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Abstract—Extracting behavioural prototypes plays an impor-
tant role in player profiling. Understanding the type of players
present in the game goes alongside improving game-play experi-
ence as well as player engagement over time. In this paper, we
introduce the application of Kernel Minimum Enclosing Balls
(KMEBs) as a tool to extract meaningful extreme prototypes in
games and present an example use-case analyzing a behavioural
dataset from a Massively Multiplayer Online Role Playing Game.
Unlike the majority of the methods covered in this context,
our approach allows for modelling nominal and numerical
behavioural features, extending the scope and capability of the
profiling methods as well as improving the interpretability of the
results.

I. INTRODUCTION

Prototype selection is a diverse field allowing for many
applications: it can be used to condense the training data when
further computations are expensive, to provide hidden patterns
to human analysts, to explain the versatile results of classifi-
cation or clustering routines [1]. The main goals of Game
Analytics research include building models to understand the
game dynamics and improve the game balance. Moreover,
common playability problems occur if playability heuristics
are violated [2]. For instance, if the difficulty ramps up too
quickly, game items wear out too fast or if the game does
not support different playing styles, it poses an obstacle in the
game process. In this case, profiling the behaviour of players
would show the overall picture, namely, whether it is possible
to reach the highest level of the game using a different strategy,
or if the game is bound to the usage of only one factor.

Nevertheless, the interpretability of the results and samples
being ”representative” of the data remains the key point of the
underlying research [3]. Then providing a tool for extracting
a small number of prototypes (so that domain specialists
can understand the data) stays an acute research direction
nowadays.

The method of Kernel Minimum Enclosing Balls (KMEBs),
introduced in the context of prototyping in [4], is simple and
easy to implement. It has a better run-time than commonly
used in behavioural profiling in digital games Archetypal
Analysis method, as can be seen on the example of multi-

player shooter Destiny in [5] and UltimaIV in [6]. Archetypal
Analysis extracts extreme behaviour basis vectors that are
easy to interpret [1]. Opposed to the basis vectors, KMEBs
offer the concept of support vectors, that are the data points
corresponding to the non-zero values of an optimized vector.

Having a number of hyper-parameters that affect the result-
ing prototypes, KMEBs allow us to introduce variation into
algorithm output, paving the way to the ensemble approach.
One of such parameters is the kernel, which is a powerful
tool given prior knowledge about the data. Depending on the
data type, be it categorical, mixed or continuous data, there
exist numerous task-specific kernels for each of the described
cases. All the above-mentioned advantages make KMEBs an
interesting research objective in terms of analyzing the real-
world player data.

II. CONTRIBUTION

In this paper, we provide an ensemble of well-known
Distance Substitution kernels within the context of prototype
extraction using KMEBs. We augment the Divide and Conquer
algorithm from [7] to return a fixed small number of prototypes
(support vectors), prepared for analysis by a human analyst,
and provide an ensemble approach, calculating the frequency
of extracted prototypes over a variety of distance-kernel pairs.
Moreover, we conclude that the kernel matrix in KMEBs is
not required to be positive definite to reach substantial results
on the example of this study’s data.

III. KERNELS IN KERNEL MINIMUM ENCLOSING BALLS
PROBLEM

Recall the kernel MEB problem in terms of minimization,
derived in [4] and solved via the Frank-Wolfe or the Projected
Gradient Descent algorithm:

µ∗ = arg min
µ
µᵀKµ− µᵀk

s.t. µ ∈ ∆n−1,

where K ∈ Rn×n is a kernel matrix computed on input
dataset, k contains its diagonal, ∆n−1 is the standard (n−1)-
simplex, µ ∈ Rn is the Lagrange multipliers, K : Rn×Rn →
R is an appropriate Mercer kernel.978-1-6654-3886-5/21/$31.00 ©2021 IEEE



Kernel Definition

Laplace ki,j = e
−d(xi,xj)

σ

Distance ki,j = −d(xi,xj)β , β ∈ [0, 2]

Gaussian ki,j = e
−d2(xi,xj)

2σ2

Rational Quadratic ki,j = 1− d2(xi,xj)

d2(xi,xj)+c

Inverse Multiquadric ki,j =
1√

d2(xi,xj)+c2

TABLE I
CONCISE OVERVIEW OF THE SELECTED KERNELS USED IN ENSEMBLE.

The data points of data matrix X = [x1, . . . ,xn] ∈ Rm×n
corresponding to the non-zero values of Lagrange multiplier
µ are called support vectors. Support vectors computed by
KMEBs showed themselves finding central as well as vary-
ing prototypes of the data within the example of an online
multiplayer shooter game [4], thus we use support vectors as
prototypes for player data.

