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Abstract—We propose a hierarchical architecture for the
advantage function to improve the performance of reinforcement
learning in parameterized action space, which consists of a set of
discrete actions and a set of continuous parameters corresponding
to each discrete action. The hierarchical architecture extends the
actor-critic architecture with two specialized advantage functions,
one for discrete actions and the other for continuous parameters,
to estimate a better baseline. We incorporate this architecture
into proximal policy optimization, which is referred to as HA-
PPO. We evaluated all of our methods on the Half Field Offense
domain, and found that the hierarchical architecture of the
advantage function, which is referred to as the hierarchical
advantage, helps to stabilize the learning and leads to a better
performance.

Index Terms—parameterized action, hierarchical advantage,
reinforcement learning

I. INTRODUCTION

Most remarkable deep reinforcement learning algorithms
are designed for either pure discrete action space or pure
continuous action space. For example, deep Q-learning [15]
has learned policies to play Atari games better than humans,
and AlphaGo [18] has defeated world champions in the game
of Go. Maximum entropy reinforcement learning frameworks,
such as SAC [8] and Soft-Q learning [7], enable a robot to
achieve a state-of-the-art performance on a set of different
tasks.

Different from the action spaces in game domains and
robotics domain, action space can be parameterized when
modeling various real-world tasks, such as soccer and car
racing. In such cases, the agent not only selects a discrete ac-
tion but also needs to determine the corresponding continuous
parameters. For example, when a player chooses to kick a ball,
he also needs to determine the direction and the power, which
are treated as continuous parameters. Thus, a parameterized
action can be viewed as a combination of discrete action and
corresponding continuous parameters, and it is harder than
either pure continuous action space or discrete action space
to deal with for two reasons. First, it is widely known that
instead of selecting two elements from two independent sets
of actions, the dependency between discrete actions and con-
tinuous parameters increases the difficulty of action selection.
Second, as each of the continuous parameters has its own

bound, enforcing these bounds while updating the policy is
hard to handle, which is referred to as the bounded parameter
space learning problem in [10].

In this work, following the research in [21] and [6], we
divide the whole parameterized action into two parts, discrete
action and continuous parameters, as a hierarchical structure
for parameterized action selection to ensure dependency. Then,
we propose a hierarchical structure of advantage that is used to
learn both discrete actions policy and continuous parameters
policy faster and more stably. Specially, we incorporate the
hierarchical advantage into PPO, which we called Hierar-
chical Advantage Proximal Policy Optimization (HA-PPO).
To describe our method clearly, we first develop a method
named Parameterized Action Proximal Policy Optimization to
properly handle parametrized actions on top of PPO, and then
present HA-PPO by augmenting PAPPO with a hierarchical
structure of advantage. Our experimental results show that HA-
PPO outperforms existing methods on two tasks in the HFO
domain [11] [9].

II. BACKGROUND

In this section, we first introduce the concepts of param-
eterized action space MDPs and policy gradient methods as
our proposed methods are based on them. We then discuss
existing studies that are also based on parameterized action
space MDPs.

A. Parameterized Action Space MDPs

Most parameterized action problems can be modeled as
a Parameterized Action Space Markov Decision Process
(PAMDP) [14] with finite states and a set of parameterized
actions. A PAMDP is defined as a tuple (S,A, P,R, γ, ρ0).
Except for the action space A, other variables are the same as
those in MDPs. S is the set of all possible states, and A is the
set of all possible parameterized actions. Each parameterized
action can be defined by one discrete action a ∈ Ad and
the corresponding continuous parameters (xa1 , x

a
2 , . . . , x

a
m) ∈

Pa ⊆ Rm , where Ad is defined as the set of discrete actions
{a1, a2, . . . , ak}. Thus, a parameterized action can be repre-
sented by a tuple (a, xa1 , x

