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Abstract—Training RL agents to solve novel environments is
a notoriously difficult task. Here we present a new approach
ARLPCG: Adversarial Reinforcement Learning for Procedural
Content Generation, which procedurally generates and tests
previously unseen environments with an auxiliary input as a con-
trol variable. The procedurally generated environments induces
state diversity which increases the generalizability of the trained
agents. ARLPCG deploys an adversarial model with one PCG
RL agent (called Generator) and one solving RL agent (called
Solver). The Generator receives a reward signal based on the
Solver’s performance, which encourages the environment design
to be challenging but not impossible. To further drive diversity
and control of the environment generation, we propose using
auxiliary inputs for the Generator. The benefit is two-fold: Firstly,
the Solver achieves better generalization through the Generator’s
generated challenges. Secondly, the trained Generator can be
used as a creator of novel environments that, together with the
Solver, can be shown to be solvable. We create two types of 3D
environments to validate our model, representing two popular
game genres: a third-person platformer and a racing game. In
these cases, we show that ARLPCG has a significantly better solve
ratio, and that the auxiliary inputs renders the levels creation
controllable to a certain degree. For a video compilation of the
results please visit https://youtu.be/z7q2PtVsT0I.

Index Terms—machine learning, game testing, procedural
content generation, automation, computer games, reinforcement
learning, adversarial

I. INTRODUCTION

Recent research in RL has made large strides in improve-
ment with the introduction of deep RL. Many previously
unsolved problems have been solved with this method and
super-human performance has been achieved on Atari games,
StarCraft, Dota2, etc. [1], [2]. However, often the training and
validation sets are practically identical encouraging the agent
to memorize the environment leading to poor generalization
ability. For many areas of reinforcement learning, one chal-
lenge is to train adaptive agents that can handle previously
unseen environments and situations. Areas including self-
driving cars, computer games, robotics, etc. where the agents
may encounter novel situations frequently.

Training an RL agent to solve a (fixed) game can indeed lead
to super-human performance but with the risk of overfitting
policies to the existing game which makes RL less effective
on unseen environments [3]. This is problematic from a game
development perspective. During development, the game, the
environments, the assets, etc. can change on a day-to-day basis.

One solution is to re-train the agents at every update but that
is a costly, and often infeasible solution as the training could
take longer than the iteration time of a development cycle.
Furthermore, in game creation there are several reasons to have
agents with high generalization ability. An agent that plays
player created content (e.g. Minecraft, SimCity, and The Sims)
requires a lot of adaptation and generalization to be able to
solve a large plethora of challenges. Automated and/or assisted
creation of assets in games is becoming an increasingly crucial
component of game development as games become more
complex. Most human created (manually, or assisted), as well
as fully automated created assets, require testing. Ideally this
should be done in real time to avoid inducing unnecessary
delays in production. Even more crucially, there is a need for
in-game AI to adapt to novel environments and situations, as it
often interacts with human players, leading to an abundance of
situations which it has not encountered in training. Therefore,
the generalization ability of an agent is key to make RL a
useful tool in games and game development.

In this paper, we will approach this problem by training
agents on ever-changing environments in order to become
more robust to unseen scenarios. As previously mentioned
there are several use cases for this in games and game
production:

• In game development where agents need to be able to
play previously unseen maps or characters, especially for
automated game testing.

• In games where agents need to be able to solve player
generated maps. Here often there is no access to the
training tools as they are not shipped in the game, thus
re-training of the agents is impossible.

• Real-time procedural content generation (PCG) where the
environment may change according to various factors,
e.g. player skill.

It has been shown that PCG has a positive effect on
immersiveness in games [4]. PCG techniques often focused
on visuals and the generation of new textures, materials and
assets such as trees, landscapes, etc. In this paper, we focus
on the "playability" of assets, meaning that we focus on assets
and environments that affect the way the game is played.
This paper discuss game development but we imagine this
approach being useful in other areas where good generalization
is required.
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II. PREVIOUS WORK

Recently machine learning (ML) has been shown to be
usable in automated game testing. Supervised learning (SL)
can for example be used for rendered image glitch detection
to classify bugs in the image output from a game [5]. Recent
studies on modern 3D games have shown the potential of RL to
be used as game-AI [6]. Specifically, RL can be very beneficial
in game testing as one feature of the RL agent is its ability
to learn from experience. As the game is played from scratch
without any prior knowledge on how to play or solve the game
where even the controller has to be learned, no preconceived
way of solving the task is chosen. This feature allows it to
potentially identify unintended game behaviours and situations
such as imbalances or exploits in the environment. Previous
studies exploring the use of RL in game testing include
combining evolutionary algorithms, RL and multi-objective
optimization [7] and reinforcement learning for exploration
and bug exploitation [8].

