
Inventory Management with Attention-Based Meta
Actions

Keisuke Izumiya∗ and Edgar Simo-Serra∗
∗Department of Computer Science and Communications Engineering

Waseda University, Tokyo, Japan
Email: k-izumiya@ruri.waseda.jp, ess@waseda.jp

Abstract—Roguelike games are a challenging environment
for Reinforcement Learning (RL) algorithms due to having to
restart the game from the beginning when losing, randomized
procedural generation, and proper use of in-game items being
essential to success. While recent research has proposed roguelike
environments for RL algorithms and proposed models to handle
this challenging task, to the best of our knowledge, none have
dealt with the elephant in the room, i.e., handling of items. Items
play a fundamental role in roguelikes and are acquired during
gameplay. However, being an unordered set with a non-fixed
amount of elements which form part of the action space, it is not
straightforward to incorporate them into an RL framework. In
this work, we tackle the issue of having unordered sets be part of
the action space and propose an attention-based mechanism that
can select and deal with item-based actions. We also propose a
model that can handle complex actions and items through a meta
action framework and evaluate them on the challenging game of
NetHack. Experimental results show that our approach is able
to significantly outperform existing approaches.

Index Terms—reinforcement learning, attention, NetHack

I. INTRODUCTION

Designing autonomous agents to play video games can play
an important role in game balancing, testing, and design.
Furthermore, video games play an important role in devel-
oping robust Reinforcement Learning (RL) algorithms that
can then be applied to other real-world situations. In this
work, we tackle the challenging game of NetHack, a roguelike
game based on procedurally generated content, and develop
a general attention-based approach to handle unordered sets
of actions, such as inventory management, with autonomous
agents.

RL, a branch of machine learning, is a method that has the
great advantage of being able to learn without directly using
the label data. In particular, Deep Reinforcement Learning
(DRL), which incorporates deep learning techniques, has been
actively researched in recent years and is often applied to
games such as Atari 2600 [1], Go [2], and StarCraft II [3].
Among games, roguelikes are suitable as a challenging target
problem for DRL because they contain elements that current
DRL methods have not entirely overcome, such as a huge
state space, sparseness and delay of rewards, and the need for
strategies. According to [4], roguelikes are turn-based games,
and their grid-based environments are randomly procedurally
generated each time the game begins. The variety of enemies
and items makes the game complex enough that there are

multiple ways to complete the game. The required tasks
include resource management, combat with large numbers of
enemies, and exploration.

NetHack, which is the target problem of this research, is
one of the most popular open-source roguelikes, and it is still
being updated even though it is one of the earliest roguelikes.
The game’s objective is to search through over 50 levels
of procedurally generated dungeons using various items to
find the Amulet of Yendor and bring it back. It is incredibly
challenging even for humans because there is a wide variety of
enemies, items, and actions the player can take. Furthermore,
the dungeons are not straight paths but rather branching paths
that must be traversed back and forth. Examples of NetHack
screens are shown in Figure 1. The player can use four
main types of information: messages, dungeon, status, and
inventory. Messages show events and confirmation messages.
The dungeon shows the floor where the player @ is. Most
floors consist of square rooms and passages # (top figure), but
some floors do not (middle figure). An empty area indicates
that nothing exists or the area has not been explored. The status
indicates the player’s attributes such as strength, experience,
intelligence, and hunger. The inventory shows the items the
player possesses (bottom figure).

As described in Section II, there are several studies on
using DRL for roguelikes. However, most of these studies
focus on constructing the environment itself or on learning
in non-general situations. It is important that, to the best of
our knowledge, there is no study that deals with items in
the general situation that exist in most role-playing games,
including roguelikes, and whose use is essential. Therefore,
we propose a mechanism that handles items appropriately and
show its effectiveness in experimental results1.

Our main contributions are as follows:
• We propose an attention-based mechanism for handling

an unordered set of items in a deep reinforcement learning
framework.

• We develop a new agent model that significantly outper-
forms existing approaches in terms of in-game score on
the challenging game of NetHack.

• We perform an in-depth evaluation of the proposed ap-
proach and compare with existing approaches.

1The source code is available at https://github.com/izumiya-keisuke/
inventory-management978–1–6654–3886–5/21/$31.00 c© 2021 IEEE

Message

Player

Enemy

Item
Passage

Stairs

Room

Status

Dungeon

Fig. 1. Examples of NetHack gameplay screens. The top two images show
examples of the main in-game screen, while the bottom images shows an
example of the inventory screen. Different parts of the screens are annotated
for ease of understanding.

