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Abstract—The AI community’s growing interest in causality
is motivating the need for benchmarks that test the limits of
neural network based probabilistic reasoning and state of the art
search algorithms. In this paper we present such a benchmark,
chess fortresses. To make the benchmarking task as challenging
as possible, we compile a test set of positions in which the
defender has a unique best move for entering a fortress defense
formation. The defense formation can be invariant to adding a
certain type of chess piece to the attacking side thereby defying
the laws of probabilistic reasoning. The new dataset enables
efficient testing of move prediction since every experiment yields
a conclusive outcome, which is a significant improvement over
traditional methods. We carry out extensive, large scale tests
of the convolutional neural networks of Leela Chess Zero [1],
an open source chess engine built on the same principles as
AlphaZero (AZ), which has passed AZ in chess playing ability
according to many rating lists. Our results show that a novel,
experimental network, which was intended for efficient endgame
play, performed best despite being one of the smallest networks.

Index Terms—Benchmark, causation, intervention, Deep
Learning, Convolutional Neural Network, Halting-Problem, chess
fortresses, Monte Carlo Tree Search, AlphaZero, Leela Chess
Zero, logical reasoning, human cognition, material invariance

I. INTRODUCTION

Despite the success of deep learning based techniques such as
AlphaZero (AZ), the AI community is interested in developing
methods that can handle tasks that are of causal nature. For
example, Judea Pearl, recently argued that ”all the impressive
achievements of deep learning amount to just curve fitting”
[2]–[4]. Yoshua Bengio and Bernhard Schölkopf have also
recently emphasized the importance of causal relations [5].
In this paper we pursue this line of research by examining
the performance of symbolic[neuro] architectures (notation
from [6], an architecture where a neural network runs as a
subroutine within symbolic Monte Carlo Tree Search (MCT)),
on an original, new benchmark which is of causal nature. The
benchmark task is invariant to modifications, that do not change
the key causal elements of the task. An example is presented
in Figure 1, where the fortress is invariant to adding black
white-squared bishops. An arbitrary number of white-squared
black bishops can be added to the position without changing
the fortress evaluation. The reason is that this type of a piece

(which can only move on white squares) does not contribute to
battling the key g5 square (which is on a black square), which is
sufficiently protected by the white pieces. These characteristics
beat the laws of probabilistic reasoning, where extra material
typically means increased chances of winning the game. This
feature makes the new benchmark especially challenging for
neural based architectures.

Our goal in this paper is to provide a new benchmark of
logical nature - aimed at being challenging or a hard class -
which modern architectures can be measured against. This new
dataset is provided in the Supplement 1. Exploring hard classes
has proven to be fruitful ground for fundamental architectural
improvements in the past as shown by Olga Russakovsky’s
influential work on ImageNet’s hard classes [7] and more
recently ObjectNet [8].

Following a long tradition in AI and more recently AZ
[9], [10], we use chess as our experimental domain. For our
simulations, we use Leela chess zero (lc0), an open source
reverse engineered version of AZ [11], which is based on
published information about AZ [12].

In our dataset we focus on fortresses. Fortresses are con-
sidered one of the most challenging concepts in chess, also
for the latest chess engines [13]. Fortresses are a task of
causal intervention. In a fortress scenario the defending side
(There can for example be material disadvantage.), builds an
impregnable barrier that the attacking side can not successfully
breach. Whether a fortress is impregnable or breakable involves
the full depth and complexity of chess which makes fortresses
ideally suited for testing the limits of modern architectures.
We explore what kinds of neural network modifications make
partial progress on the fortress task.

AZ is a general purpose architecture that has been applied
to a wide range of tasks [14], [15] such as modeling the
COVID-19 virus protein structure with AlphaFold [16].

The core AZ architecture [17], with the convolutional neural
network having only a policy and a value head, is kept intact in
subsequent DeepMind papers [17]. Architectural improvements
which are motivated by testing a wide variety of different AZ

1https://drive.google.com/drive/folders/1du7P4vgi7X7kL9BTCZ6A2VKENGvzLY-
B978-1-6654-3886-5/21/$31.00 ©2021 IEEE



Fig. 1: A fortress, which is invariant to adding extra black white-squared bishops, defies the laws of probabilistic reasoning.
There can be either a white knight or bishop on the e7 square. The extra pieces do not contribute to battling the key g5 square.

inspired neural work architectures, could potentially have a
wide ranging impact.