PCG via ML refers to the use of ML to train models on
existing game content, and then leverage these models to create
novel content automatically. This assumes that there exists
previous game content to train on. In many cases, trained
agents overfit to the environment they were trained on. It has
been shown that PCG can be leveraged to increase generality
of the trained agent as it has to learn to play a previously
unseen environment [9]. Furthermore, RL can be used for PCG
by training level designing agents [10].

An approach called generative playing networks (GPNs)
[11] for generation and solving consists of three models:
an environment generator G, an environment agent policy,
and an environment value estimator. As each model is a
differentiable function, GPNs are fully differentiable and gen-
erate content that is paired with a solver. Thus, this model
gives the agent/solver control over the environment that is
created. Similarly, the paired open-ended trailblazer (POET)
algorithm is an environment-agent pair where the agent is
trained on a parameterized environment. Here, open-ended
learning was achieved by storing a population of environments
and searching for new ones that are of appropriate difficulty for
the agents. This generates increasingly complex and diverse
learning environments paired with their solutions [12]. The
continuous teacher-student (CTS) employs a learning progress-
based teacher algorithm where the teacher interacts with the
student by generating a parameterized controlled environment.
Here, a curriculum was created by explicitly modelling the
difficulty of the goal space [13].

There are several approaches and use cases to adversarial
RL (ARL). Commonly, an adversarial agent is the opponent
which plays against the training model, see e.g. [14]. Another
model is to use ARL to make the agents more robust (robust
adversarial RL (RARL)) [15], which trains an agent to operate
in the presence of a destabilizing adversary RL agent that
applies optimal disturbance forces to the system to maximize
learning.

Fig. 1: Schematic view of the architecture of adversarial RL
PCG (ARLPCG). The model consists of two parts: One RL
Generator and one RL Solver. The Generator receives a reward
depending on the performance of the Solver as well as from
the environment. The implicit reward (dashed) passed from
Solver to Generator is merely conceptual as in practice all
the rewards are passed from the environment. The auxiliary
input is passed to both Generator (as an observation) and the
Environment in order to let the environment adapt the reward
function accordingly.

III. MODEL

The ARLPCG model draws inspiration from several ideas,
below we list a few of them and their relation to our approach:
• That training on procedurally generated content improves

generalization in RL agents [9].
• That RL can be used for PCG [10]. This, combined with

the first point, is a powerful idea which is fundamental
to our model when it comes to creating ever changing
environments for generalizing RL.

• The Generator and Solver approach can e.g. also be found
in [11] where a semi-supervised model is composed of
three parts: one Generator, one Solver, and one Evaluator
(utility estimator).

• Auxiliary input connected to a reward can be used as
a training enhancer. Previous work shows that auxiliary
inputs can be used in a pseudo-reward optimization
problems [16] to improve learning. Here the auxiliary
task is paired with an auxiliary input to indirectly control
the output of a trained model.

• Posing increasingly difficult (progressive PCG) problems
increase learning capacity [17] much like curriculum
learning. If the difficulty can be controlled by an auxiliary
input we should be able to leverage this.

• Generally, we draw inspiration from the idea of adver-
sarial learning in generative models [18], which leverage
adversarial examples to train a more robust classifier.
Here we generate adversarial environments to train a
more robust solver.

As previously mentioned, our model consists of two co-
existing adversarial agents where the Generator creates an en-
vironment (e.g. racing tracks, platforms, and paths) which the
Solver is tasked to solve/traverse. The Solver gives feedback



to the Generator in the form of observations and rewards, and
the Generator challenges the Solver by creating an adapted
problem. This way the system is symbiotic, as without the
Solver the Generator would not be able to create something
that is "playable" (solved by a player), and the Solver without
the Generator would not be able to generalize well over
unseen environments. The use-case for this model is twofold.
1) Training a Generator to make the Solver fail makes the
Solver more robust 2) The Generator can be used to create new
environments which are shown to be traversable by the Solver.
For inducing control and better diversity in the Generator’s
output, we use an auxiliary task (see section III-A for more
details). A schematic view of the architecture can be found
in Fig. 1. We refer to this model as adversarial reinforcement
learning for procedural content generation (ARLPCG). To test
the ARLPCG model, we utilize two environment types; see
section IV for more details.