II. RELATED WORK

A. Reinforcement Learning Algorithms

Mnih et al. [5] proposed a method that does not use experi-
ence replay but instead uses data collected by running multiple
agents in parallel, represented by asynchronous advantage
actor-critic (A3C). In addition to A3C, there are several other
methods belonging to the actor-critic method, such as Actor-
Critic with Experience Replay (ACER) [6], UNsupervised
REinforcement and Auxiliary Learning (UNREAL) [7], which
introduces auxiliary tasks in addition to experience replay, and
importance weighted actor-learner architecture (IMPALA) [8],
which can be extended to thousands of machines by elaborat-
ing on the data communication method and off-policy correc-
tion. Our approach is based on IMPALA with modifications te
be able to do inventory management. The details of IMPALA
are shown in Section III-A.

B. Reinforcement Learning for Games

Most of the modern RL algorithms are evaluated on Atari
2600 games provided by ALE [9] or the environments pro-
vided by OpenAI Gym [10] as a benchmark. For more popular
games, some studies tackled perfect information games such
as Go and Chess [2], [11]. There have also been studies on
multiplayer imperfect information games, such as StarCraft
II [3] and Dota 2 [12]. These methods combine the DRL
methods with MCTS [13]. There is also the research [14] that
used an environment based on Minecraft [15], [16], a game
that uses items similar to NetHack. In this research we focus
on roguelike game of Nethack.

C. Reinforcement Learning for Roguelikes

Some research has focused on tackling roguelikes with
RL. To facilitate RL’s application, highly customizable en-
vironments based on Rogue, the game that originated the
roguelike genre and a simpler game than NetHack, have
been created [17], [18]. With these environments, DRL tech-
niques aimed at the exploration of the dungeon [17]–[21]
(the exploration of the current floor and descending to the
deeper floor) have been proposed. For NetHack, the subject
of this study, some recent research has created environments
based on NetHack and tackled various tasks. Campbell and
Verbrugge [22] aimed at learning enemy combat with an
abstracted state and action space. They also focused on finding
hidden doors and passages, which is essential for dungeon
exploration, and proposed a method using occupancy maps to
achieve the goal efficiently. Küttler et al. [23] tackled several
tasks such as scoring a game and collecting gold in a general
situation by using random network distillation, which is one of
the exploration facilitation techniques. Most of these methods
do not take into account items, which are almost essential for
completing the game, and this is one of the issues to be solved.
In this research, we propose a technique which is able perform
inventory management based on attention allowing for signif-
icant performance improvements over existing approaches.

D. Attention

Attention is a mechanism widely used in deep learning
where the model can learn which parts of the data and
features to pay attention to has been actively studied in natural
language processing. In the past, attention had often used in
combination with an RNN, as in [24], but many methods
using attention alone have been proposed and showed better
performance than existing methods since the appearance of
Transformer models [25], which used self-attention without
RNN. Now models that use self-attention are commonly
employed in the field of image recognition, where Convolution
Neural Network (CNN) have been commonly used [26]. In the
field of RL, Berner et al. [12] used an attention mechanism to
choose the target unit, and Zambaldi et al. [27] used self-
attention to describe the relationship between entities. We
focus on the position-independent property of attention and
propose a mechanism to handle inventory using this property.

III. METHOD

A. Reinforcement Learning Background

RL is often modeled by Markov Decision Processes (MDP).
The state space and the action space are denoted as S and A,
respectively. The state at the discrete time t = 0, 1, 2, . . . is
denoted as St ∈ S. The action At ∈ A the agent takes at
time t brings a reward Rt and a new state St+1. The goal of
RL is to learn the policy π(a | s) = Pr{At = a | St = s}
that maximizes the expected return Eπ

[∑
t γ

tRt
]
, where γ is

a discount factor.
We base our work on IMPALA [8], which is an asyn-

chronous off-policy actor-critic method. As in IMPALA, we
prepare multiple independent agents, actors, and environments
and update the parameters of the learning agent, learner, using
the data collected by these agents. We use an off-policy
correction method called V-trace because each actor has its
own local policy µ, which lags behind the learner’s policy π.
At the state s, the agent outputs the state value V (s), which
estimates the return from the state s, and a policy π(a | s).
The gradient of the loss function for the policy parameter is

ρt∇ log π(At | St)
{
Rt + γvt+1 − V (St)

}︸ ︷︷ ︸
policy gradient term

+ β∇
∑
a∈A
−π(a | St) log π(a | St)︸ ︷︷ ︸

entropy term

, (1)

where

vt = V (St) +

t+n−1∑
s=t

γs−t

(
s−1∏
i=t

ci

)
δs, (2)

δt = ρt
{
Rt + γV (St+1)− V (St)

}
, (3)

ρt = min

{
ρ,
π(At | St)
µ(At | St)

}
, (4)

ct = min

{
c,
π(At | St)
µ(At | St)

}
. (5)

β, n, ρ, and c are hyperparameters. The first term in (1) is a
policy gradient, and the second one is entropy. The gradient
of the loss function for the state value parameter is

{
vt −

V (St)
}
∇V (St).

