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Abstract—Successful and accurate modelling of level difficulty
is a fundamental component of the operationalisation of player
experience as difficulty is one of the most important and
commonly used signals for content design and adaptation. In
games that feature intermediate milestones, such as completable
areas or levels, difficulty is often defined by the probability of
completion or completion rate; however, this operationalisation
is limited in that it does not describe the behaviour of the player
within the area.

In this research work, we formalise a model of level difficulty
for puzzle games that goes beyond the classical probability
of success. We accomplish this by describing the distribution
of actions performed within a game level using a parametric
statistical model thus creating a richer descriptor of difficulty.
The model is fitted and evaluated on a dataset collected from
the game Lily’s Garden by Tactile Games, and the results of
the evaluation show that the it is able to describe and explain
difficulty in a vast majority of the levels.

Index Terms—player modelling, difficulty modelling, game
design, dda, survival analysis

I. INTRODUCTION

A central aspect of game design is difficulty and its effect
on player experience – too easy and players are not sufficiently
engaged; too hard and players become frustrated, causing
them to quit the game. In games consisting of discrete tasks
or levels, a common way to manage the difficulty is by
controlling the resources available to the player to complete
such task or level – e.g., number of actions or time available
to solve a puzzle. Balancing the correct number of resources
available in the level to obtain a desired difficulty is a complex
task that often relies on the ability of the designer to relate an
abstract descriptor of difficulty to the behaviour of the players
and the controllable components in the level.

For example, in the case of puzzle games that provide
players with limited actions, or moves, to complete each
level, such as match-3 or bubble shooter style games, a direct
way to describe the difficulty is by measuring how many
attempts it takes players on average to complete a level. This
quantity is commonly referred to as attempts-to-complete, and
its multiplicative inverse is what we call completion rate. This
definition is useful for identifying levels in which players may
feel stuck and thus stop playing, controlling the consumption
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Fig. 1. Histogram over the number of actions spent by players to complete
one of the levels in the data. The effect of the action limit near M = 32
can clearly be seen as a sharp cut-off in the distribution. If we are able to
accurately estimate the full distribution (represented by the red curve), the
completion rate using different action limits can be calculated.

rate of game content, or even enabling different monetisation
strategies. However, such descriptor only considers the data
in an aggregated way and thus lacks the granularity that may,
for example, tell about the effect of changing the action limit
or how close to finish a player was. This makes it relatively
limited in it expressiveness, giving a designer little information
on how to adjust the difficulty and thus turning the task of level
adjustment into a trial-and-error procedure.

In the vast majority of currently published puzzle games,
success or failure are not the only data available about the
player behaviour in a game; often a summary of the actions
performed and the resources used are tracked. If properly
modelled, this information has the potential to be the basis
of a much richer descriptor of level difficulty. In particular,
the number of actions used by players in their attempts has
both the benefit of describing their progress within a level
and being directly related to an important level design aspect,
move limit.

The number of actions used to complete a level depend
on a number of factors, such as player skill, level setup and
luck. This leads to a certain distribution of actions spent by
players on each level (see Fig. 1). The central idea of this
article is that, by modelling and understanding the nature of
this action distribution, we may be able to not only evaluate
the completion rate but also estimate the effect of design
actions, such as changing the move limit, and gain a deeper
understanding of the player challenges.

To achieve this, the model of the player behaviour needs
to be both accurate and explainable. For this reason, in this
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research work, we have investigated the application of a
parametric statistical model to represent the underlying action
distribution. We discuss how this behaviour can be modelled
using a negative binomial distribution and conduct an empir-
ical study of the application of this modelling approach to a
dataset from a popular mobile puzzle game – Lily’s Garden
by Tactile Games – and present and discuss the results of the
study.

II. RELATED WORK

Flow [4] describes the psychological state where the dif-
ficulty of a task and user skill match which leads to an
engaging gameplay experience. While difficulty can be broken
down into multiple sub-components (e.g. cognitive, emotional,
etc. [6]), in scenarios where it is necessary to operationalise
difficulty, such as for dynamic difficulty adjustment or auto-
mated playtesting, it is common to use the probability of task
success as an objective measure of difficulty [5], [7], [9], [13],
[15], [17]. This interpretation is supported by Pedersen et al.
[16] where the correlation between player emotions and level
characteristics in a Super Mario Bros is investigated. Here, the
biggest factor for feeling challenged was the completion rate
of the levels or similar aspects of failure, such as number of
deaths.