To summarize, this Solver-Generator model is designed to
address a set of challenges:
• The Generator should provide diverse training data al-

lowing the Solvers to become more robust and to handle
all/most environments authored either by the Generator
or a human (e.g. game developer or player).

• The Generator can assist game designers to create en-
vironments that could be controlled and quantified by
designed metrics (e.g. difficulty).

• The Solver can assist game designers to test environments
in real-time in production.

In the following sections we describe the individual com-
ponents of the model.

A. The Generator

Similarly to e.g. PCGRL [10], we focus on an iterative
creation process as opposed to generating the whole envi-
ronment at once. However, in contrast to PCGRL where
the agent manipulates an existing randomly generated en-
vironment (where the amount of manipulation is a hyper-
parameter), ARLPCG generates the whole environments from
scratch in a iterative fashion where the environment starts
empty and it is created segment per segment. One advantage
with this approach is that the Generator does not create a
new section/segment until the Solver reaches the latest section,
thus always creating a solvable/reachable segment for the
playing character. Furthermore, with the use of an auxiliary
task we induce indirect control over the process. Reward for
the Generator is partially deduced from the Solver, i.e. if the
Solver makes progress the Generator also receives a reward
in order to drive the creation of meaningful environments. As
the Generator learns to make challenges that are difficult but
not impossible for the Solver, the Generator can be used to
also drive creation of new environments.

1) Auxiliary input: When training the Generator, there
is a balance to be struck between impossible and trivial
environments. Furthermore, training an adversary RL based
Generator against an RL based Solver agent will most likely
lead to convergence towards the optimal utility function for

both agents. This is undesirable in two ways: the solutions
are often quite similar in nature leading to low generalization
ability for the Solver, and the Generator model then allows for
little control. Therefore, we introduce an auxiliary input to the
Generator network.

Our goal is to let an auxiliary input control the reward func-
tion in such a way that we can control the output indirectly.
This way, the Solver is confronted with varying difficulty and
behaviour (controlled by the auxiliary input to the Generator)
which increases its generalization ability to solve previously
unseen environments. Thus, the reward of the Generator is
connected to auxiliary rewards based on the auxiliary input
to the network. In this way, the behaviour of the Generator
changes when the auxiliary input is changed. When training,
the auxiliary input is randomly sampled (range: [−1, 1]),
see Fig. 1. Our hypothesis is that this will yield enough
variability for the model to better generalize than scripted PCG
environments. Herein, we focus on using the auxiliary input
to control the degree of difficulty of the environment, but it
could also be used to drive other metrics or behaviours, such
as speed, actions required, etc.

2) Reward structure: As previously mentioned, the Gen-
erator receives a reward from two sources. One is internal,
meaning that it depends only on its own actions. The other
one is the external reward which is tied to the performance of
the Solver. In this paper we mainly connect the performance on
progression and failure but it can be set differently depending
on the desired behaviour of the Generator as will be shown in
section VI.

For training a Generator to create a challenging and diverse
environment, we design the reward functions to mainly drive
two properties: progress and behaviour. On one end of the
spectrum the Generator should help the Solver to reach the
goal (progress), and on the other end it should actively try
to make it behave "sub-optimally" (i.e. any deviation from
the fastest-path to goal could be considered sub-optimal, but
this is also where the behaviour is manifested). By connecting
the reward function to the auxiliary input to the network, we
introduce a method to control the behaviour of the Generator.
The desired behaviour depends on the environment and can
be controlled/designed by a game developer or similar.

Formally, the reward function with auxiliary scaling can be
written as:

r =

n∑
i=0

rintλAiαi + rext

n∑
i=0

λAiβi, (1)

where λAi
∈ [−1, 1] is the auxiliary input fed in as input to

the network, rint/rext are the internal/external rewards, and
αi, βi are weighting factors.