B. Baseline Model

As a baseline, we use a slightly modified version of the
model used in [28], which is an unsurpassed model to our
best knowledge. The diagram of the model is shown above
the dashed line in Figure 2. The model can handle three of
the four types of main information as described in Section I,
all excluding the inventory. Since a message is a string of
256 characters in length, each character is embedded with its
ASCII code, and then the features of the message are extracted
by a 1D CNN. Although this is an outdated method in the field
of natural language processing, we use it because it is one of
the simplest models and message processing is not the focus
of our experiments. Status is a vector consisting of numerical

values such as HP and strength, and the feature is extracted
by a multilayer perceptron (MLP). The dungeon’s shape is
21 × 79, and each grid is a vector embedded with attributes
such as its color and its kind. We extract the feature of the
dungeon with a 2D CNN. In addition, the feature of 9 × 9
grids centered on the agent is extracted in the same way as
the entire dungeon. This has been validated by [29] and [30]
to help train the agent. These features are then concatenated
and input to the MLP and Gated Recurrent Unit (GRU) in that
order. h and h′ represent the hidden state at the previous time
and at the current time, respectively. Finally, the GRU output,
which can be regarded as the feature of the current state, is
input to two MLPs to obtain the state value and the policy.

C. Action Recursion

We add the embedding layer to the model to incorporate
knowledge of the previous action.In this layer, the agent’s
previous action is embedded and concatenated with the main
information’s features. It is intuitively that a player may
plan a sequence of actions. In particular, in NetHack, some
actions are often repeated multiple times, and others consist
of multiple actions. An example of the former is the search
for hidden passages or doors. If there are hidden passages or
doors in grids adjacent to the agent, it can find them with
a certain probability by using the search action. Therefore,
a common strategy is to repeat the search action a certain
number of times to find them. An example of the latter is
kicking and actions which use items. Kicking is composed
of two actions: the kick action itself and a kicking direction,
while the item-using action is composed of two actions: the
context of the action such as quaff and read and the item to
be used. Therefore, we need to input the actions that the agent
has taken before into the model. Although it is theoretically
possible for the model to learn to propagate this information
through the hidden state of the GRU layer, we found that in
practice, this effect did not occur and that it was beneficial to
directly use the previous action as an input.

It is possible to treat all pairs of actions and their targets as
separate actions to handle actions that require multiple inputs,
but we do not do so because this increases the size of the action
space and makes learning difficult. In NetHack, for example,
there are more than ten actions using items and more than
fifty types of items that can be held, so treating each potential
command pair as an action makes the size of the action space
beyond 500. Also, there is room for the number of actions
input to the model, but we decide to use only the previous
action because it should possible to consider any number of
actions thanks to GRU. Note that we embed the action with
the action space A′, which is defined in Section III-F.

D. Meta Actions

In NetHack, specifying an item is limited to a few situations,
such as selecting a potion to quaff immediately after selecting
a quaff action and selecting an armor to wear immediately
after selecting a wear action. In these situations, it is of
primary importance to specify an item. Therefore, we add the

Dungeon

Dungeon
(crop)

Status

Message

CNN

CNN

MLP

CNN

Concat GRU

MLP

MLP

State value
V(s)

Policy
π(a | s)

Action Emb

Item 1
‧
‧
‧

Item N

y1

yN

Attention

h

Emb

Emb

MLP

MLP

Sum

h'

MLP

‧
‧
‧

Emb

Emb

Emb

Emb Embedding layer

MLP MLP

CNN CNN

Concat Concatenating layer

GRU GRU

Sum Summation layer

Attention Attention layer

MLP

Fig. 2. Overview of our agent model architecture. The baseline model is shown above the dashed line. The whole model represents our proposed model
where we use attention-based inventory management framework. We note that there are still some other differences in low-level between our full model and
the baseline, such as the usage of meta actions.

meta action use item to the action space. When the agent
chooses this action, it specifies the item according to the
probability exp(yi)/

∑
i exp(yi) where yi is the ith item’s

score. The method of calculating the score is described in
Section III-E.