a
2 , . . . , x

a
m), and the whole parame-

terized action space A = ∪a∈Ad,pai ∈Pa(a, xa1 , x
a
2 , . . . , x

a
m). R

is a reward function defined as r(st, at, st+1), where st ∈ S,978-1-6654-3886-5/21/$31.00 ©2021 IEEE



at ∈ A, and st+1 ∈ S are the state, action, and the next
state at time step t respectively. P is the transition dynamics
defined as P (st+1|st, at). The future reward discount factor
is γ ∈ [0, 1], and ρ0 is the initial state distribution of s0.
An agent selects a parameterized action based on a policy
πθ(a

h|s), which is a probability distribution parameterized by
θ over all possible parameterized actions. Typically, the goal
of reinforcement learning is to find a set of parameters θ to
maximize the discounted cumulative reward as the following
objective function

J(θ) = Eτ

[∑
t=0

γtrt

]
(1)

. Here, τ represents the entire action trajectory, where s0 ∼ ρ0,
at ∼ π and st ∼ P .

Following the research [4] [21], a parameterized action
policy can be treated as a hierarchical structure where the
choice of continuous parameters depends on the selected
discrete action. Thus, we decompose the parameterized action
policy into a discrete action policy and a continuous parameter
policy, as

π(ah|s) = π(ad,ac|s) = πd(ad|s)πc(ac|ad, s), (2)

where the parameterized action is represented by ah =
(ad,ac). ac denotes the corresponding continuous parameters
of ad and is usually represented as a vector.

B. Policy Gradient Methods

Policy gradient methods [19] are reinforcement learning
algorithms that learn optimal policies π that are parameterized
by θ to maximize the expected returns J(θ). In this work,
we utilize popular policy gradient methods (DDPG [13] and
PPO [17]) to calculate policy gradients via the advantage
function Aπθ (s, a). Then, the policy gradient with respect to
θ can be written as

∇J(θ) = Ea∼πθ,s0∼ρ0,τ [Aπθ (s, a)∇θ log πθ(a|s)] , (3)

where
Aπθ (s, a) = Qπθ (s, a)− V πθ (s). (4)

Here, the advantage function A is defined as the difference
between the returns for a given state-action pair (Qπθ (s, a))
and a baseline V πθ , which represents the return from the
given state s until the end of the episode and leaves the
policy gradient unchanged [19]. In other words, the advantage
function identifies the estimated additional returns that could
be obtained by taking a particular action for the given state.
Furthermore, it is observed that better advantage functions can
lead to significant improvements in performances [2]. Thanks
to the baseline, the advantage function helps to reduce the
variance of the policy gradients and thus enable faster and
more stable learning compared with function Qπθ (s, a).

C. Existing Studies in PAMDPs

To the best of our knowledge, the earliest method that
combines the policy gradient method and PAMDPs is PAD-

DPG [10]. It extends the DDPG [13] into the parameterized ac-
tion space and prepares two neural networks to output discrete
actions and continuous parameters respectively. As DDPG is
designed for continuous action space on purpose, the discrete
action is relaxed into a continuous set, which may become
more complex and difficult to learn. In contrast to PADDPG,
P-DQN [23] takes advantage of the hierarchical structure in
parameterized action space and works without relaxation. It
first determines all the continuous parameters and then gives
the Q-values of all the parameterized actions. However, since
the whole parameter space is shared in P-DQN, each Q-value
may produce gradients for unrelated continuous parameters.
This issue of false gradients can be mitigated by MP-DQN [3].
To correct gradients, it performs multiple forward passes to
produce multiple gradient vectors. Each of them correspond
to one Q-value of a parameterized action concerning its own
continuous parameters. Another study that determines the Q-
values of parameterized actions via continuous parameters and
states is Hybrid-SAC [4]. Although Hybrid-SAC does not
utilize Monte-Carlo returns, its performance is better than that
of MP-DQN without Monte-Carlo returns.