B. The Solver

This approach deploys an RL agent as the Solver but one
could imagine scripted agents playing against the Generator.
However, we argue that this would likely lead to the Generator
finding exploits in the scripted agents rather than producing



(a) (b)

Fig. 2: Platform game. a) The Generator creates segments with
actions: distance (white solid arrow), angle (gray arrow), and
height (blue dotted arrow) relative to the previous block. The
agent also controls the size of the block. b) The Solver: drives a
character with actions: forward/backward (white solid arrow),
turn (gray arrow), and jump (blue solid arrow).

(a) (b)

Fig. 3: Driver game. a) The Generator creates segments with
actions: length (red dashed arrow), turn (white solid arrow),
and height (blue dotted arrow) as input. b) The Solver: drives
a vehicle with actions: throttle (white solid arrow) and turn
(yellow solid arrow).

meaningful tasks (see section VI-A for further discussion).
Furthermore, it would defeat the purpose of adaptiveness as
a programmer would have to re-write the code when the
environment changes significantly. Therefore, we argue, it is
crucial that the Solver has the ability to learn and adapt.
Hence, we choose to use an RL agent as the Solver in this
model. The training hyper-parameters can be found in Table
II. Generally, the reward function for the Solver contains a
progressive reward, plus a penalty for failing. The negative
reward for failing is crucial as it indirectly forces the Generator
to create environments that are not impossible to solve.

IV. ENVIRONMENTS

To validate our model we create two types of 3D environ-
ments, each representing two popular game genres: a third
person platformer and a racing game. The Generator param-
eterizes the environment segment by segment by outputting
the generating control parameters. The goal of the Solver is to
traverse the generated environment as fast as possible without
falling/driving off the track. The games were built in Unity and
connected to the training environment using Unity ML-Agents
API [19].

A. Representation

In our environments the action and observation space are
local and relative to the previous object placed. We therefore
apply a local representation scheme meaning that tiles and
segments are placed in a sequence (corresponding to Turtle in
[10]), as opposed to where the objects can be placed anywhere
in the environment (i.e. Wide in [10]).

B. Racing game

To represent a racing game we created a vehicle driving sce-
nario, here referred to as Racing Game. Here, the player/agent
controls a vehicle and the goal is to drive along a generated
track as fast as possible to maximize reward. The road is
created in segments where the banking is dependent on the
curvature of the road. The episode terminates if the driver
leaves the track, reaches the end or if the maximum step is
reached.

1) Generator: The Generator’s actions control the length of
the segments (in meters [20, 30]), curve (in degrees [−30, 30]),
and height change (in meters [−5, 5]). The new section is
requested by the Solver 15m before the road ends, thus
generating a constant flow of new sections that create a race
track. The Generator’s observation consists of both a game
state array (relative position to the goal, heading, angle relative
to the goal, goal distance, and auxiliary input), and a ray cast
array to give it information about the environment ahead. The
ray casts can be used as a way of creating a track in an
already filled environment where they can work as a collision
detector. We introduce a ray cast array in order to allow the
model to be deployed in an already existing environment with
obstacles already in place. This way the ray casts can be used
for the agent to learn to avoid obstacles while still creating a
traversable environment. If the track is colliding with itself or
other obstacles, the track ends and the episode terminates.

2) Solver: The controller inputs are throttle and turn. The
Solver receives a positive reward for moving towards the
goal, and completing the track. It gets a negative reward for
failing (driving off-track or timing out without completing).
The observation consists of both a game state array (relative
position to the goal, heading relative to the goal, angular
velocity, velocity, and rotation), and a ray cast array to give it
information about the road ahead and the surroundings of the
vehicle.

C. Platform Game

To represent the navigation aspect of Platform games, and
a subset of first person shooter (FPS) games, we created an
environment called Platform Game. Here the player controls
a character which goal is to traverse along a generated track
as fast as possible to maximize reward.

1) Generator: The Generator’s actions control distance
to next block (in meters [5, 10]), angle relative to the last
two blocks (in degrees [−180, 180]), square block size (in
meters [4, 6]), and height change (in meters [−2, 2]). The
observation consists of a game state array (relative position



Platform Racing Game
Observation State vector State vector + Ray cast
Actions 4 2
Learning rate 2e-4 2e-4
Layers × units 2 × 512 2 × 512
γ 0.99 0.99

TABLE I: The Generator’s setup.

to the goal, angle relative to the goal, goal distance, previous
block position/size/rotation, and auxiliary input).