In this work we adopt a similar probabilistic definition: the
difficulty of a level is given by the win probability, which
empirically is the completion rate and can be computed as the
number of times a given level has been completed over the
total number of attempts on said level. However, while this
aggregated description of difficulty as the completion rate is
intuitive, it does not offer a deeper and actionable understand-
ing of the problem, such as how imposing a time or action
limit affects the completion rate or how close to finishing a
player was. The nature of such data is censored since we do
not have information about the complete playthrough, so to
draw inspiration on how to deal with that, we can look to
survival analysis [14].

Survival analysis is branch of statistics that focuses on
estimating unseen, or censored, data and is commonly used
to estimate a time until an event. There are multiple examples
of using this approach to describe player behaviour using para-
metric distributions: Feng et al. [8] used a generalised Weibull
distribution to model online session length, and Bauckhage et
al. [2] tested various distributions, including a Weibull and
Poisson-Gamma distribution, to estimate time until people
lost interest in a game. A survival analysis approach has
been used to describe gameplay related behaviour in [10],
in which the authors investigated the operationalisation of
perceived difficulty of levels in the game Flappy Bird. By
using player and playtest AI data, they computed an empirical
survival function, S(x), which describes the distribution of
attempts that reached a given length in a level. From this, the
hazard function could then be used as an indicator of perceived
difficulty.

The work presented in this article shares its nature with
these last studies, in that we attempt to operationalise and

Fig. 2. An example of a level in Lily’s Garden. The level goals are specified on
the left side, and in-game boosters on the right side. These in-game boosters
are very strong boosters that allow the player to complete the level more
easily.

abstract aspect of gameplay – i.e. level difficulty – using a
parametric statistical distribution. The key points of departure
are, that the model presented in this article is both built
and evaluated on a large dataset of real player gameplay
data; furthermore, we present a general framework to describe
the operationalisation of difficulty, identify the appropriate
distribution and evaluate its effectiveness.

III. METHODS

Let us start this section by briefly describing the puzzle
game mechanics. Each level ` requires the player to collect
a series of goals within a predetermined maximum number
of actions, or moves, M`. Each move consists of collapsing
groups of adjacent board pieces by tapping on one of them.
Creating more powerful board pieces that clear a large area of
the board is possible by matching groups of at least 5 board
pieces at the same time. An example of a level is shown in
Fig. 2.

If the player completes all of the level goals with no more
than M moves, then we say that the attempt was successful,
and the player passes to the next level. Consequently, each
player can complete each level at most once. Now, if the player
consumes all of the permitted number of moves M without
completing the all of the level goals, then we say that the
attempt was a failure. In this case the player can either spend
a virtual currency to obtain some extra moves (e.g., +5), or
can decide to have one more attempt at the cost of a life.
These lives regenerate automatically over time, and typically
each player can get up to 5 of lives at any given time.

For this study we use data sample from L = 4000 levels
which has been collected between 2020-06-01 and 2021-01-
01. For each level, the available data for each attempt consist
of the number of moves used and whether the attempt was
successful or not. An initial data cleaning step is performed
by excluding all incomplete attempts, i.e., attempts which
are terminated prematurely either due to a technical issue
in the game, or simply because the player deliberately quits
the game. We also exclude attempts using special in-game
boosters which usually inflate the number of attempts finishing



Fig. 3. Illustration of the observed frequencies of moves to complete a level.
The vertical dotted line indicates that moves limit is set to M` = 15. The
fitted curve is marked with a dashed line. The subplot in the top-left suggests
the almost linear growth in the observed frequencies leads to fitting left tail
of the negative binomial distribution.

within k = 0, 1, 2 moves from the moves limit M`. The
final input dataset consist of the frequency of moves used to
complete the level (see Fig. 1) and the overall completion
rate, which is defined as the percentage of successful attempts
over the total number of attempts, with an average of 350,000
successful attempts per level.