In the work presented here, we tested all 66 of the main
and experimental lc0 [1] convolutional neural networks which
have been developed since the lc0 project started in 2018.

We created a novel fortress chess positions dataset, which has
causality and logical intervention characteristics, see Figure 1.
It emphasizes the importance of making progress. Each position
in the dataset has a provably unique best move, which for a
defending side leads to a fortress scenario or maintains it. We
treat this move as the optimal strategy and measure the success
rate of the different networks’ preferred choices or policy in
terms of matching this ground truth chess move.

Our benchmark approach is different from the traditional
approach for testing the performance of deep neural network
architectures in chess, which is to let different architectures
play full chess matches against each other. This approach is
also used in self play. The architecture that wins more matches
is considered superior.

One drawback of this approach is that a very high percentage
of chess games played between expert players ends in a draw.
This means that the large majority of the experiments are
inconclusive. When AZ played Stockfish 8 in their first match,
the draw rate was 83.9% (out of 1000 games), [10]. The
overall score in this match was 57.45% (574.5 points out
of possible 1000). A more recent result with a Leela (lc0)
network (384x30-t60-3010) playing 100 games against the
current version, Stockfish 11, ended with lc0 winning 52.5-
47.5 [18], with 71% of the games ending in a draw. (See
discussion [19].) Leela is not inferior to AZ in terms of chess
strength, see [20] where a modern lc0 achieved a higher score
against Stockfish 8, than AZ did. Generally top level chess
games, both engine and human, show the same trend towards
a draw as is also observed in the last World Championship
match with all the 12 games ending in a draw. It can thus be
argued that playing full chess games is inefficient in terms of
achieving conclusive experimental outcomes.

To avoid this outcome, we focused on comparing the
networks’ most preferred move choices and position evalu-
ation with ground truth data. By comparing the networks’
performance on our carefully designed new dataset, we always
get a conclusive result in terms of whether the network finds

the correct move or not. Thus, no computational resources are
wasted on inconclusive experiments.

In addition to comparing the policy head of the networks with
our unique ground truth moves, we also analyze the network’s
value head, which expresses how feasible the neural network
thinks a chess position is after a given move by the policy
head (see Figure 2 for the architecture of the network). Given
optimal play from both sides, a fortress position will end in a
draw. We are interested in exploring how far the evaluation is
from this ground truth. Our experimental results indicate that a
modified deep learning (DL) network can enhance performance
for chess fortresses, while saving computational costs due to a
smaller network size.

Our contributions are:
• a new test dataset for entering as a defending side into a

fortress chess position class,
• an experimental evaluation of the impact of different

modifications to the lc0 neural network using our new
dataset and observe that a network with an additional
moves left head consistently outperforms the others.

• an efficient approach for evaluating state of the art chess
architectures on hard chess position classes.

II. RELATED WORK

Previously, it was believed that more data enabled training
larger architectures with more expressive power, which enabled
them to handle a more diverse set of tasks [21]. The self-play
approach mastered by AZ was perhaps the pinnacle of this
approach, creating a limitless quantity of data. Currently there
is a growing consensus that more data is not enough and
that the focus should shift towards fundamental architectural
improvements with a special focus on logical reasoning and
intervention tasks [2]–[6], [22]–[24].

A. Fortresses

A chess fortress is a local feature F in a given starting
position such that (a) the game cannot be won by the attacker
without destroying F, and (b) all sequences of play that break
F expressly harm the attacker so that the attacker cannot win.
In a fortress, invasion roads or critical squares are sufficiently
defended, making it impossible to break the barrier with
pawn breakthroughs or material sacrifices that eliminate key



defending pieces. In other words, even if the superior side has a
material or positional advantage, best play from both sides will
still result in a draw (see Figure 1). Fortresses are generally
considered to rank among the most challenging phenomena
in chess. Nikolaos Ntirlis called fortresses in Appendix 2
Advanced Engine Management [13] ”one of the big problems
in computer chess analysis.”

Fortresses display a hardness feature associated generally
with the Halting Problem. If a fortress can be broken, then the
fact of breaking it is verifiable, otherwise we may not know
whether its appearance of holding is because the algorithm has
not searched long enough.

Prior work on fortresses explored the different ways in which
the attacking side could attempt to break a potential fortress
position. All of these approaches involved a mini-max-based
search [25] such as Stockfish and were designed to determine
whether a given chess position is an impregnable fortress.