2) Solver: The controller inputs are forward/backward,
left/right turn, and jump for the Solver. The Solver receives a
positive reward for moving towards the goal, and completing
the track. It gets a negative reward for failing (falling or timing
out without completing).

V. TRAINING

The models are trained with PPO and a version of self-
play (alternating Markov game) [20], i.e. the Generator and
Solver are trained in an iterative fashion where the state of
the other network is frozen (i.e. only running inference) when
the training network is updating. To note here is that it is not
a zero-sum game where the gain of one is the loss of the other
proportionally, but rather a semi-collaborative game where
there are elements of both competition and collaboration. In
this way, there are lower risks for exploits being developed
and more substantial/relevant challenges are posed. Due to
the nature of the problem, the Solver (in both the Platform
and Racing Game) works on a much higher frequency doing
hundreds of actions per episode while the Generator’s episode
is completed in the order of dozens. Therefore, the Solver
training switch occurs on a frequency of about a tenth of the
Generator. Training parameters can be found in Tables I and
II.

Platform Racing Game
Observation State vector + Ray cast State vector + Ray cast
Actions 4 2
Learning rate 3e-4 3e-4
Layers × units 2 × 512 2 × 512
γ 0.990 0.998

TABLE II: The Solver’s setup. In both environments, the
Solver uses ray casts to navigate around obstacles. In the
Racing Game, the ray casts "fan out" around the vehicle to
keep track of the road, and in the Platform game a height
map around the agent is used.

A. Reward function and auxiliary input in training

In our Platform Game experiments the Generator receives
a reward of λAi

× 10 whenever the Solver fails. This way we
can encourage different behaviour of the trained Generator
depending on the auxiliary input ([−1, 1]). See Figures 5a and
5b for examples of the difference these auxiliary input can
generate in behaviour.

In the Racing Game, the auxiliary reward rA is connected
to failure in the same way. As an additional experiment,
when λAi < 0 a positive reward is added for each time

step the vehicle is above a certain threshold above ground.
As a consequence, λAi = −1 will maximize the air-time of
the vehicle by heavily undulating the track, while λAi = 1
will reward the Generator when the Solver moves towards the
goal. See Figures 6a and 6b for examples of the difference
these auxiliary inputs can generate in behaviour. This indicates
that we can control other features that are not connected
to failure/success. When training in both environments, we
found that randomly selecting auxiliary input values from
−1,−1,−0.5, 0.5, 1, 1 gave a distribution that led to stable
results compared to using random sampled values in the range
[−1, 1]. The latter approach still lead to convergence and good
results but it took longer to train generally. We believe it
helps to expose the agents to edge values (i.e. -1 and 1) thus
increasing exposure to auxiliary values that are far from each
other that is beneficially for the mapping of auxiliary input
to reward. Interestingly, we found that a fully trained model
could extrapolate between these values reasonable well, see
section VI-A for more details.

To force progression and avoid stalemate during training the
Generator receives a small negative reward per step. The idea
behind this setup is that this forces the Generator to create an
environment that the Solver either (depending on the auxiliary
task) finishes, or fails, fast. Thus, if the auxiliary value is
low, the Generator will design a difficult environment while if
the auxiliary value is high it should make it easy to traverse
in order to maximize its reward. Furthermore, independently
of the auxiliary input, the Generator receives an incremental
reward for the Solvers progress, i.e. when the Solver gets
closer to the predefined goal. In the training, the goal positions
are randomized to promote diversity in environments and to
give the Generator the ability create a path to a predefined
position set by a game designer. The training hyper-parameters
can be found it Table I.

VI. RESULTS

We are reporting results on mainly two research questions:
1) Can the Generator be used to create environments with
different difficulties/behaviours which can be controlled with
an auxiliary input? 2) Are the agents trained with the ARLPCG
model better at generalization than agents trained with other
approaches? We use two baselines to compare and validate our
model: One is where the RL agent is trained on a fixed set
of environments, similar to the Atari game suite. The other is
similar to [10] where PCG environments are generated based
on a set of rules and random variables.