The introduction of the meta action also has the advantage
that items can be handled independently from normal actions.
It is not easy for policy to incorporate items directly because
the number of items is not constant. Using meta actions
makes the size of the action space fixed and makes the
implementation easier. Furthermore, we can handle the normal
action space and the action space of inventory separately. We
propose the computation of the entropy term in the loss func-
tion described in Section III-F as one example of separating.
Besides, for the same reason as described in Section III-C, it
can prevent the action space from becoming too large.

E. Attention-Based Inventory Feature Extractor

It is not easy to handle the inventory appropriately with
neural networks because it is an unordered set of items. To
express the unordered nature, we propose the attention-based
mechanism to extract the feature of the inventory. First, each
item in the inventory is transformed into a vector xi using the
embedding and the MLP. This embedding is done in a similar
way to the embedding of each grid in the dungeon. Then, the
sum of vectors of all items, x =

∑
i xi, is input to another

MLP, and the output is defined as the feature of the inventory.
Note that the summation does not depend on the order of
the items. The inventory feature is concatenated with other
main information features and the embedded previous action,
and the feature representation is processed in the same way

as the baseline model. Then, to specify the items to be used,
each item’s score is calculated using the attention operation.
Specifically, we denote the feature of the current state as f
and prepare the matrices WQ and WK and the vector wV,
and calculate each item’s score yi by the following equation:

yi =
q>ki√
dk

vi, (6)

where q = WQf , ki = WKxi, vi = w>Vxi, and dk is the
dimension of q and ki.

The feature vector is then used with the item meta actions
to determine what item to use while being invariant to the
order of the items.

F. Loss Function

The use of the meta action and the attention-based item
selection policy necessitates modifying the loss function. First,
we define modified action spaces and policies. We denote the
use item action as b0 and the action using the ith item as bi.
The virtual action space is defined as Av = A ∪ {b0}, the
action space for the inventory is defined as Ai = {b1, b2, . . .},
and the actual action space is defined as A′ = A ∪ Ai.
Similarly, we define the virtual policy as πv : S×Av → [0, 1],
the policy for the inventory as πi : S × Ai → [0, 1], and the
actual policy as π′ : S × A′ → [0, 1]. Note that these policies
satisfy the following relations for all s ∈ S:

π′(a | s) =

{
πv(a | s) for a ∈ A,
πv(b0 | s)πi(a | s) for a ∈ Ai,

(7)∑
a∈Av

πv(a | s) =
∑
a∈Ai

πi(a | s) =
∑
a∈A′

π′(a | s) = 1. (8)

The RL algorithm used in this study is IMPALA [8]. Among
the gradient of the loss function for the policy parameter, as
can be seen in (1), two modifications are applied: all π are
replaced with π′ in the policy gradient term, and the entropy
term is replaced with

∇
∑
a∈Av

−πv(a | St) log πv(a | St)

+ λπv(b0 | St)∇
∑
b∈Ai

−πi(b | St) log πi(b | St), (9)

where λ is a hyperparameter. When λ = 1, it means that
all actions belonging to A′ are treated equally in the entropy
calculation, and (9) is equal to∇

∑
a∈A′ −π′(a | St) log π′(a |

St).

IV. EXPERIMENTS AND RESULTS

A. Experiment Settings

In this study, we used the in-game score as a reward,
which shown in the status bar at the bottom as seen in
Figure 1. In NetHack, the in-game score can be earned by
various events, such as descending to a new level, defeating
enemies, or getting gold. We used this setting because it
contains many elements necessary to complete the game and
considers combat with enemies, which is often done with the
use of items, for which our model is explicitly designed to
handle. Furthermore, previous research described in Section II
restrict the actions that agents can take to movement only or
movement and a few other actions. In this study, however,
we used an action space covering most of the actions directly
related to the game.

We compared against the approach of Küttler et al. [28],
which is based on IMPALA [8] and TorchBeast [31] and uses
a limited amount of actions. In particular, only movement
in 8 directions, climbing up/down, reading messages, eating,
searching, and kicking are allowed for a total 14 different
actions. Our baseline extended the amount of actions by
considering an additional 11 actions (apply, drop, pickup,
puton, quaff, read, takeoff, throw, wear, wield, and zap) in
addition to meta actions. Our proposed approach extended
the baseline with action recursion, meta action, and attention-
based inventory feature extraction. We trained agents for all
approaches for one billion steps. In addition, we conducted
the tests over ten episodes with the same seed after training.