A human chess player will approach fortresses as a logical
reasoning and intervention task: first define critical squares and
the optimal offensive and defensive formations and only then
start a search process to determine whether the critical squares
can be penetrated.

This human behavior inspired Eiko Bleicher’s Freezer
program [26], [27], which focuses on constraining the search
space when searching for moves that might break the potential
fortress. A human operator defines the results of boundary
conditions (pawn moves and pawn or piece exchanges) and
the possible defensive piece movements that seem to keep the
potential fortress intact. The chess position needs to be close to
a tablebases position [28]. Tablebases are chess positions which
have been analytically solved using retrograde analysis. Given
this constrained search space, Freezer is able to determine
whether a chess position is a fortress or not.

In [29] all moves are searched to the same depth and the
chess engine position evaluations at each depth are recorded.
The focus is on finding moves which evaluation rises with
increasing depth. A temporary concession might open up entry
points for the attacking pieces. The most recent attempt with
the Stockfish variant Crystal [30] penalizes moves that lead to
cyclic, repetitive variations.

In the work presented here, unlike prior approaches, we
focus on finding the unique correct moves for the defending
side for entering a fortress. The idea is that this makes the task
harder, since the defending side does not have the luxury of
making any mistakes.

B. Extended AlphaZero neural network architecture

Figure 2 shows the extended AlphaZero neural network ar-
chitecture as presented in [31]. It was developed for the purpose
of making lc0’s endgame play more effective [31], finishing off
games where there is a winning position instead of maneuvering
without making progress or so called “trolling” [32], [33]. It
was trained with tablebases data, which includes how many
moves are left to a checkmate given best play by both sides.

The vanilla AlphaZero architecture does not have the moves
left head or ”horizon” and has a value head as a direct output.

The advantage of splitting the value head into win, draw, loss
(W, D, L) is that it provides more information about the position
evaluation. For example a value head evaluation of zero could
mean that W=0, D=100, L=0 or W=50, D=0, L=50. In the
former case the position is a dead draw, while in the latter
case the position is highly complicated and dynamic, with both
sides having a chance, but a draw is an unlikely result. We refer
to [9], [10], [34] for further details on the AZ architecture.

C. Monte Carlo Tree Search

With MCTS different moves are searched to a different
depths. For its search component, the AZ architecture and
lc0 use the Polynomial Upper Confidence Trees (PUCT) [35]
variant of the MCTS. PUCT is a best-first search. This is in
contrast to mini-max search, which Stockfish uses, where all
plausible moves tend to be searched to a similar depth. The
original PUCT formula will assign a weight to each move, and
select the move with the highest weight:

at = PUCT (s, a) = argmax
a

(
Q(s, a) + U(s, a)

)
(1)

In its most basic form, the PUCT formula has two com-
ponents: Q, the mean action value or average game results
across current simulations that took action a in state s, and U
a regulating term which makes sure that moves, other than the
moves that are thought to be best, also eventually get explored.
U is calculated in its most basic form as:

U(s, a) = cpuctP (s, a)

√∑
b N(s, b)

1 +N(s, a)

where cpuct is an adjustable constant, P (s, a) is the prior
probability given by the policy output of the neural network, and
N(s, a) is the visit count for action a at state s. We sum over
all potential actions (b) in the numerator, and the visit count for
the action under consideration (a) in the denominator. Therefore
the less we have explored this action, the greater U will be. The
U component of the PUCT formula thus encourages exploring
moves suggested by the policy P (s, a).

A recent development [36], adds another term to the PUCT
formula renaming it as S = Q+ U + moves left effect

The moves left effect comes from an experimental version
of lc0 which adds a moves left head to the vanilla AZ
architecture. It estimates how many moves are left of the
chess game (until game ends).

The moves left effect is currently defined as (−1) ∗ (a +
b|Q| + cQ2)(dM) where M is the number of moves that
the network estimates are left of the game and a, b, c and
d are pre-defined constants. With the additional moves left
head, the neural network‘s role as a universal function approx-
imator is changed from f : position 7→ (value, bestmoves)
to f : position 7→ (win, draw, loose, bestmoves, 7→
estimated number of moves left).