A. Generator

In both game environments, the Generator learned to create
a path towards a randomly generated goal at the same time as
it allowed the Solver to traverse it. In the Platform Game it
learned to create relatively complicated tracks which would be
hard to script. One example is that sometimes the Generator
initially led the Solver away from the goal in order to assure
that it was possible jump up onto each platform. Much like
a spiral staircase, it was able to create a vertical path for the



agent if the goal was straight above the agent, see Figure 4a.
In the case of the Racing Game we also saw that it could be
used in a non-empty environment where the ray casts made it
possible to create a track around obstacles, see Figure 4b.

To evaluate the value of having an adaptive agent, we
simulated a scripted agent by deploying a trained RL agent and
keeping its network fixed. As one would expect without the
adapting Solver, the Generator with λAi

= −1 did converge
towards an impossible track by creating jumps that the non-
adaptive agent would continuously fall for. However, replacing
the fixed RL agent with a constantly training RL Solver it
then learned to not try to jump over impossible gaps between
blocks. The converged Generator instead produced tracks
with long jumps and smaller platforms (for low auxiliary
values). Thus, the Generator when having a low auxiliary input
value converged towards hard but not impossible jumps that
encourages the Solver to try the jump and eventually fail.
See Figure 5 for examples. This is quantified for Platform
Game in Table III where it shows that the Generator, in
order to maximize reward, adapted the environment to the
corresponding auxiliary input. Similarly, for the Driver Game,
Table IV shows that lower auxiliary input gives sharper turns
and more varying height difference between segments. Figure
5a and 5b shows the difference between a typical high and low
auxiliary input. Here we can observe that without explicitly
being told, the Generator creates tracks with bigger jumps (i.e.
larger distance and smaller blocks) as it increases the chances
of the Solver failure. Even for auxiliary values not used in
training, the trend is that the tracks become increasingly harder
to solve, i.e. it possible for it to extrapolate between values.

(a) Platform Game. (b) Racing Game.

Fig. 4: Examples of generated environments. (a) Here the
Generator had to create a path to a goal far above (20m)
the starting point. (b) Here the Generator had to create a
path (between 4 waypoints) avoiding fixed obstacles in the
environment.

1) Generating environments with different style: One bene-
fit with our model is that the Generator can be used to generate
human playable environments in different styles. By playing
them, qualitatively there are noticeable differences between
environments generated with auxiliary inputs (λAi ) of -1, 0,
and 1 where the former value generates the harder ones.

Setting a high positive reward for the Generator when
the Solver fails will result in generally more difficult tracks.
However, the Generator will generate an environment that

(a) Auxiliary input of value 1. (b) Auxiliary input of value -1.

Fig. 5: Examples of generated tracks with different auxiliary
inputs to the Generator. With a high auxiliary input (λAi > 0),
the Generator agent creates a track that is easy for the Solver
to follow when trying to reach the waypoints (left figure). With
a low auxiliary value (λAi

< 0), it tries to make the Solver
fail by creating a track that has long and difficult jumps (right
figure).

(a) Auxiliary input of value 1. (b) Auxiliary input of value -1.

Fig. 6: Examples of generated tracks with different behaviour
controlled via the auxiliary input. With a high auxiliary input
(λAi

> 0), the Generator agent creates a track where the
Solver easily can get to the waypoints (left figure). With a
low auxiliary value (λAi

< 0), it is conditioned for reward
for increases air-time causing the Generator to create a highly
undulated track (right figure).

is "one-dimensional" in the sense that not everyone (both
human and synthetic players) find the same difficulty equally
challenging. Here, in the case of the Platform Game the
distance for the jumps are longer (see Table III). Similarly,
in the Racing Game there is a tendency of the Generator to
create a curvy road with negative camber (i.e. the track will
be lower on the outer side of the curve) that causes the Solver
to slide off if it enters the curve too fast. To investigate if
we could control the way the difficulty was constructed we
created a reward function which also rewarded vehicle air-
time. The goal was to see if it was possible to both control
difficulty while also give direction on how the difficulty should
manifest. The results where promising as the generated roads
were more undulating causing more-air time, thus we can
potentially not only control difficulty but style as well, see
Table IV and Figure 6 for more information.