In contrast to methods that rely on parameters to learn the
discrete action of parameterized action space, PATRPO [21]
and H-PPO [6] take states only to generate both discrete
action policy and continuous parameter policy at the end of
the forward pass. In such methods, the agent can select the
discrete action firstly, then determines the remaining corre-
sponding continuous parameters. Both of PATRPO and H-
PPO have achieved impressive performances in the tasks with
parameterized action space.

III. PROPOSED METHODS

This section introduces the method proposed in this study:
Hierarchical Advantage Proximal Policy Optimization (HA-
PPO). we develop this mthod on top of PPO, because PPO
is a state-of-the-art policy gradient method effective in many
domains, such as Atari, Mujoco [20], and Roboschool. In
the proposed methods, two policy networks are learned; one
for discrete action policy πd and the other for continuous
parameter policy πc, to handle the parameterized actions.

To clearly describe HA-PPO, we first introduce PAPPO
that is an extension of PPO for parametrized actions. The
objective functions in terms of discrete actions and continuous
parameters are integrated in PAPPO, while they are separated
in H-PPO. HA-PPO is constructed on top of PAPPO with a
hierarchical structure of advantage, which is our main contri-
bution. In HA-PPO, we introduce a new estimator Qd(st, adt )
for the expected return of each discrete action to improve
performance by more accurate advantage estimates.

A. Parameterized Action Proximal Policy Optimization

PAPPO adopts an integrated objective function that updates
both the discrete action policy and the continuous parameter



Pure discrete action space or 
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Fig. 1. A backup diagram in typical RL (left) and our hierarchical architecture
for parametrized action space (left)

policy at the same time. This gives us the clipped surrogate
objective function for the integrated objective, as follows:

LCLIP (θd, θc) =Êt[min(rdt (θd)r
c
t (θc)Ât,

clip(rdt (θd), 1− ε, 1 + ε)

clip(rct (θc), 1− ε, 1 + ε)Ât)],

(5)

where rdt (θd) =
πθd (a

d
t |st)

πθd(old)(a
d
t |st)

and rct (θc) =
πθc (a

c
t |a

d
t ,st)

πθc(old)(a
c
t |adc ,st)

.
This clipped surrogate objective, which is the core part of
PAPPO, allows us to update both policies with the whole
advantage estimator. Furthermore, following PPO, PAPPO
uses a generalized advantage estimator (GAE) [16] for Ât to
stabilize the learning process, where GAE is expected to be
better than the n-step bootstrap return adopted in H-PPO. The
learning of value function V (st) in PAPPO is not modified
from PPO or H-PPO.

B. Hierarchical Advantage Proximal Policy Optimization

We improve the advantage estimator of PAPPO to yield
HA-PPO. The key idea is a hierarchical design of advantage
functions that are compatible with the factorization of π(ah|s)
into πd(ad|s)πc(ac|ad, s) introduced in Eq. (2). To introduce
hierarchical advantage in PPO, we first illustrate how the
backup diagram changes from pure discrete action space or
pure continuous action space to the parameterized action space
in Fig. 1. Here, we define a partial action-value function
Qd(st, a

d
t ) as an action-value function for discrete actions

only:

Qd
π
(st, a

d
t ) = Eac

t∼πc(ac
t |st,adt )

[
Qπ(st, a

d
t ,a

c
t )
]
, (6)

V π(st) = Eadt∼πd(adt |st)
[
Qd

π
(st, a

d
t )
]
. (7)

Then, we can take Qd
π
(st, a

d
t ) as the baseline to evaluate

how advantageous continuous parameters ac
t are, and give the

gradient function of the continuous parameter policy:

∇J(θc) =Ead∼πd,ac∼πc,s∼ρπ,τ [[Qπ(s, ad,ac)−Qdπ(s, ad)]

∇θc log π(ac|ad, s)].
(8)

The remaining proof is provided in Appendix A. For discrete
action, we use state value function V (s) as the baseline. In
general, two advantage estimators are utilized in HA-PPO, Âct
for continuous parameters ac, and Ât for discrete action ad,
where both of them are based on GAE.