III. EXPERIMENTAL SETUP

We ran version, 24.1 of lc0’s Monte Carlo Tree Search
(MCTS), which is comparable to AZ. For the MCTS, we



Fig. 2: The AlphaZero neural network architecture with an additional moves left head and a split value head

chose the lc0 default value which is cpuct = 2.15 [37] (see
Supplement 2 for a complete list of the lc0 parameters).

a) Fortresses dataset: To create the fortresses dataset,
we searched the largest available chess composition database
[38]. We also contacted known chess composition authors and
got databases from their personal collection, which focused
on the theme ”a positional draw”. We also got references to
books which we searched and composition authors that focused
on this theme. We contacted professional chess trainers and
got fortress databases from their personal collection, which
focus on fortresses that occurred in practical chess matches.
We searched some of the largest collections of chess matches
such as the Chessbase Mega 2021 [39] and Corr 2020 [40]
databases. We used the Chessbase [39] chess database program
to filter the resulting databases. This resulted in a database with
150 potential fortress games, each of which can potentially
have many fortress positions. We filtered out positions that
were in the tablebases [28] domain, since the these positions
might have been included in the set of chess positions that the
networks were trained on. Finally, we went through each game
and position manually in search of chess positions, where there
is a unique move for the defending side to enter the fortress. In
order to make a network’s task of finding the provably unique
best move as hard as possible, we selected positions where
the defending side must enter a fortress position from afar.
In other words, the defending side is not yet in the fortress
position, which means that an impregnable barrier has not yet
been built, but there is provably a unique way to enter it. We
filtered out positions where it was possible to arrive at the
fortress scenario or find the correct move by the method of
exclusion, meaning that all other moves lead to immediate
material loss. We selected only positions which had a unique
provably best move because we wanted to have a clear way
to measure performance. This rigorous filtering resulted in 18
test positions in our dataset.

Our objective was to gather all the relevant lc0 networks
that have been trained since the lc0 project started in the year
2018. We selected all of the strongest networks and all of the
experimental versions that tried out different modifications to
the vanilla AZ architecture. The best networks included the ones
on the lc0 best networks list [41], the final networks from the

2https://drive.google.com/drive/folders/1du7P4vgi7X7kL9BTCZ6A2VKENGvzLY-
B

main lc0 training runs, and the most recent networks from the
current runs [42]. We gathered networks from lc0 enthusiasts
personal repositories [43]–[45]. We also got networks via the
lc0 Discord channel [46]. The network which added a moves
left head to the vanilla AZ architecture was found on Discord.
It is also available on [31]. We collected 66 networks.

We chose the v0.24.1, of the lc0 MCTS engine [47] CUDA
version, which resembles AZ (There have been subsequent
improvements which move away from AZ). We chose the
default engine parameters. The main variable, apart from the
networks, was the number of nodes searched by the lc0 engine.
We chose that metric rather than search time as was done in
the original AZ paper [9] in order to make our experiments
hardware independent. For a list of the 66 networks and the
exact lc0 engine parameters see the supplementary material.

Since we kept the MCTS fixed, we subsequently refer to
move choices as the network’s move choices, although more
precisely a move is made by the network and the MCTS.

In the experiments, the networks were faced with each of
the 18 fortress positions from our new dataset. As mentioned,
each position has a unique provably best move. We registered
the five most preferred moves of each of the networks at the
different levels of nodes searched and compared it with the
ground truth chess move. We also registered the chess position
evaluation associated with each of the preferred five moves.

IV. FINDING THE BEST ARCHITECTURE

All the selected networks were used together with a MCTS
search as discussed in Section II to find the best move for
entering a fortress position for each of the positions in our
dataset. We varied the number of nodes searched for each
position to investigate how the performance of the networks
depends on the search effort.

The supplement 3 shows the results of these experiments for
all 66 networks. The network 128x10-ccrl-moves-le consistently
outperformed the other networks independent of the search
effort. This network has an extra moves left head (see Figure 2
for the architecture of the network), tracking how many moves
are left in the game, and is also one of the smallest networks
tested. It is only 1/27th of the size of the 384x30-t60-3070
network, which is ranked as 8th best. We qualitatively observed,

3https://drive.google.com/drive/folders/1du7P4vgi7X7kL9BTCZ6A2VKENGvzLY-
B



Fig. 3: Entering a fortress with a larger number of maximum nodes searched. The five best networks displayed based on the
average of the match between their most preferred move choice and the ground truth moves.

that searching more nodes may or may not lead to an improved
performance, depending on the chosen network.