The choice of the kernel K is a way to inject prior knowl-
edge about the data into the model. For instance, choosing
the special distance measure (a city block or a hamming
distance) for categorical data reflects its structure. One of the
most popular kernel choices is the Distance Substitution (DS)
Gaussian kernel, that is positive definite as stated in [8]:

K(xi,xj) = exp
(
d(xi,xj)

2

2σ2

)
,

and the respective Gaussian kernel matrix K ∈ Rn×n, where
Ki,j = K(xi,xj), d(xi,xj) is the distance function between
points xi and xj . The distance measure is defined on the
Hilbert space. It also has to be symmetric, have zero diagonal
and be non negative.

The distance kernel itself is also commonly used and is
conditionally positive definite given that β ∈ [0, 2]:

K = −d(xi,xj)
β ,

while the Gaussian kernel possesses a nice property of being
positive definite for σ ∈ R+. In practice, problem-specific
distance measures often lead to DS-kernels that are not positive
definite. As mentioned in [8]–[12], kernels not being positive
definite for support vector machine may still lead to impressive
results, hinting at this possibility in KMEBs given the close
problem formulation. Even though the distance kernel is only
conditionally positive definite, from the practical application
of the prototype extraction in the current study it shows good
results, as we may observe in Section VI.

The distance itself occurs as a hyper-parameter in DS-
kernels, allowing for comparative evaluation of categorical
data for a number of distances. Moreover, k0 kernel is widely
used as a superposition of the Dirac kernel, also known as the
overlap kernel [13]:

ki,j = fp(
1

n

n∑
k=1

fa([xik = xjk])).

Feature Mean Std Unique Min Max
Friends 4.50 3.86 30 0 33
Quests

completed 265.01 38.84 250 79 442

Achievements 57.26 7.09 49 39 90
Mining 39.22 44.82 176 0 185
Plants 19.61 28.14 146 0 170
Kills

Monsters 6423.68 1777.38 2813 2494 15027

Loot Total
Items 974.59 326.20 1216 235 2519

Death
Monsters 13.70 10.49 70 0 99

Auctions 13.44 22.76 137 0 212

TABLE II
THE STATISTICS BEFORE USING MIN MAX SCALER OF THE DATA FOR

LEVEL 32 OF GAME TERA.

We notice, that evaluating the Dirac kernel is equivalent
to computing the hamming similarity, which is defined as
shamming = 1 − dhamming(xi,xj). Hence, it is possible
to apply any of the selected Distance Substitution kernels
described in Table I as k0 kernel using the hamming distance.
We can show it as k0 kernel can take form:

k0(i,j) = fDS(
1

n

n∑
k=1

fa([xik = xjk])) =

fDS(shamming) = fDS(1− dhamming).
IV. DATASET

The telemetry data is provided from a massively multiplayer
online role-playing game TERA, used for behaviour clustering
in [6]. TERA has typical MMORPG features such as questing,
crafting, and player versus player action. It also enables in-
game purchases. Characters may be of different race and
different class, whereas each race has a set of unique skills
and class induces class-specific skills and abilities. Moreover,
certain set of skills, i.e. Mining, Planting, Auctions are not
essential to be completed in the game course, being optional
resource gathering skills the player can choose to develop.

The data comprises of 10 features, that are Level (level
of character in the game), Friends (number of friends in
the game), Quests Completed (number of quests completed),
Achievements (number of achievements earned), Mining and
Plants (level in skill respectively), Kills Monsters (number of
AI-controlled enemies killed by character), Loot Total Items
(total number of items that character picked up during the
game), Death Monsters (the number of times the character had
been killed by AI-controlled enemies) and Auctions (number
of times that character created or purchased something from
an auction).

We extract the prototypes based on level 32 (the highest
level in the dataset) to understand the behavioural patterns of
players that have achieved considerable results. The final data
results in 3817 characters. For the analysis we use nine above-
mentioned gameplay features (related to how characters are
played), depicted in Table III alongside the statistical summary.

The data was pre-processed using Min Max scaler, to avoid
the problems of mixing of data types, as advised in [6]:

F ′ =
F −minF

maxF −minF



Kernel Distance
sqeuclidean euclidean minkowski (p=4) city block cos hamming

Gaussian 6 6 6 6 6 6
Distance 5/8? 4?/8? 6 6 6 19?