To investigate the relation between the auxiliary input and
the trained models output, we take the three different agents
and validate them on a set of Generator generated tracks. For
the ARLPCG Solver this will not reflect directly as they have
been trained on the Generator. Therefore, this is especially
interesting for the other agents which have been trained on



a completely different type of track generation. Nonetheless,
we choose to report on all three agents. As we see in Table
VI and VII, all types of trained Solvers struggle more with
environments generated by low auxiliary input (the supposedly
harder ones) than the environments with high auxiliary input
(the easier ones). With these two analysis approaches above
we argue that the Generator can be used to create different
styles of tracks to a certain degree.

λAi
Success ratio Avg. block distance Avg. block size

1 0.97 6.73m 5.95m
0.5 0.92 6.98m 5.77m
0 0.88 7.15m 5.42m
-0.5 0.74 7.11m 4.52m
-1 0.69 7.46m 4.01m

TABLE III: Results on Generator creating environments in
the Platform Game with with variable auxiliary input. Second
column shows success ratio for Solver with different auxiliary
input. Third and fourth columns show the average generated
distances and block sizes.

λAi
Success ratio Avg. Angle Avg. Length Avg. Height

1 0.99 14.4m 28.4m 1.5m
0.5 0.89 14.7m 27.1m 2.0m
0 0.77 15.1m 25.1m 2.5m
-0.5 0.64 15.3m 23.0m 3.1m
-1 0.61 16.8m 21.8m 3.9m

TABLE IV: Results on Generator creating environments in
the Driver Game with with variable auxiliary input. Second
column shows success ratio for Solver with different auxiliary
input. Third, fourth and fifth columns show average change in
angle, length and height, respectively.

B. Solver

To test the generalization ability, we did experiments by
training the same RL agent (i.e. same hyper-parameters,
observations, actions, rewards, etc.) on differently generated
environment. We used three approaches: 1) Training on a fixed
map (referred to as Fixed Track), 2) Training on a rule based
PCG environment (referred to as Rule PCG), i.e. setting rules
for the Generator and then generating environments based
on random parameters and 3) ARLPCG where Solvers were
trained on Generators with different auxiliary inputs. Results
can be seen in Table V.

A conclusion we can draw from this is that, generally,
ARLPCG solves previously unseen environments better than
the other approaches, especially comparing to training on a
fixed set of environments. In Table V we see that in the
Platform game the solve ratio is 0.457 compared to 0.233
(Rule PCG) and 0.081 (Fixed Track), and in the Racing
game the solve ratio is 0.331 compared to 0.171 (Rule PCG)
and 0.219 (Fixed Track). Interestingly, when it comes to the
Platform game the steps required (on average) for Fixed Track
to succeed is much lower than ARLPCG. The reason for this is
that when it did succeed to get to the goal, it did quickly with
very little hesitation. Similarly, when it failed it also did so

with very "high confidence" by rushing straight out into thin
air. It shows that it has, to a much larger degree, memorized
certain action sequences. Usually the failures of the two PCG
approaches were more subtle in the sense that failure mostly
occurred on missed (but reasonable) jumps between blocks.

We did an ablation study by omitting auxiliary inputs and
rewards. The setup was similar but the auxiliary input was
fixed to a value instead (λAi = 1) of randomly sampled
effectively causing the Generator to create similar style of
environment each time. We found that the generalization
ability was greatly reduced when training on these kinds of
environments, see Table V and row Fixed Aux..

Platform Game Racing Game
Fixed Track 0.081±0.205, 0.20 (54 steps) 0.219±0.280, 0.7 (431 m)
Rule PCG 0.233±0.200, 0.95 (451 steps) 0.174±0.160, 0.9 (355 m)
Fixed Aux. 0.173±0.195, 0.90 (442 steps) 0.163±0.138, 0.8 (382 m)
ARLPCG 0.457±0.211, 1.00 (467 steps) 0.331±0.225, 1.0 (507 m)

TABLE V: Comparison of performance on a set of previously
unseen validation tracks (1000 × 20 runs). Platform Game
values indicate success rate, fraction of tracks completed by
at least one agent, and average steps taken to reach the goal.
Racing Game values indicate success rate, fraction of track
completed, and average distance completed. Fixed Track is
trained on a fixed set of tracks, Rule PCG is trained on rule
based PCG generated from a set of rules randomized to create
different track every time, and Fixed Aux. is trained on a
Generator with a constant auxiliary input.

