mitigate this potential problem. In practice this did not
seem to be too big of a problem.

We do not put any constraints on the output of the encoder
network, so the generator network is likely learning two
separate tasks for two different input distributions. This allows
the two tasks to not interfere with each other, while still
affecting each other. One could train the decoder as a variational
autoencoder to have generating and decoding have the same
inputs [21].

B. Generator Loop

The generator loop simply consists of updating the generator
to create environments with an expected value of 0. The
generator is updated by sampling a minibatch of m random
latent variables and mapping them to environments which
are evaluated by the agent. The generator’s weights are then
updated. This can be repeated a few times but doing too many
updates seems to be detrimental to the generator’s diversity.

1) Diversity Update: To help combat the collapse of
diversity, a proposed extension for the main algorithm is to
update the network a few times explicitly with the goal of
increasing diversity. Here, similarity is calculated as the L2
difference between the encoding values of two environments.
Environments from a minibatch are randomly paired and their
similarities calculated. Since every two environments in a
minibatch are independently generated, one can simply compare
every other sample for similarity. The network is then updated
to maximize the average distance between samples. It was found
that it is most effective to do the diversity update separate from
the primary update target.

IV. EXPERIMENTS

Fig. 2. Zelda from the GVGAI framework is a simple dungeon crawler. To
beat a level, the player has to collect the key and open the door while avoiding
or killing the monsters. Shown above are the five levels provided from the
game.

To validate the algorithm proposed here, we test Generative
Playing Networks on Zelda from the General Video Game
AI (GVGAI) framework [22]. GVGAI is based on the Video
Game Description Language (VGDL) which is a language for
describing video games, mostly within the family of arcade
games. There is a large corpus of simple games written for
this language with each game definition also describing the set
of level designs that can exist for it. The framework has been
used extensively as a test-bed for game and level PCG research.
GVGAI also has an OpenAI gym interface for interfacing with
reinforcement learning algorithms [23], [24].

This is a perfect test-bed for Generative Playing Networks,
the agent receives the game-state as a tile representation of the



game, where each tile is a one-hot vector of the object in a given
location. The generator creates this tile representation state
which is directly converted to a level map for the environment
to load. If a level does not have an avatar, key, or door, the
game engine can’t load it and it is presented to the agent as an
instant loss after one frame. We run two experiments here, one
is the unsupervised setting and the other is semi-supervised
using 5 human made levels.

We train Generative Playing Networks on this game and
each level with the objective of getting interesting new levels.
We do one experiment on the core unsupervised approach, this
is the part defined in black in Algorithm 1 or the full arrows
in Figure 1. We do a second experiment to show how this
approach can take advantage of even a few datapoints. For
this experiment we use the additional parts of the algorithm:
the blue lines in Algorithm 1 and dashed arrows in Figure 1.
Below we detail some of the experiment parameters. The rest
of the parameters we used can be found in algorithm 1.

A. Model Architectures

The levels being generated for the experiment are 12 by
16 tiles by a one-hot encoding of 14 possible objects. Since
the space of legal VGDL levels is smaller than the number
of possible game states, we mask out cell types that are not
allowed for a level design e.g. an object that must be spawned
first. Another approach we could have taken would have been
to let the level design compiler automatically select a blank
tile when an object is not possible.

Our generator model consists of a fully connected layer that
expects a latent vector, of size 512, sampled from a standard
normal distribution and transforms it to an output of 3 by 4 by
512. This is processed through two convolutional layers, with
kernels of size three, before being passed through a dropout
layer and then transformed with a sub-pixel convolution layer
to double the output size. This convolution and upsampling is
repeated until the expected output size is reached. Each layer
contains 512 filters and LeakyReLu is used as the activations.
The final output is passed through a Softmax activation to
better learn the one-hot encoding. We found that the dropout
layer is another helpful tool in maintaining diverse results.

It was found that the level style was fairly susceptible to the
up-sampling choice for the architecture of the generator. We got
good results with nearest-neighbor upsampling, with transposed
convolutions, and with sub-pixel convolutions [25], [26]. We
chose to do all our experiments with sub-pixel convolutions as
it was our favorite aesthetic.

For the agent, we use a nine layer residual network [27]
followed by a gated recurrent unit. The encoded state is a
vector of size 512. The policy and utility function are each a
single, fully connected layer.