For improved visual clarity of the graphical representation,
we selected the best networks based on the performance of
their most preferred move choice. We ran the search with this
subset of the networks to a higher node count. The results of
those experiments are shown in Figure 3. We observe that all
five best networks improve when given more time. We also
observe that the best performance is achieved by 128x10-ccrl-
moves-le, that correctly identified the best move in 72.2% of
the positions when given enough time to search 221 nodes per
move. This network has the additional moves left head and
consistently performs best over the range of nodes searched.

We were interested in discovering which networks would be
able to partially master the fortress positions and in how stable
the performance would be when we varied the number of nodes
searched. Thus, we considered not only the most preferred
move of the networks, but the top five preferred moves.

In Figure 4 we see that not only is the most preferred move
of the 128x10-ccrl-moves-le network better than the most
preferred move of the other networks, its other less favored
choices are also at least as good as the ones of the other
networks. In terms of accumulated performance, it shows the
best performance for all the up to five most preferred moves
that we tested (results shown up to the accumulated best four).

In a fortress scenario, the correct winning percentage is
50% or a draw, assuming best play for both sides. MCTS
will be slightly off this evaluation, favoring the side which
has fewer possibilities for making a mistake. In our case this
means that the evaluation would be slightly lower than 50%.

We see, however, in Figure 5 that all of the top 5 networks are
overly pessimistic about their defensive chances. Thus, there is
considerable room for improvement when it comes to showing
understanding of the fortress concept with an evaluation that is
close to the correct 50%. Surprisingly, we observe that more
search depth leads to an even worse evaluation (negative slope
of the best fit line), except for the best network, 128x10-ccrl-
moves-le.

a) Main empirical results: The moves left network,
128x10-ccrl-moves-le, outperforms the other architectures
consistently in all the metrics measured and in every experiment
despite it being one of the smallest of the networks tested.

It has a better first move choice and generally makes better
move choices as seen by the fact that it maintains its lead when
more than one move guess is allowed, for the accumulated
percentage for the, 2, 3, 4 and 5 move choices (The results for
the 2nd, 3rd and 5th are not shown).

It is the only network whose value head has a positive
best fit slope indicating that it benefits from searching more
nodes – moving closer to the correct 50% winning percent
evaluation. This is in contrast to the vanilla AZ architecture
networks, which have a negative best fit line slope indicating
that searching more nodes has a detrimental effect on their
evaluation of fortress positions.

The value head of all the networks is off by a large margin
from the correct evaluation of a draw indicating that despite
the policy head of the moves left network performing well, its
value head still lags behind in terms of evaluating the fortress
scenario correctly. Nevertheless, the moves left network’s value
head is still closer to the correct value than the other networks,



Fig. 4: The five best networks displayed based on the average of the match between their accumulated four best move choices
and the provably unique best move. We see that the highest ranked network, the moves left network, outperforms the other
networks over a wide range of nodes searched.

especially when more nodes are searched, as seen in Figure 5.

A qualitative follow up experiment – the hard classes for the
moves left head network

In order to understand why the moves left head is outper-
forming other neural networks on the fortress task, we carried
out further qualitative tests. We entered the chess positions
from the fortress dataset into a graphical user interface and
had an expert chess player interpret the moves preference
and evaluation of the moves left network in an attempt to
understand its approach. We were especially interested in the
chess positions in the dataset, that it did not master.

This qualitative analysis indicates that while learning to
win games where there is a winning position quickly, the
network also has learned to prolong defeat once faced with
what it perceives as an inferior position. A hard class for it
seems to be positions where two or more moves lead to a
prolonged game or a plausible fortress, but only one of them
leads to a genuine fortress. Also, the moves left architecture can
underestimate transformative moves, such as sacrificial moves
breaking the fortress. This is due to the search not giving
enough attention to these sacrificial moves. Prior approaches
such as Bratko’s approach [29] with mini-max engines tried to
find transformative moves and give them special attention in
the form of a deeper search. The reason for this problem is that
sacrificial moves get a low position evaluation score (Q value)
at lower search depth, while the other moves that maintain
the status quo have a higher Q value. MCTS searches the
moves with a higher Q value deeper than others (see PUCT

formula 1), and therefore does not pay enough attention to
sacrificial moves. This problem is magnified if there are many
possible neutral moves as in most/all our fortress positions.
Thus, the architecture struggled with finding sacrificial moves
that penetrated the defensive formation, but once such a move
had been played or this move had been searched deeper, the
evaluation started climbing, and it did realize its strength.
Detailed qualitative analyses of the moves left hard classes are
presented in the supplementary material.