Ât = Σ∞l=0(γλ)lδVt+l (9)

Âct = −Qd(st, adt ) + rt + γV (st+1) + Σ∞l=1(γλ)lδVt+l (10)

We here define δVt = rt+γV (st+1)−V (st) (the mathematical
derivation of Âct is provided in Appendix B). Then, we obtain
two clipped surrogate objectives for the two respective policies
and use a squared-error loss to learn the baseline Qd(st, adt ).

LCLIP (θd) = Êt
[
min(rdt (θd)Ât, clip(rdt (θd), 1− ε, 1 + ε)Ât)

]
(11)

LCLIP (θc) = Êt
[
min(rct (θc)Â

c
t , clip(rct (θc), 1− ε, 1 + ε)Âct)

]
(12)

LQ
dF (θq) = (Qdθq (st, a

d
t )−Q

d target
t )2 (13)

By combining Eq. (11), (12) and (13) with l2 regularizations
LR(θd, θc, θv, θq), the final objective to be maximized is

LCLIP+QdF+R(θd, θc, θv, θq) =Êt[LCLIP (θd) + LCLIP (θc)

− c1LV F (θv)− c2LQ
dF (θq)

+ c3L
R(θd, θc, θv, θq)],

(14)

where c1, c2, and c3 are coefficients, and LV F (θv) is the same
as that of PPO. We follow a similar algorithm to Algorithm 1
in PPO for training but change it slightly for updating multiple
sets of parameters.

IV. EXPERIMENTS

A. Environment

Half Field Offense (HFO) is a soccer game originated from
Robocup 2D Soccer [12], where the offense team plays against
defense opponents to shoot goals in a half football field.
Since this domain is treated as the most complex one in MP-
DQN, Hybrid-SAC, and PATRPO, we chose it to evaluate
our methods. We used the source code of HFO available
at: https://github.com/LARG/HFO. The game environment has
several variations1 but we used the most difficult one; low-level
features for state representation and low-level actions. Low-
level means that there is less heuristic knowledge embedded.
There are two different hand-coded build-in AI teams in HFO
for the convenience of training and evaluation. One is built
on Agent2D [1], which is a simple but competitive AI. The
other is built on Helios’ champion agent, which won the first
place in the 2012 Robocup-2D Soccer Competition. In other
words, Helios’ champion agent represents a top-level agent

1https://github.com/LARG/HFO/blob/master/doc/manual.pdf



with a policy of very high competitiveness. We used Agent2D
as the defense player in training and Helios’ champion agent
in evaluation.

To conduct reinforcement learning in HFO, the authors of
MP-DQN made an interface compatible with OpenAI Gym,
and we basically followed their implementation2. At the be-
ginning of each episode, the ball is positioned randomly inside
an specified area where two parameters, normalized minimum
initial position and normalized maximum initial position,
configure the area. The agent always plays as the offense, and
the episode ends in one of the following situations:
• the agent scores a goal,
• the ball moves outside the valid area,
• the ball is captured by the defense,
• the agent does not touch the ball within a certain amount

of time, or
• the time limit is exceeded.

B. Experiment Settings

Following existing studies on MP-DQN, H-PPO, and PAD-
DPG, we evaluated HA-PPO and PAPPO with the low-level
state set and the low-level action set. In addition, we used
the authors’ implementation for MP-DQN and H-PPO for
comparison purposes. Unfortunately, the source code and
implementation details of Hybrid-SAC are not available, so we
were not able to include Hybrid-SAC in our experiments. We
set up two tasks in our experiments: 1vs0 task and 1vs1 task.
The 1vs0 task is easier because there are no defense players,
while the 1vs1 task is more difficult because there is a goalie
controlled by Agent2D. We use the term difficult 1vs1 task to
emphasize the difficulty compared to the similar task imple-
mented by the authors of MP-DQN, and give the details of
our tasks’ settings in Appendix D. The parameterized actions
in both tasks are Dash (power, direction), Turn (direction),
and Kick (power, direction). Since the performances for the
difficult 1vs1 task were poor in the preliminary experiments,
we set up an easy 1vs1 task where we weaken the goalie
by forcing a no-op like action with a probability of 30%
into the Agent2D players. Then we test the agents in the
difficult 1vs1 task without no-op action. More details about the
implementation of the no-op action are explained in Appendix
E. We adopted the reward function utilized in PADDPG as
it has proven effective in several existing studies mentioned
before.