Most evaluation on NetHack was done using the character
as mon-hum-neu-mal (indicating that the role is monk, the
race is human, the alignment is neutral, and the gender is
male). The game content in NetHack varies greatly depend-
ing on the characters, especially on the roles. Therefore, in
addition to mon-hum-neu-mal, two other characters with
different characteristics were used in the experiment. The
additional characters were val-dwa-law-fem (valkyrie,
dwarf, lawful, and female) and tou-hum-neu-fem (tourist,
human, neutral, and female), and the characteristics of the used
characters are as follows:

TABLE I
AVERAGE SCORE OVER TEN EPISODES OF TESTING. WE SHOW RESULTS

FOR DIFFERENT APPROACHES AND THREE DIFFERENT CHARACTER
SCENARIOS. BEST RESULTS ARE SHOWN IN BOLD.

Monk Valkyrie Tourist

[28] 807.1 645.4 42.2
Baseline 1431.2 686.2 56.8
Ours w/o Inventory 1348.4 840.9 191.1
Ours w/o Action Recursion 1500.1 890.5 153.0
Ours 2345.0 906.7 283.7

Monk
2000

0
0 0.5 1 (x109)

Valkyrie

1000

1000

500

0
0 0.5 1 (x109)

200

0

100

Tourist

0 0.5 (x109)1

[28]
Baseline
w/o Inventory
w/o Recursion
Ours

Fig. 3. Average return during training. The horizontal axis shows the
training step, and the vertical one shows the average return of all agents.

• monk: strong at the beginning of the game, with various
items and high combat performance, but more challeng-
ing to conquer from the middle of the game.

• valkyrie: has very few items at the beginning of the
game, but the character has high combat performance.

• tourist: has various items but is very weak at the begin-
ning of the game, so tactics specific to this character is
required.

We evaluated all approaches independently in each of the three
character settings.

B. Comparison against Existing Approaches

We compared against existing approaches and testing results
are summarized in Table I and the training evolution is shown
in Figure 3. We can see that the proposed approach is able to
significantly outperform existing approaches. In particular, we
can see the largest relative increase in the most challenging
class Tourist, which does not start out with any combat skills
and must rely on inventory usage to stay alive.

C. Ablation Study

We compared four models’ performance: the baseline
model, the model without action recursion, the model without
the attention-based mechanism for the inventory, and the full
proposed model. Figure 3 shows the average return during
training, and Table I shows the average return in the test. We
can see that all the different components of our approach play
an important role in obtaining good results.

TABLE II
AVERAGE NUMBER OF TIMES THE AGENT TOOK THE ACTION OF USING

ITEMS WITHIN AN EPISODE. RESULTS ARE SHOWN FOR THE POLICY
LEARNED WHEN PLAYING WITH THE CLASS OF Monk. ACTIONS THAT

HAVE NOT BEEN TAKEN EVEN ONCE ARE OMITTED.

drop eat quaff read

Baseline 0.0 4.0 1.0 0.2
Ours w/o Inventory 0.0 6.8 2.6 0.0
Ours w/o Action Recursion 0.0 4.0 2.7 0.0
Ours 0.6 6.2 2.7 1.7

D. Effect of Difficulty

We can see that the difficulty of the game plays a fundamen-
tal role in the total score obtained. As Monk does not rely on
items and obtains strong intrinsic abilities when leveling up,
it shows the highest performance overall. Valkyrie and Tourist
rely heavily on items to stay alive and show lower performance
overall.

E. Analysis of the Policy

We show characteristic examples of the learned policy of
our model in Figure 4. The figures with black background
show the state of the game, and the probabilities on the right
side show the actions the agent will take in this state and their
probabilities. In the top three figures, the three actions with the
highest probability in the action space Av are shown. In the
bottom figure, the transitions of probabilities of the two actions
with the highest probability, search and North, are shown until
the agent takes search action five times in a row and finds the
hidden door. In addition, the inventory screens are shown in
the blue boxes and the probability of using each item, or πi, is
shown to the left of each item in the top two examples because
the action with the highest probability is use item.

The first example shows the screen immediately after the
agent takes the eat action, and the message at the top of the
screen asks the agent which item to eat. In the second example,
the agent is in the state immediately after taking the quaff
action and is asked the item to quaff. The third example shows
the state immediately after taking the kick action, and the agent
is asked in which direction to kick. The fourth example shows
the screen immediately after the agent moves to the left by the
West action.

We can see that in many cases, the agent is able to learn to
use items depending on the game state to stay alive. We can
see that the attention is able to understand the different usage
of the types of items and is invariant to the order of the items.

V. DISCUSSION AND CONCLUSION

We have presented an attention-based approach that is
able to handle unordered sets, such as item inventories, in
reinforcement learning models. We evaluate on the challenging
benchmark that is the roguelike game NetHack and have
shown that our proposed inventory management framework,
in combination with our handling of meta actions and action
recursion, our approach is able to significantly outperform
existing approaches.