The goal of the method is identifying a parametric distri-
bution which can fit the number of moves used to complete a
level to a good degree, i.e., up the truncation point imposed
by the moves limit M∗` . The fitted curve should match the
observed frequencies, and the area under this curve should
match the observed completion rate. As an illustration, Fig.
3 depicts the undesired situation where the fitted distribution
is able to describe well the observed frequencies, but fails at
matching the completion rate. We can expect this to occur for
instance when the steady growth of the observed frequencies
is almost linear and thus calibrated as the left tail of the
distribution. These ideas are formalised below.

Remark. Let us note here that for other types of games,
the definition of the input dataset would be analogous, for
instance, by interchanging the role of moves used to complete
the level by the units of time taken to complete the task.

A. Calibration of model parameters

Given a level ` with a move limit M∗` , let us denote by
F̂` the empirical distribution of moves used to complete the
level. Let ĉ` be the observed level’s completion rate, i.e.,
the percentage of attempts that complete the level within a
maximum of M∗` moves. As depicted in Fig. 1 the empirical
move distribution F̂` is truncated on the right by M∗` , but we
assume that this data corresponds to a censored observation
of an underlying non-truncated distribution F`. Let us assume
that F̂` and F` have probability density functions, and denote
them by f̂` and f`, respectively.

In these terms, our goal is to find a parametric model for the
distribution F`, in such a way that following two conditions
are met:

Fig. 4. Illustration of the linear relationship between the mean and the
variance of number of moves left to complete level.

Condition 1. The fitted distribution, F`, follows closely the
empirical distribution, F̂`, all across the range (0,M∗` ].

Condition 2. The quantity F`(M∗` ) approximates the observed
completion rate ĉ`.

In this article we consider the Condition 2 as a validation
step only; that is to say, we do not explicitly enforce this
condition as part of the calibration algorithm. The rationale
behind decision is that we aim at establishing here a baseline
for how much can be explained by focusing only on fitting the
truncated data. In other words, we are assessing the degree in
which Condition 1 can ensure that Condition 2 is fulfilled as
well.

Let us now describe calibration strategy for the model
parameters. Given a parametric model for the distribution F`,
we obtain the corresponding parameter set θ` by applying a
Non-Linear Least Squares (NLLS) regression over the range
(0,M∗` ], which is were we can fully observe F̂`. Such a
method requires an initial guess θ0 of θ` as an input, which,
if incorrectly chosen, may lead to a false negative due to a
sub-optimal fit. In order to minimise this risk we choose the
initial guess by solving the following optimisation problem:

θ∗0(`) := arg min
θ0∈Θ`

D(f̂`, f
(θ0)
` ),

where Θ` denotes the search space for the initial guess
θ0; f (θ0)

` is the distribution we get from NLLS by using the
initial guess θ0; and D is a distance between the distributions
F̂` and F

(θ0)
` over the range (0,M`]. Here we shall use the

Kolmogorov-Smirnov distance (see [1]) which in this case is
simply given by

D(f̂`, f
(θ0)
` ) := max

m≤M∗`

∣∣∣F̂`(m)− F (θ0)
` (m)

∣∣∣
= max
m≤M∗`

∣∣∣∣∣∣
∑
m′≤m

(
f̂`(m

′)− f (θ0)
` (m′)

)∣∣∣∣∣∣ . (1)

Notice that in these terms Condition 1 can be rewritten as
D(f̂`, f

(θ∗0 (`))
` ) < δ, for a small enough δ, say 5%.



B. Requirements for the underlying parametric distribution

Our target distribution (i.e., moves used to complete the
level) takes only non-negative integer values. Consequently,
in order to fit a parametric model we can use a non-negative
integer-valued distribution (e.g., negative binomial) or, alterna-
tively, work with a discretization of a non-negative continuous
distribution (e.g., the gamma distribution).

In order to delimit the list of potential distributions we
could use for our analysis, we start by looking at the pattern
depicted by Fig. 4 which suggests that there is a strong linear
relationship between the mean and the variance of number of
moves left to complete level. More precisely: Let M`(n, i) be
the number of moves left at the end of the n-th attempt of the
i-th player to pass level `. Each point of this graph corresponds
to one of the levels ` = 1, ..., L in our sample (L = 4000),
and the coordinates x and y axis equal the mean, µ`, and the
variance, σ`, of M`(n, i), respectively, where n and i vary
over all of the attempts that took place during the observation
period. The dashed line shows the result of performing a linear
regression of σ2

` with respect to µ` with no intercept – i.e.,
we consider a model of the form σ2

` ≈ ψµ`. The goodness
of this fit (i.e., R2 ≈ 85%, p-value < 10−16) suggests the
aforementioned strong linear relationship between the mean
µ` and the variance σ2

` of M`. Further it implies a necessarily
condition that our parametric model for M` should satisfy.