We followed the implementation of PPO given by OpenAI
baselines [5] in our algorithms (HA-PPO and PAPPO) and
H-PPO. As a small exception, we turned off per minibatch
advantage normalization in the easy 1vs1 task so as to
visualize advantages better. Note that per minibatch advantage
normalization does not make any significant difference in
performance as discussed in [2]. The hyperparameters are
listed in Appendix C. The networks of PAPPO and H-PPO
implemented in this work are the same size, and the structure
is illustrated in Fig. 2. For HA-PPO, the network is enlarged

2https://github.com/cycraig/gym-soccer
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Fig. 2. PAPPO and H-PPO network architecture.
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Fig. 3. HA-PPO network architecture.

a bit to present partial state value function Qd(st, a
d
t ) (Fig.

3). Our network is smaller than that in the original H-PPO,
though discrete policy π(ad|s) and continuous parameters
π(ac|ad, s) do not share their intermediate layers. We used
the ReLU function for activation of all hidden layers, and
used the Softmax function for the output layers of the discrete
action policy. As in the most existing works, the continuous
parameter policy is presented in the Gaussian distribution
where the mean is yielded by tanh and the standard deviation is
yielded via softplus in logarithmic form. While some existing
studies need an invert gradient method [10] or similar to
guarantee that an agent learn the valid range of continuous
parameters, our methods worked well without such methods
though it might depend on the small learning rate.

C. Experiment Results

We trained five different agents for each algorithm of HA-
PPO, PAPPO, and H-PPO in the 1vs0 task and the easy
1vs1 task. In the 1vs0 task, every agent of the PPO-based
algorithms was trained for five million steps. The learning
curve of HA-PPO, PAPPO, and H-PPO in the 1vs0 task are
calculated by Wilson score interval [22] and shown in Fig.
4. The agents of both PAPPO and HA-PPO rapidly mastered
this task, though the HA-PPO agents needed a few more steps
to train extra neurons for the partial action-value function
Qd(st, a

d
t ). All three algorithms achieved a maximum success



rate of 100% that was evaluated on the last 1,000 episodes
during the training. After the training, we evaluated all agents
by the success rate of scoring a goal and the average steps
to the goal (shorter is better) over 1,000 independent episodes
in the 1vs0 task. Note that each agent plays according to its
own trained stochastic policy. The results are shown in Table
I, where the ones of MP-DQN in the 1vs0 task are those
reported in the original work. We also tested Helios’ champion
agent as an offense player for 1,000 episodes in the 1vs0 task,
and the results were averaged over five trials. Specifically, the
performances of HA-PPO and PAPPO almost reached that of
Helios’ champion agent in the evaluation. Among the three

TABLE I
EVALUATION OF 1VS0 TASK.

Algorithm Success rate Avg. steps to goal
HA-PPO 0.9972 ± 0.0013 75.6 ± 0.6
PAPPO 0.9947 ± 0.0031 76.5 ± 1.5
H-PPO 0.9910 ± 0.0118 77.9 ± 4.0
Helios 0.9970 ± 0.0020 74.9 ± 0.5
MP-DQN [3] 0.9130 ± 0.0700 99.0 ± 12.0
H-PPO [6] 0.9540 ± 0.0480 −

PPO-based algorithms, we found that the HA-PPO agents
performed best in both success rate of scoring a goal and
average steps to the goal. We conclude that HA-PPO provides
a better way to learn continuous parameters. The difference
between our methods (PAPPO and HA-PPO) and H-PPO was
not significant in this task, so we show the difference more
larger in 1vs1 task which is much more difficult. Note that the
performance of H-PPO implemented by us is slightly better
than the original work. Our smaller neural network and fine-
tuned hyperparameters may be the reasons.
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Fig. 4. Results of HA-PPO, PAPPO, and H-PPO in 1vs0 task. The colored
area represents Wilson score interval for each algorithm.