V. DISCUSSION, CONCLUSIONS AND FUTURE WORK

Neuro and symbolic[neuro] architectures have achieved
impressive results in a wide range of domains. As described
in [2], [5], tasks of logical nature are perhaps their main
Achilles heel. Following that reasoning, our paper presents a
new benchmark which is of logical nature and explores which
extension of the vanilla AZ architecture empirically results in
progress being made on the challenging intervention task.

As expected, our new dataset for entering, as the defensive
side, into a fortress scenario proved to be challenging. Sur-
prisingly, a new experimental network, 128x10-ccrl-moves-le,
designed for efficient endgame play which adds a moves left
head to the neural network, tracking how many moves are left in
the game, consistently outperformed the other networks despite
being one of the smallest networks tested, only 1/27th of the
size of the largest ones. The new architecture was designed
for the purpose of finishing off superior endgame positions.

A DeepMind paper [48] highlights a challenge of self play
emphasizing the importance of exploring the agent state space



Fig. 5: Winning probability for the networks’ most preferred move. Red indicates that the move was the correct one, blue the
value for an incorrect move guess. The correct move choices of the 128x10-ccrl-moves-le network are the only ones which
evaluation does not decrease with more nodes searched as observed by the slope of the best fit line, although the evaluation is
still far below 50%.

and having diverse agents with a heterogeneous skill set rather
than focusing on comparing the performance of the self-play
generated agents. If none of the agents masters a part of the
agent state space or a chess position class, then this position
class will be a blind spot. Focusing on hard classes, such as
chess fortresses, can help highlight this problem.

A limitation of our work is that despite searching the
largest possible chess composition collections [38], the largest
databases with chess matches [39] and [40] and contacting
well known composition authors and professional chess trainers
and getting access to their personal collections, due to our
rigorous filtering, our dataset size was only 18 chess positions.
It is possible to extrapolate and augment the dataset in various
ways, see Figure 1 e.g. where extra pieces are added to the
attacking side. The resulting positions will, however, not be
completely independent, since they will share the same logical
theme. It is of interest to explore ways to gather a larger
dataset. Fortresses are generally considered one of the very
hardest chess phenomena, which according to [13], even chess
professionals working in tandem with the latest engines struggle
with. To our knowledge this is the first time that a dataset has
been compiled which consists of positions where a defending
side has to find unique best moves for entering a fortress.

Another limitation is that we show only one architecture
where the moves left extension performs best. We leave it for
follow up work to carry out an ablation study (removing the
moves left head from the best performer) and adding a new
moves left head to other architectures (e.g., the 2-5th best).

When creating the fortress dataset, we excluded chess
positions, where modern chess engines could find the unique
correct move by the method of exclusion since all the other
moves loose chess material immediately. It is possible that
the moves left network is also finding the right moves by

the method of elimination from its point of view, which is
different. Although material does not change, the network’s
metric to consider how long the game will last, might lead it
to preferring moves that prolong the game.

It is possible that ideas described in [49] for proving program
termination could be explored including moving away from
the search for a single ranking function and toward a search
for a set of ranking functions. Using ideas from Bratko [29]
and specialized Stockfish implementations such as Crystal [30]
a new type of a ranking function could be added to the MCTS
algorithm to give more attention to transformative moves. These
approaches place emphasis on moves that rise in evaluation
with a deeper search, and as is the case in Crystal, penalizing,
when having a favorable position, chess variations that lead to
repetitive cycles of moves where progress is not made. Another
possibility is that the MCTS treats the move choice as either
status quo or a transformative move and splits the nodes search
between these two types of a choices.

We also may explore whether the new moves left head
architecture can play a similar role as the human operator in
the Freezer program [26], [27], restricting the search space
after which a mini-max engine can finish off the job to decide
whether a position is a fortress or not.

In conclusion, our evaluation of a new dataset comprised of
hard classes of chess positions indicates that a moves left head
can improve the performance of the AZ architecture in chess.
Since AZ is a general purpose architecture, this extension
to the architecture could have positive impact on a range of
similar domains. For example, tasks associated with the Halting
Problem may benefit in a way similar to chess fortresses. The
tasks can have logical characteristics and invariant properties
such as not being sensitive to the addition of a certain type
of extra material or chess pieces, which defies the laws of



probabilistic reasoning.
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