C. Negative binomial distribution as a baseline

Based on the above, is clear that the most natural non-trivial
starting point is to consider a negative binomial distribution
since it is a well-known non-negative integer-valued distribu-
tion exhibiting a linear relation between its mean and variance:

f`(m) :=

(
m+ n− 1

m

)
(1− p)npm, for m = 0, 1, 2, ...

As for the search space for the initial guess we shall use
Θ` := [1, 10M`]× [0.001, 0.999].

Two remarks are in order here: first of all, note that
the negative binomial distribution is also referred to as the
Poisson-gamma distribution since it is equivalent to a Poisson
distribution with intensity parameter λ where the λ itself is
allowed to be random by following a gamma distribution.
Second, a more sophisticated approach would be to work with
a discretization of a Tweedie distribution for which it is well-
known that σ2

` = ψµp` , or even a Poisson-Tweedie distribution
for which σ2

` = µ` + ψµp` [3], [11]. However, we let this
investigation for future work since our initial exploration (see
Fig. 4) suggests that considering a dispersion parameter of
p = 1 could provide already a very good starting point.

IV. RESULTS

To estimate the validity of our approach, we tested it on
4000 levels from the puzzle game Lily’s Garden: first, we
analyse the overall results of fitted distribution parameters
on all of the levels. In a second step, based the conditions
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Fig. 5. Log-linear plot of the fitted parameters p and n for each level. The
color indicates the number of users that have played the given level.

described in the previous section regarding the fitted distri-
butions, we discuss the goodness of the fit of the resulting
model, thus evaluating the ability of the model to describe
the player behaviour. Lastly, we validate whether the model
is able to describe the levels’ canonical definition of difficulty
– i.e. completion probability – as well as the aforementioned
behaviour.

A. Distribution parameters

Figure 5 shows the fitted parameters obtained from the
execution of the algorithm on L = 4000 levels from the
puzzle game Lily’s Garden. Each of these points represent
the parameters (n`, p`) of a negative binomial model fitted
to the distribution of moves used to complete each level ` =
1, 2, ..., L. It can be seen that the majority (i.e., 83%) of the
levels fall within a central cluster defined by 0.001 < p` ≤ 1
and 1 ≤ n` ≤ 200. For this central cluster it is apparent
that the parameters (n`, p`) follow a log-linear relationship
log(n`) = ap` + b relationship (R2 = 87%), where a and b
are global constants not depending on the level. This indicates
that the level’s move distribution can possibly be driven by a
single parameter, which would enable level designers to easily
compare levels to one another.

For this purpose, the so-called scale parameter (ϑ`) could
be considered, which describes the spread of a distribution –
i.e., the larger the scale parameter, the more spread out the
distribution. This numerical parameter is often considered in
the context of a parametric family of probability distributions,
and in the case of negative binomial distributions it is given
by this simple expression

ϑ` :=
1− p`
p`

.

Notice that from this expression we can derive the (n`, p`) as

p` =
1

1 + ϑ`
, and n` = exp

(
a

(
1

1 + ϑ`

)
+ b

)
.

There are also two other notable clusters. The first of these
clusters is defined by p` = 0.001 and consists of 15% of
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Fig. 6. Log-log plot of the Kolmogorov-Smirnov test statistic D and the mean
of the fitted distributions. The colours show the relative difference between
the expected and actual completion rate.

sampled levels. The common feature for all instances in this
cluster it that the parameter fitting threshold had been reached,
which will be explored in more detail in Section IV-B. The
second cluster is defined by n` > 200 and consists of 2% of
the levels in our sample. Inspecting the instances in this – high
n`, high p` – cluster, we encountered either tutorial levels or
levels with a specific type of game mechanic that channels the
players to rather restrictive type of game play.