In the easy 1vs1 task, every agent of the PPO-based algo-
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Fig. 5. Results of HA-PPO, PAPPO, H-PPO, and MP-DQN in easy 1vs1
task. The colored area represents Wilson score interval for each algorithm.

rithms and MP-DQN was trained by fifteen million steps. Note
that according to the source code of MP-DQN1, the length
of the learning procedure set in MP-DQN is calculated by
episode, so we modified the source code to record the success
rate by training steps to be consistent with other results. The
results of HA-PPO, PAPPO, H-PPO, and MP-DQN in easy
1vs1 task are calculated by Wilson score interval and shown
in Fig. 5. HA-PPO achieved a maximum mean success rate
of 82.7%, which was the best among all algorithms. However,
PAPPO, H-PPO and MP-DQN only obtained maximum mean
success rates of 77.3%, 70.0% and 50.3%, respectively.

To evaluate the proposed baseline Qd(st, adt ) of HA-PPO,
we compared the mean of the advantage of continuous pa-
rameters (Eq. (10)) with the mean of the whole advantage
(Eq. (9)) for each discrete action. Table II shows the mean
observed with 0.1 million steps after the training. These means
are averaged over three different random seeds for each agent
of each algorithm. We found that large differences among
discrete actions in both the advantage of continuous paramters
and the whole advantage. The results are consistent with our
speculation that Qd(st, adt ) gives better advantage estimates
of continuous parameters for each discrete action. In addition,
Fig. 6 in Appendix G shows the standard deviation of the
advantage (Eq. (9)) during the training for each method. The
standard deviation is calculated with a sliding window of size
100. The values increase as the agents receive more returns
and then decrease as the value functions become accurate. We
can see that all methods have similar values that indicate the
differences in Table II are inherent to the environment. With
a close look, HA-PPO’s standard deviation increases faster
than others because the agents trained by HA-PPO receive
more returns in the early stage of the training. To clarify
whether the hierarchical advantage helps to stabilize training,

1https://github.com/cycraig/MP-DQN



TABLE II
THE MEAN OF THE ADVANTAGE IN EASY 1VS1 TASK

Algorithm Discrete action Mean
HA-PPOa Dash −0.0253
HA-PPOa Kick −0.1063
HA-PPOa Turn −0.0424
HA-PPOb Dash −0.0299
HA-PPOb Kick −0.1155
HA-PPOb Turn −0.0441
PAPPOb Dash −0.0190
PAPPOb Kick −0.0842
PAPPOb Turn −0.0462
H-PPOb Dash −0.0319
H-PPOb Kick −0.0919
H-PPOb Turn −0.0663
aThe mean of the advantage of continuous parameters
for each discrete action.
bThe mean of the whole advantage for each discrete
action.

TABLE III
THE MEAN OF THE WIDTS OF WILSON SCORE INTERVAL IN EASY 1VS1

TASK

Algorithm Mean of the length of Wilson score intervals
HA-PPO 0.3399
PAPPO 0.3626
H-PPO 0.3856

we investigated the mean of the width of Wilson score interval
over the last one million steps of the training for all PPO-
based algorithms. The results are shown in Table III. We
found that HA-PPO has the lowest one across three PPO-based
algorithms, and thus HA-PPO learns most stably. We think
that because the hierarchical advantage method helps pick up
better individual advantages for the discrete action policy and
continuous parameter policy, HA-PPO learns faster and more
stably than PAPPO and H-PPO.