0.000

0.040
0.005
0.000

0.378

use item
0.956

West
0.028

NorthEast

0.003

South
0.983

kick

0.011

East
0.004

search

0.957

0.717

0.717

0.679

0.616

North

0.030

0.214

0.219

0.250

0.304

0.000
0.000
0.000
0.000
0.000
0.981
0.009
0.000
0.000
0.000
0.009
0.000

use item
0.986

eat

0.007

quaff
0.002

HP

Player

Door

Player
Enemy

Enemy

Player

0.000
0.000
0.020
0.000
0.000
0.000

0.179

0.378
0.000
0.000
0.000
0.000
0.000
0.000

Fig. 4. Examples of the policy output of the proposed model. The right
side shows the probabilities of taking actions that belong to Av with high
probabilities. In the top two figures, the blue boxes represent the inventory
screens, and the probabilities to the left of the box represent πi. In the bottom
figure, the transitions of the probabilities are shown.

TABLE III
THE ITEM SPECIFIED BY THE ACTION THAT USES ITEMS. UP TO THREE
ITEMS ARE SHOWN IN ORDER OF THE NUMBER OF TIMES THEY HAVE BEEN
USED. THE NUMBER IN PARENTHESES INDICATES THE AVERAGE NUMBER
OF TIMES THE ITEM WERE USED. RESULTS ARE FOR THE CLASS OF Monk.

Action Used Items

drop unlabeled scroll (0.5), unknown potion (0.1)
eat food ration (3.0), apple (1.5), orange (1.0)
quaff potion of healing (2.7)
read spellbook (1.3), unknown scroll (0.2), unlabeled scroll (0.2)

As shown in Figure 3 and Table I, the proposed model
outperforms the existing model. The first example in Figure 4
shows that the agent was able to use items appropriately
because it selected edible items as targets to eat with a very
high probability at the right time. The bottom two examples
show the effect of action recursion. In the second example, the
agent was fighting two enemies and had very little HP left.
Therefore, the possible effective tactics are to flee or quaff
a potion of healing to recover HP, and this example shows
that the agent chose the latter. In the third example, the agent
was able to take kick action appropriately that requires two
consecutive actions: kick and the direction to kick. The door
+ on the south of the agent @ can be opened only by kicking
at the stage because the door is locked and the agent does
not have a key, so kicking is one of the appropriate actions
to take here. In the last example, some rooms likely exist on
the dungeon’s left side because it is unexplored there, but it is
difficult to imagine a path to the left side based on the currently
observable dungeon. Therefore, it is natural to assume that
there is a hidden door somewhere in the leftmost part of the
explored area where the agent @ is now, and it is appropriate
to search for it. In fact, the agent found the hidden door on the
left side after five search actions. Also, since the search action
searches around the agent, the agent cannot find the door if
it exists in the room’s upper left area. Therefore, one of the
natural strategies is to search upward again if the door is not
found after a certain amount of search actions. The probability
transitions of the search and North actions indicate that this
strategy is being taken.

The ablation study shown in Table II indicates that it is
necessary to incorporate both of mechanisms to use items
appropriately. The most frequently performed actions were eat
and quaff ; both are directly related to increasing the agent’s
survival time. The character we used, Monk, always has some
food and three potions of healing at the beginning of the
game. In NetHack, a hunger level progresses with actions, and
high hunger level makes the agent’s combat power weak and
eventually causes death by starvation. Therefore, eating food
is essential for the agent to survive for a long time and to be
able to get a higher reward. A potion of healing also helps
the agent’s survival since quaffing it restores HP. Besides, the
proposed model also took read actions. Monk starts the game
with a random scroll and is trained to read it if it is a scroll of
enchant armor. This is because reading it enhance the agent’s

AC, i.e. defense and evasion, which is advantageous in combat,
where most agent deaths occur. The list of items used is given
in Table III.

On the other hand, other actions of using items were not
learned. Many of them have a temporary disadvantage when
taken or use items that the Monk does not have at the beginning
of the game, i.e., items that need to be picked up to use. In
addition, the identity of items that the agent does not have at
the beginning of the game is unknown. It can only be revealed
by limited actions such as using the item or using a specific
item. However, some items have disadvantageous effects, and
the Monk does not have identifying items initially, so learning
these actions is difficult.