It is worth noting that, by design, the tutorial levels tend to
exhibit a lower variance than the rest of the levels, either by
fixing the random seed or overall layout and ideal strategy of
the level. This reduced dependence on randomness may there-
fore also lead to a move distribution with smaller variance. In
the same manner, we have observed that the levels containing
the channelling mechanic that restricts gameplay lead to a less
random play experience. Such information may be particularly
useful to level designers since creating levels where the chance
of winning is completely determined by chance removes any
agency from players and are potentially not very fun to play.
Being able to identify such levels can therefore provide a more
quantitative measure of level randomness.

B. Condition 1 and validity of fits

The initial condition laid out in Section III-A states that
the fitted distribution F` should closely follow the empirical
distribution F̂`. To determine whether this is true, we use
the Kolmogorov-Smirnov distance D as defined by Eq. (1).
To give an overview of the link between the distribution
parameters and D, Fig. 6 plots D against the mean (µ` =
n`

1−p`
p`

) of the fitted distribution, and coloured by the relative
difference (c`− ĉ`)/ĉ`. What we find is that 99% of the levels
satisfy D < 5%, meaning that the fitted distributions describe
the empirical data very well in many cases and thus fulfil
Condition 1.

One thing to note is that in some cases, the parameter
boundaries were reached during the fitting process. This was
observed to happen in around 15% of the levels and typically
lead to p` = 0.001. These levels appear in the right-most

Fig. 7. Comparison between the observed completion rates and the fits
obtained from the calibration algorithm.

cluster in Fig. 6 and are defined by µ` > 103. This was
typically observed to happen when the empirical move dis-
tribution only exhibited a steadily increasing trend, leading
to instances where only using the tail of the distribution
would best describe this simple behaviour. We consider those
examples bad fits due to the method not converging and
exclude them for the rest of the analysis in the next section.

Before moving on to the next part of the analysis, we first
attempt to isolate what differentiates the levels that show a
good fit from the other ones. Specifically, we first investigate
whether different game mechanics influence the move distri-
bution. For this purpose, we use a logistic regression to model
whether the level fit converged or not in order to estimate the
impact of specific board pieces. The results indicate that timing
mechanics generally lead to a better fit while one specific
spawning mechanic (i.e., the collect goals first appear after
interacting with the spawner) lead to a worse fit.

One thing that is worth noting is that the data used for
this analysis disregarded attempts that used various in-game
help items (i.e., extra moves, boosters, etc). If a player finds a
level to be difficult or frustrating, subsequent attempts by the
player may be disregarded because they use helping items,
distorting the move distribution. A number of observations
support this hypothesis: When only considering the move
distribution of the second attempt of players, the fraction of
levels that successfully converged increased by about +5%.
Additionally, the fraction of attempts in which players used in-
game boosters and help items were up to +18% more frequent
in non-converging examples than convergent ones; thus, more
attempts are ignored on average for non-converging examples.
In our data processing step, these attempts were filtered out
because they exhibited a clear artificial alteration of the curve,
especially in the last two moves of the levels. Part of the
explanation for the divergent fits can therefore also be related
to the data.

C. Condition 2: completion rate comparison

The second condition states that the expected completion
rate, F̂`(M∗` ), should approximate the observed completion
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Fig. 8. Subplots in the top (a-c) and bottom rows (d-f) correspond to instances when the observed completion rate ĉ` ≈ 20% and ĉ` ≈ 40%, respectively.
The first, second and third columns exemplify cases we found a good (a and d), medium (b and e) and low (c and f) agreement between the observed and
fitted completion rates, respectively.

rate, ĉ`. In order to assess this condition, we first notice that
the two values are strongly correlated as exhibited by their
Pearson’s correlation coefficient of ρ = 83%. Further, Fig.
7 suggests that the observed and fitted completion rates are
related to each other by means of the linear relationship

c` ≈ 1.035ĉ` − 0.104 (2)

with an adjusted coefficient of determination of R2 = 75%.
Equation (2) suggests that the completion rates tend to be
underestimated, especially at low completion rates (i.e., for
very hard levels where the average player will need the
equivalent of 8 or more attempts are needed to complete
the level). Based on these arguments we can consider the
Condition 2 has been met as well.