After the training, we evaluated each agent by three different
random seeds in the difficult 1vs1 task including MP-DQN
as its source code provides methods for saving and loading
models. In addition, we tested the Helios’ champion agent
in the difficult 1vs1 task for 1,000 episodes and obtained
the mean over three trials. The details of the evaluation are
listed in Table IV. Since the performance fluctuation of some
algorithms is large, we give details about the mean of success
rate of each agent in Appendix F. Generally, the performance
in the difficult 1vs1 task was consistent with the corresponding
performance of the training in the easy 1vs1 task. We believe
that the difficult 1vs1 task is tough, so some agents may obtain
a success rate over 50% in the easy 1vs1 task, but perform
poorly in the difficult 1vs1 task.

TABLE IV
EVALUATIONS OF DIFFICULT 1VS1 TASK

Algorithm Success rate Avg. steps to goal
HA-PPO 0.7080 ± 0.1353 85.2 ± 4.3
PAPPO 0.5989 ± 0.1751 92.8 ± 12.3
H-PPO 0.4825 ± 0.2196 95.3 ± 8.1
MP-DQN 0.3418 ± 0.1235 111.8 ± 4.6
Helios 0.9590 ± 0.0110 70.8 ± 0.7

V. CONCLUSION

In this work, we investigated reinforcement learning in envi-
ronments with parametrized action space (e.g., ‘kick’+power),
and proposed a hierarchical architecture for advantage func-
tions to improve the policy gradient methods. In our experi-
ments, we demonstrated that the hierarchical advantage makes
learning faster and more stable compared to existing work
with the ordinary advantage function. While the hierarchical
advantage is applicable to any policy gradient method, we
chose PPO as a representative and proposed HA-PPO. Agents
trained by HA-PPO outperformed those trained by PAPPO
and other existing methods in two offense tasks with respect
to the success rate and the average steps to the goal. Moreover,
in the task without a goalie, the performance of agents
trained by HA-PPO almost reached that of Helios’s champion
agent. In the task with a goalie, the success rate of HA-PPO
agents was much higher than other agents but still has room
for improvement compared to Helios’ champion agent. An
interesting future direction would be to incorporate methods
for mitigating the issue of bounded parameter space learning
to improve performance further.
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APPENDIX A

For simplicity, we take out the part of the baseline and
prove that this part does not change the expected value of the

continuous paramteter policy gradients.

Ead∼πd,ac∼πc,s∼ρπ,τ [Qd
π
(s, ad)∇θc log π(ac|ad, s)]

=

∫
ad,ac,s

ρπ(s)Qd
π
(s, ad)∇θc log π(ac|ad, s)dacdadds

=

∫
s

ρπ(s)

∫
ad
π(ad|s)Qdπ(s, ad)

∫
ac

π(ac|ad, s)

∇θc log π(ac|ad, s)dacdadds

=

∫
s

ρπ(s)

∫
ad
π(ad|s)Qdπ(s, ad)

∫
ac

∇θcπ(ac|ad, s)dacdadds

=

∫
s

ρπ(s)

∫
ad
π(ad|s)Qdπ(s, ad)∇θc

∫
ac

π(ac|ad, s)dacdadds

=

∫
s

ρπ(s)

∫
ad
π(ad|s)Qdπ(s, ad)∇θc1dadds

= 0

Thus, our partial state-value function Qd(st, adt ) can be com-
patible with any policy gradient methods without bias to
reduce the variance in parameterized action space.

APPENDIX B

For simplicity, we define δVt = rt + γV (st+1)−V (st). We
introduce the generalized advantage estimator of parameters
ac
t , as follows.

Â1
t = −Qd(st, adt ) + rt + γV (st+1) (15)

Â2
t = −Qd(st, adt ) + rt + γV (st+1) + γδVt+1 (16)

Âkt =−Qd(st, adt ) + rt + γV (st+1) + γδVt+1 + γ2δVt+2 + . . .