The model without the action recursion or inventory han-
dling mechanism successfully took actions of using items a
certain number of times. As mentioned earlier, an action to
use an item usually consists of multiple inputs, so it seems
impossible for a model that does not use action recursion to
learn this kind of action. However, a message often indicates
what input is required for the second action, as shown in
Figure 4. Therefore, although it is not easy to learn messages,
which are natural language, it is possible to learn actions that
require multiple inputs without action recursion. However, we
observed that the model often failed to take appropriate these
actions in the test. Also, the use of items is learned even though
the model does not use the inventory feature. In NetHack,
items are specified by the alphabetic characters shown on the
left of the inventory screen in the bottom figure in Figure 1.
Therefore, it is possible to learn using items that the agent has
at the beginning of the game without the inventory feature if
their alphabets are used to specify standard actions.

Figure 3 and Table I show that the proposed method’s
effectiveness is large for the Monk and the Tourist and small
for Valkyrie. The Monk and Tourist have many items at the
beginning of the game, but the Valkyrie has few items. As
mentioned earlier, it is not easy to learn to use items that
it does not possess at the beginning of the game, which is
the reason why the proposed method is not very effective for
Valkyrie.

Although our model allows for inventory usage, the agent
still has issues with long-term planning and is unable to learn
to equip new equipment. This is also partially due to the fact
that in NetHack, equipment is not always a strict upgrade,
it can be cursed and give large penalties in many situations.
Detecting if equipment is cursed or uncursing it is a hard
endeavour which discourages the agent from learning such
complex behaviours. We hope that with further developments
in reinforcement learning that it may be possible to overcome
such issues.

In conclusion, we have shown that our proposed model
is able to properly use items, which are essential elements
in role-playing games, including roguelikes. As a result, the
in-game score increased significantly. On the other hand, the
proposed model could not sufficiently learn the use of items
that were not possessed at the beginning of the game because
their identities were unknown at first. Also, our proposed

model did not consider spells, which is a common element
in many of role-playing games. Spells often have the same
feature: players can cast multiple spells, and casting them
consumes a shared resource. The proper handling of these
remains as future work.

REFERENCES

[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” in NIPS Deep Learning Workshop, 2013.

[2] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural networks
and tree search,” nature, vol. 529, no. 7587, pp. 484–489, 2016.

[3] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik,
J. Chung, D. H. Choi, R. Powell, T. Ewalds, P. Georgiev et al., “Grand-
master level in starcraft ii using multi-agent reinforcement learning,”
Nature, vol. 575, no. 7782, pp. 350–354, 2019.

[4] International Roguelike Development Conference, “Berlin interpre-
tation,” 2008, accessed: March 14th, 2021. [Online]. Available:
http://www.roguebasin.com/index.php?title=Berlin_Interpretation

[5] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep
reinforcement learning,” in Proceedings of The 33rd International Con-
ference on Machine Learning, ser. Proceedings of Machine Learning
Research, M. F. Balcan and K. Q. Weinberger, Eds., vol. 48. New
York, New York, USA: PMLR, Jun 2016, pp. 1928–1937.

[6] Z. Wang, V. Bapst, N. Heess, V. Mnih, R. Munos, K. Kavukcuoglu, and
N. de Freitas, “Sample efficient actor-critic with experience replay,” in
International Conference on Learning Representations, 2017.

[7] M. Jaderberg, V. Mnih, W. M. Czarnecki, T. Schaul, J. Z. Leibo,
D. Silver, and K. Kavukcuoglu, “Reinforcement learning with un-
supervised auxiliary tasks,” in International Conference on Learning
Representations, 2017.

[8] L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward,
B. Yotam, F. Vlad, H. Tim, I. Dunning, S. Legg, and K. Kavukcuoglu,
“IMPALA: Scalable Distributed Deep-RL with Importance Weighted
Actor-Learner Architectures,” 35th International Conference on Machine
Learning, ICML 2018, vol. 4, pp. 2263–2284, 2018.

[9] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The Arcade
Learning Environment: An evaluation platform for general agents,”
Journal of Artificial Intelligence Research, 2013.

[10] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “Openai gym,” arXiv preprint
arXiv:1606.01540, 2016.

[11] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre,
S. Schmitt, A. Guez, E. Lockhart, D. Hassabis, T. Graepel et al.,
“Mastering atari, go, chess and shogi by planning with a learned model,”
Nature, vol. 588, no. 7839, pp. 604–609, 2020.

[12] C. Berner, G. Brockman, B. Chan, V. Cheung, P. Dębiak, C. Dennison,
D. Farhi, Q. Fischer, S. Hashme, C. Hesse et al., “Dota 2 with large
scale deep reinforcement learning,” arXiv preprint arXiv:1912.06680,
2019.

[13] R. Coulom, “Efficient selectivity and backup operators in monte-carlo
tree search,” in International conference on computers and games.
Springer, 2006, pp. 72–83.