In practice level designers typically work with ranges of
the completion rate rather than point estimates, so that they
can classify the levels in classes (e.g., ”easy”, ”very hard”).
Consequently, the current results are positive and very promis-
ing. One could however also look at point estimates of the
completion rates, for instance under the light of the absolute
percentage error given by ε` := |c`/ĉ` − 1|. By doing this,
we have observed that the median value of ε` revolves around
the 49%, and it goes down to 23% when adjusting according
to Equation (2).

In order to get a better understanding on what leads to the
aforementioned underestimation (i.e., cases where c` < ĉ`),
we exemplify in Fig. 8 what happens in a series of scenarios:
Scenario 1, as illustrated by subplots a and d, corresponds to
cases where the relative error between ĉ` and c` is small. Sce-
nario 2 in subplots b and e show cases where error is medium.
And finally Scenario 3 in subplots c and f corresponds cases
with a major underestimation. In Scenario 3, it can be seen
that it is only the tail of the distribution that is used to describe
the data. A similar phenomenon was also observed in the
cases where the fitting method did not converge: Due to the
available player data and steady increase in completions, only
the tail is required to describe this relatively simple behaviour.
However, contrary to those cases, these levels are in more

of a continuum: It is more likely to underestimate at low
completion rates where more data is censored, while for higher
values of ĉ` (like in Scenario 1 and Scenario 2) we have more
information about the distribution is available which further
constrains f`.

In order to see if there are any specific game mechanics that
may cause a difference between the completion rates, a similar
method as section IV-B is used. Instead of using a logistic
regression for predicting whether it was a good fit or not,
a linear regression is used to predict the difference between
expected and actual completion rate. The results are similar to
the findings in the previous section regarding successful fitting:
Levels with timing or other gameplay restrictive mechanics
lead to a higher expected completion rate. Interestingly, board
pieces with colour-matching mechanics tend to lead to too
low expected completion rates. A way to possibly interpret
this is that goals which can be completed at a steady pace
(such as colour mechanics) lead to a more steadily increasing
ramp-like distribution, leading to completely underestimating
the completion rate due to more degrees of freedom in the
fitting. Timing mechanics, on the other hand, may require more
planning that appear as a more constrained minimum number
of moves spent which leads more defined distribution around
a given move and less variance that may be detrimental to the
modelling method. That said, there are additional factors not
considered (such as level topology), so more work is required
to establish any link between the completion rate difference
and game mechanic.

V. DISCUSSION AND FUTURE WORK

In 85% of the levels we are able to find a negative binomial
distribution that describes the player data well. Additionally,
we are able to derive estimations of different game play
features, such as level randomness and board piece descriptors,
that can give additional insights to the game designers. That
said, there are still some open questions to address about the
current approach related to the modelling and possible use-
cases, which will be discussed in this section.
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Fig. 9. 2D plot of how the completion rate is expected to change depending
on the initial completion rate and the change in moves limit. The initial
completion rates are binned in bins spanning 2%, and the new expected
completion rate is adjusted by the trend from Fig. 7.

A. Changing the move limit

One of the discussed use-cases of modelling these distribu-
tions is that level designers can estimate what changing the
move limit would mean for the completion rate. To examine
how the completion rate is affected by changes in the move
limit, Fig. 9 shows how the predicted absolute change in
expected completion rate depends on the initial completion
rate and change in move limit. As a rule of thumb, the
completion rate seems to change on average by 2% with
slightly lower sensitivity at high or low completion rates. From
discussions with level designers, this is consistent with their
commonly used heuristic.

Another insight is that adding or removing moves is an
asymmetric operation, where the rate of change is bigger
when removing moves. While this is also expected since the
negative binomial distribution itself can be asymmetric and
can potentially have a long right tail (and thus less sensitive
to adding moves), it suggests that game designers need to
be more careful when removing time or actions to increase
difficulty because of this asymmetric change.

One possible limitation of this argument is that it assumes
that the distribution parameters will stay the same if the move
limit changes. However, this is not necessarily true since
players may change their behaviour when closer to the move
limit. For instance, a common strategy is to set up powerful
board piece combinations and fire them off in the end to
maximise the score (regardless of whether there is an explicit
score or not).