+ γkδVt+k
(17)

If we take k →∞, we obtain:

Â∞t = −Qd(st, adt ) + rt + γV (st+1) + Σ∞l=1γ
lδVt+l (18)

, which is the difference between empirical returns and the
Qd(st, a

d
t ) function baseline. Then, the generalized advantage

estimator GAE(γ, λ) of the discrete action can be defined
as the exponentially-weighted average of the following k-step
estimators.

Â
c GAE(γ,λ)
t = (1− λ)(Â1

t + λÂ2
t + λ2Â3

t + . . . )

= (1− λ)[(−Qd(st, adt ) + rt + γV (st+1))

+ λ[−Qd(st, adt ) + rt + γV (st+1) + γδVt+1]

+ λ2[−Qd(st, adt ) + rt + γV (st+1) + γδVt+1 + γ2δVt+2]

. . .

= −Qd(st, adt ) + rt + γV (st+1) + Σ∞l=1(γλ)lδVt+l



APPENDIX C

TABLE V
HYPERPARAMETERS OF HA-PPO, PAPPO, AND H-PPO

Hyper-parameters Value
Learning rate 2e-5
Number of workers 16
Mini-batch size 64
Horizon 512
V baseline loss scaling c1 0.5
Q baseline loss scaling c2 0.5
Discount γ 0.99
GAE parameterλ 0.9
Clipping range ε 0.2
Clipped global gradient norm 0.5
L2 regularization coefficient c3 5e-5

APPENDIX D

TABLE VI
SETTINGS OF HFO TASKS

Parameter Value
Untouched time limit 100
Total time limit 500
Normalized minimum initial position (1vs0) 0.0
Normalized maximum initial position (1vs0) 0.2
Normalized minimum initial position (1vs1) 0.2
Normalized maximum initial position (1vs1) 0.4
offense on ball (1vs1) false

APPENDIX E

To introduce a no-op action for the goalie in the easy
1vs1 task, we modified two files in the original HFO im-
plementation available on github: /src/main player.cpp, and
/src/role goalie.cpp. To create a random seed for generating a
random value α, we insert the following source code into the
main function of /src/main player.cpp.

srand(time(NULL));

Then, we calculate α each time by

float random_n = rand()%10/float(10);

when the program excutes the execute function of /src/-
role goalie.cpp. When α is less than or equal to 0.3, the
goalie will perform a Dash with 0 power, which means no
movements, and turn to the ball via the following source code.

double power=0.0;
agent->doDash(power);
agent->setNeckAction(new Neck_TurnToBall());

Otherwise, the goalie will follow the policy of Agent2D.

APPENDIX F

TABLE VII
DETAILS OF RESULTS IN 1VS1 TASK

Experiment Success ratea Success rate for trainingb

HA-PPO1 0.732 0.822
HA-PPO2 0.793 0.878
HA-PPO3 0.485 0.725
HA-PPO4 0.879 0.892
HA-PPO5 0.656 0.802
PAPPO1 0.384 0.631
PAPPO2 0.699 0.841
PAPPO3 0.764 0.818
PAPPO4 0.389 0.613
PAPPO5 0.743 0.817
H-PPO1 0.378 0.693
H-PPO2 0.743 0.811
H-PPO3 0.743 0.839
H-PPO4 0.331 0.513
H-PPO5 0.217 0.589
MP-DQN1 0.196 0.415
MP-DQN2 0.398 0.458
MP-DQN3 0.564 0.522
MP-DQN4 0.256 0.521
MP-DQN5 0.310 0.521
aMean of success rate over three trials in difficult 1vs1 task.
bSuccess rate of last 1,000 episodes at the end of training
in easy 1vs1 task.

APPENDIX G
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Fig. 6. Standard deviation of the whole advantage in easy 1vs1 task during
the training.