[14] S. Frazier and M. Riedl, “Improving deep reinforcement learning in
minecraft with action advice,” in Proceedings of the AAAI Conference
on Artificial Intelligence and Interactive Digital Entertainment, vol. 15,
no. 1, 2019, pp. 146–152.

[15] W. H. Guss, C. Codel, K. Hofmann, B. Houghton, N. Kuno, S. Milani,
S. Mohanty, D. P. Liebana, R. Salakhutdinov, N. Topin et al., “The
MineRL competition on sample efficient reinforcement learning using
human priors,” NeurIPS Competition Track, 2019.

[16] W. H. Guss, M. Y. Castro, S. Devlin, B. Houghton, N. S. Kuno,
C. Loomis, S. Milani, S. Mohanty, K. Nakata, R. Salakhutdinov,
J. Schulman, S. Shiroshita, N. Topin, A. Ummadisingu, and O. Vinyals,
“Neurips 2020 competition: The MineRL competition on sample effi-
cient reinforcement learning using human priors,” NeurIPS Competition
Track, 2020.

[17] A. Asperti, C. De Pieri, and G. Pedrini, “Rogueinabox: an environment
for roguelike learning,” International Journal of Computers, vol. 2, 2017.

[18] Y. Kanagawa and T. Kaneko, “Rogue-gym: A new challenge for general-
ization in reinforcement learning,” in 2019 IEEE Conference on Games
(CoG), 2019, pp. 1–8.

[19] A. Asperti, C. De Pieri, M. Maldini, G. Pedrini, and F. Sovrano, “A
modular deep-learning environment for rogue,” WSEAS Trans. Syst.
Control, vol. 12, pp. 362–373, 2017.

[20] A. Asperti, D. Cortesi, and F. Sovrano, “Crawling in rogue’s dungeons
with (partitioned) a3c,” in Machine Learning, Optimization, and Data
Science, G. Nicosia, P. Pardalos, G. Giuffrida, R. Umeton, and V. Sci-
acca, Eds. Cham: Springer International Publishing, 2019, pp. 264–275.

[21] A. Asperti, D. Cortesi, C. De Pieri, G. Pedrini, and F. Sovrano,
“Crawling in rogue’s dungeons with deep reinforcement techniques,”
IEEE Transactions on Games, vol. 12, no. 2, pp. 177–186, 2020.

[22] J. Campbell and C. Verbrugge, “Learning combat in NetHack,” in Thir-
teenth Annual AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment (AIIDE 2017), October 2017, pp. 16–22.

[23] Y. Burda, H. Edwards, A. Storkey, and O. Klimov, “Exploration by
random network distillation,” in International Conference on Learning
Representations, 2019.

[24] Y. Kim, C. Denton, L. Hoang, and A. M. Rush, “Structured attention
networks,” in International Conference on Learning Representations,
2017.

[25] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems, I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
Eds., vol. 30. Curran Associates, Inc., 2017.

[26] H. Zhao, J. Jia, and V. Koltun, “Exploring self-attention for image
recognition,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2020.

[27] V. Zambaldi, D. Raposo, A. Santoro, V. Bapst, Y. Li, I. Babuschkin,
K. Tuyls, D. Reichert, T. Lillicrap, E. Lockhart, M. Shanahan,
V. Langston, R. Pascanu, M. Botvinick, O. Vinyals, and P. Battaglia,
“Deep reinforcement learning with relational inductive biases,” in Inter-
national Conference on Learning Representations, 2019.

[28] H. Küttler, N. Nardelli, A. H. Miller, R. Raileanu, M. Selvatici,
E. Grefenstette, and T. Rocktäschel, “The NetHack Learning Envi-
ronment,” in Proceedings of the Conference on Neural Information
Processing Systems (NeurIPS), 2020.

[29] F. Hill, A. Lampinen, R. Schneider, S. Clark, M. Botvinick, J. L.
McClelland, and A. Santoro, “Environmental drivers of systematicity
and generalization in a situated agent,” in International Conference on
Learning Representations, 2020.

[30] C. Ye, A. Khalifa, P. Bontrager, and J. Togelius, “Rotation, translation,
and cropping for zero-shot generalization,” in 2020 IEEE Conference on
Games (CoG). IEEE, 2020, pp. 57–64.

[31] H. Küttler, N. Nardelli, T. Lavril, M. Selvatici, V. Sivakumar, T. Rock-
täschel, and E. Grefenstette, “TorchBeast: A PyTorch Platform for
Distributed RL,” arXiv preprint arXiv:1910.03552, 2019.