B. Player skill

The perceived level difficulty depends not just on level
randomness but also the player skill. So far the level random-
ness was linked to the variance of the fitted distributions, but
logically the move distributions should also be affected by the
skills that have played the level. Indeed, this phenomenon is
something that level designers experience in their day to day
work: As more players reach older levels, the completion rate

Fig. 10. Histogram of the moves used by a certain AI agent to complete a
specific Lily’s Garden. The dashed line represents the negative binomial fit.

slowly changes, which makes it necessary to have a constant
maintenance of all levels.

As a next step, investigating how the level difficulty changes
over time in a longitudinal study using different player cohorts
may provide meaningful insights on player skill and also
model how this affects the distribution parameters. This can
then be used for a more proactive and automatic approach to
difficulty adjustment that ensures a coherent play experience
for both old and new users.

C. Playtesting

Playtesting is crucial for game developers since this process
provides a reliable way to identify bugs and potential design
flaws in a safe environment before going to market. This
process, however, tends to be so expensive and slow that
game developers are increasingly starting to automate this by
means of AI agents using, for instance, reinforcement learning
techniques (e.g. [12] and references therein). This context also
provides an interesting set-up to gain deeper insight into the
techniques derived in the present article and further potential
applications.

Indeed, given that playtest agents are trained in the same
environment as human players, we can for instance let the
agent play using all of the normal rules and game mechanics
but without the constraint on the move limit, M`. Figure
10 shows the distribution of moves generated by one of the
playtest agents considered in [13] when testing a given level.
This particular agent performed sub-par with respect to the
average human player, but what is relevant is that we are able
to visualise its whole move distribution even beyond the limit
M . We can thus fit our proposed negative binomial distribution
across the whole (0, 10M ] range, i.e., without truncation.

In line with our expectations, we get a really good fit as
described by a Kolmogorov-Smirnov distance of D = 1.8%.
This sparks the following question regarding playtest agents:
Can exhibiting a negative binomial distribution be regarded as
a necessary condition to declare that the AI agent is playing
in a human-like manner?

Finally we highlight another connection with the results re-
ported in [13]. In that work the authors report that the 5% best



runs of the agent on a given level were the strongest predictor
of the actual completion rate. Clearly this 5th percentile is a
quantity that can be derived explicitly as formula of the fitted
negative binomial parameters. In this sense we can also study
whether the fitting procedure proposed here can be further used
as post-processing strategy to estimate completion rates from
data generated by playtest agents with sub- or even super-
human performance.

D. Other games

In this work we have investigated the application of the
proposed method to a mobile puzzle game; however, there
is nothing in our assumptions that rules out that the same
distribution can be used not just for similar puzzle games with
discrete moves and action limit but also other genres such as
platform or even competitive games.

Generally, puzzle games tend to be very focused on solving
the level goal as fast as possible. Although some games also
provide a score, it is a limited number of factors (randomness
and skill) that affect the distribution of moves. However, in
other game genres, there may be other factors and incentives
for playing: in platform games, players are encouraged to
explore and test out different strategies, and in competitive
games, players may want to beat their opponent as fast as
possible, with randomness playing less of a role than the
relative skill of players. A promising venue for future research
is therefore using this modelling approach across genres to test
and validate its generalisability to different player behaviours.

VI. CONCLUSION

In this research work we set out to determine a richer way
of describing the level difficulty in puzzle games. Specifically,
we propose that the move frequency distribution of the players
for completing a level follows a negative binomial. Using data
from 4000 levels from the game Lily’s Garden as a case study,
the results showed that:
• The negative binomial is able to describe the move

distribution of around 85% of the levels, and the method
can easily be extended to other types of games.

• Describing the levels is possible using a single parameter
– that is the scale parameter ϑ – that describes the spread
of the distribution.

• This more detailed description of the difficulty enables:
(i) estimating the effect of changing the move limit;
(ii) estimating the level randomness; and
(iii) identifying deviations in player behaviour on a level.

In the remaining ∼ 15% of the cases where the method does
not converge; the main issue is due to the data only exhibiting
an increasing trend which leads to the method only using a
very small part of the distribution to match it. Similarly, the
method also tends to underestimate the observed completion
rate, ĉ`, especially towards low completion rates. A possible
avenue for future research is therefore to extend on this model
and include ĉ` as a parameter in the modelling rather than
a constraint. This has the promise of not only improving the
predictions of the method but also ultimately enable estimating

player skill and dynamically adjust difficulty to ensure an
optimal player experience.
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