V. RESULTS

Figure 4 and 3 are a random selection of GVGAI Zelda
levels generated after training on the game for 50 million
frames. After that much training the results tend to collapse
into a single design. For both experiments, all of the generated

Fig. 3. Random Selection of Self-Supervised Generated GVGAI Levels
Trained from Nothing

Fig. 4. Random Selection of Semi-Supervised Generated GVGAI Levels
Trained from 5 Examples

levels are playable/winnable. Only two levels in Figure 4 and
one in Figure 3 have enemies.

Training from no examples, the agent seems to learn
that open spaces are good for ensuring it doesn’t create an
impossible level. Outside of one example, it doesn’t create
obstacles for getting to the door but it does keep the key
away from the agent forcing it to find the key for each level.
Looking closely at the semi-supervised results, it’s clear that the
generator learned to emulate the general style of the provided
examples but that it’s outputs are all unique. All of the playable
levels would be considered very simple for a human player. It
is understandable that the levels are mostly open, as the agent
likely struggled to tell the difference between solvable and
unsolvable maze-like environments.

While we were successfully able to train a generator network
to create new GVGAI Zelda levels with no example levels
and no domain knowledge, we were only able to learn simple
levels. This suggests the agent never learned a truly general
policy as it could otherwise quickly beat these levels and the
generator would have to learn to make more challenging levels
to lower the agent’s average. This suggest that the algorithm
would benefit from benefit from reinforcement learning agents
that generalize better across levels.



A. Curriculum

One of the ways in which the generator and agent work
together is that the generator should provide a curriculum
for the agent to learn from easy levels and then improve.
What our results seem to indicate though, is that the generator
first generates complex, unsolvable, designs. Then it generates
simple solvable designs and finally very easy designs. This is
demonstrated from left to right in figure 5.

Fig. 5. Three sample generated levels chosen from early in the learning
process to late in the process to show how the generator learns to match the
agent’s skill. These were taken from the semi-supervised learning experiment.

Figure 6 shows that the generator has learned to successfully
keep the agent at a reward of 0. Therefore the curriculum we’re
seeing is from the collaborative half of the algorithm. If the
agent is continuously improving, the levels should be getting
more difficult according to figure 6.
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Fig. 6. Real average rewards of generated environments converging toward
their estimated target.

B. Agent Results

We also include here two metrics to show that the agent
is learning what it is intended to learn. Figure 7 shows a
plot of the agent’s estimated level value, only from frame 0,
versus each level’s actual reward at the end of the episode. It’s
clear that the agent’s estimates closely track the agent’s actual
rewards meaning that it’s learning accurately. Though there is
much less variance in the estimates than in the real values, this
either is reflecting that the estimates are not affected by the
stochastic environment or that the estimates are only accurate
for the most average levels. Figure 8 instead shows where the
agent’s estimates are failing. In the early stages of training, the
agent is correctly estimating that impossible-levels have a value
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Fig. 7. Agent initial state value estimate in red vs real level reward in blue.

of -1, but as it encounters less of them (the red line) it starts
to value them higher (the blue line). This either means that
later impossible-levels are more exotic and unique, or, more
likely, that the agent is forgetting after millions of updates.
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Fig. 8. Percentage of failed, uncompilable, environments vs estimated value
for the failed environments. As there are less failures, the agent does not
accurately value these environments

VI. CONCLUSION

Generative Playing Networks is a novel framework for
procedural content generation informed by the behavior and
value estimates of a learning agent. The method requires no
data, nor domain knowledge, but is computationally intensive.
The process is fully differentiable, allowing the agent to directly
communicate with the generator about what designs it “wants”.
By playing levels it designs for itself it can learn a distribution
of playable levels at a difficulty that match its skill. As
reinforcement learning agents increase in performance, so will
the complexity of the levels that GPN can discover.

In this paper, we have introduced an algorithm with a reward
system based around complexity and an RL update rule that
allows for efficient value estimates. The framework can also
allow for richer and more interesting reward functions based
around the agent’s interactions with the environment.



SOFTWARE AND DATA

The Codebase for all these experiments can be found here:

https://github.com/pbontrager/GenerativePlayingNetworks
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