Aux. value Fixed Track Rule PCG ARLPCG
1 (Easy) 0.743±0.369 0.788±0.301 0.997±0.009
0.5 0.507±0.402 0.632±0.422 0.890±0.249
0 (Moderate) 0.280±0.349 0.622±0.425 0.772±0.340
-0.5 (Hard) 0.281±0.336 0.460±0.441 0.643±0.392
-1 (Hardest) 0.206±0.322 0.425±0.444 0.613±0.430

TABLE VI: Racing Game: Solvers (trained on Fixed Track,
Rule PCG, and ARLPCG environments respectively) average
success ratio and speed on Generator generated tracks. Aver-
aged over 100000 trials (250 trials on 50 tracks each 500m
long). The Generator’s auxiliary input is varied between [-1,1]
to moderate the difficulty of the track. The success ratio and
average speed reflects the difficulty even for the agents that
were not trained using the Generator.

Aux. value Fixed Track Rule PCG ARLPCG
1 (Easy) 0.0±0.0 0.776±0.154 0.824±0.185
0.5 0.0±0.0 0.692±0.350 0.741±0.285
0 (Moderate) 0.0±0.0 0.386±0.235 0.728±0.284
-0.5 (Hard) 0.0±0.0 0.148±0.165 0.360±0.276
-1 (Hardest) 0.0±0.0 0.053±0.037 0.183±0.139

TABLE VII: Platform Game: Solvers (trained on Fixed
Track, Rule PCG, and ARLPCG environments respectively)
average success ratio on Generator generated tracks. Averaged
over 50000 trials (50 tracks á 1000 trials). The Generator’s
auxiliary input is varied between [-1,1] to moderate the diffi-
culty of the track.



VII. CONCLUSION AND FUTURE WORK

The model presented shows that an RL based content
generator can be trained to generate traversable environments
that improves generalization of a solving RL agent. Without
using an adaptive Solver, the Generator converges towards
generating impossible environments as a non-adaptive solving
agent is easily exploited. However, with an adaptive Solver
such as RL provides, the Generator have to adapt its behaviour
to create environments that are difficulty (to maximize reward
when the Solver fails) but not too difficult to not discourage
the Solver from even trying to traverse the environment. There-
fore, pairing a Generator with an RL agent Solver is crucial for
functionality. We expect other adaptive agent methods (other
than RL) to give similar results, but such an analysis is out of
scope for this paper. We also note that without the auxiliary
inputs, we get a lower generalization ability, albeit similar
to rule based PCG which still works well. Using a multi-
dimensional auxiliary input function could potentially increase
the diversity of the generated environments. Another advantage
with this approach is that the Generator can generate different
environments (controlled via an auxiliary input) for other use
cases, such as real-time map creation.

Confirming the findings in [9], the agents trained in a PCG
environment perform better than agents trained on a fixed
set of maps. We also saw that certain environments benefit
more from training on diverse environments like the agents in
the Platform Game (compare Table VI and VII). We reason
that the Driver environment is much less complex as driving
along a spline can be generalized down to a few rules, while
jumping on platforms the agents may potentially face a larger
set of novel situations. Furthermore, we show that we can
improve generalization compared to this approach by using
an adversarial RL architecture which constantly challenges the
RL agent with adapted PCG environments.

We argue that the model’s two parts are symbiotic in the
sense that they are both dependent on the other to develop and
evolve their behaviours. In our case, using a high auxiliary
value (i.e. giving reward to the Generator for the progress
of the Solver) they work together maximizing each other’s
reward, while with a low auxiliary value the Generator pushes
the Solver to adapt and thus becoming more robust to change.

Here we tried two kinds of behaviours: One that only
focused on difficulty (i.e. Platform game where reward was
only connected to failure/success) and one that focused on map
design (i.e. Racing Game where reward was connected to the
behaviour of the Solver). We do not foresee any conceptual
problems exploring other kinds of behaviours if a meaningful
auxiliary input and corresponding reward function can be
designed.

In this paper, we chose the auxiliary rewards to showcase
certain behaviours of the Generator showing that this approach
is viable. We believe that other types of auxiliary functions (i.e.
multi-dimensional and/or multi-behavioural) could be used
to increase the generalization of the Solver and behaviour
of the Generator. Furthermore, another possible improvement

of this approach could be instead of using one Solver per
Generator, using a population of Solvers could further improve
the diversity of the Generator’s output as it would be harder
for it to exploit a behaviour.
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