Laplace 6 6 6 6 6 6
Inverse Multiquadric 6 6 2?/7 6 6 6
Rational Quadratic 6 5/7 6 6 6 6

TABLE III
IN THIS TABLE WE OBSERVE THE NUMBER OF SUPPORT VECTORS EXTRACTED BY DIVIDE AND CONQUER ALGORITHM FOR EACH RESPECTIVE KERNEL
AND DISTANCE. AS THE NUMBER OF SUPPORT VECTORS IS NOT MONOTONE, IT POSES A CHALLENGE TO FIND A CORRESPONDING HYPERPARAMETER

AND EXTRACT THE EXACT NUMBER OF PROTOTYPES. HENCE, WE PROVIDE THE APPROXIMATION OF THE ALGORITHM, THAT RETURNS THE ’CLOSEST’
BIGGEST AND SMALLEST NUMBER OF SUPPORT VECTORS. WE NOTE, THAT FOR THE CASE OF HAMMING DISTANCE THE MINIMUM NUMBER OF SUPPORT
VECTORS IS 19 FOR ALL HYPERPARAMETER INTERVAL, HENCE, IT IS NOT POSSIBLE TO RUN HYPERPARAMETER OPTIMIZATION AT THAT SETTING. THE
VALUES MARKED BY STAR ARE NOT INCLUDED IN THE ENSEMBLE AS, BY OUR EMPIRICAL OBSERVATION, THE GREATER THE DIFFERENCE IN SUPPORT

VECTORS NUMBER, THE MORE DIFFERENT WOULD EXTRACTED PROTOTYPES PROTOTYPES BE.

Distance Definition

Minkowski (
∑n
i=1 |xi − yi|

p)
1
p

Euclidean (
∑n
i=1(xi − yi)

2)
1
2

Sq. Euclidean
∑n
i=1(xi − yi)

2

Manhattan
∑n
i=1 |xi − yi|

Hamming 1−
∑n
i=1[xi = yi]

Cosine 1−
∑n
i=1 xiyi√∑n

i=1 x
2
i

∑n
i=1 y

2
i

TABLE IV
CONCISE OVERVIEW OF THE SELECTED DISTANCES USED IN ENSEMBLE.

FOR HAMMING DISTANCE [xi = yi] = 1 IF xi = yi , 0 IF xi 6= yi

for each feature F of the dataset. We note that before using
KMEBs we do not use bins for ranges of categorical values,
rather use the data only processed by Min Max scaler to map
intervals to [0, 1]. It shows the ability of the algorithm to
process the categorical data even given the different number
of unique values in each feature.

Categorical variables are frequently handled using one-of-k
encoding or one-hot-encoding and then use of discrete kernels.
However, as the number of values that is possible to take is
over 4 thousand, it becomes computationally inefficient when
it comes to distance calculation, as the dimensionality of data
rises.

V. ENSEMBLE APPROACH

For Ensemble approach we set up a goal for every distance-
kernel pair to extract p∗ = 6 prototypes. It makes a total
of 30 distance-kernel pairs with 5 kernels (Table I) and 6
distances (Table IV). We define Kernel Minimum Enclosing
Balls training with tmax = 100 iterations of Frank-Wolfe on
the column data matrix X = [x1, . . . ,xn] ∈ Rm×n, n = 3817
as for the number of training points and m = 9 the number
of features described in Table III.

Controlling the number of support vectors is possible using
the kernel parameters: σ for Laplace and Gaussian kernel, c for
Rational Quadratic and Inverse Multiquadric, and finally β for
Distance kernel. Considering the non-monotonous dependency
of support vectors number on the respective parameter, we
apply an algorithm called Divide and Conquer [7] that allows
us to control the number of support vectors in the resulting

solution of KMEBs. Namely given the fixed number p∗ of sup-
port vectors, it attempts to find such parameter χ that for fixed
number of iterations inside of Frank-Wolfe algorithm t∗max and
fixed distance function d∗ for DS-kernel, p(χ, t∗max, d

∗) = p∗

holds. The algorithm returns the value of parameter χ and
corresponding support vector matrix Sm×p∗ , where support
vector matrix is a matrix of datapoints that correspond to the
non-zero values of the Lagrange multiplier. In case of the
algorithm’s non-convergence, it provides the support vector
matrix such that the number of support vectors in it is the
closest to 6. The example of it can be seen at Table III, showing
the number of support vectors extracted for each distance-
kernel pair.

The Divide and Conquer approach [7] finds the parameter
values that correspond to the highest and lowest support
vector numbers in the initial parameter interval and performs
a bisection. We choose for next step the left half-interval
if |p(t∗max, σ′higher, d∗) − p∗| > |p(t∗max, σ′lower, d∗) − p∗|
and right interval otherwise, where σ′lower and σ′higher are
two values defining the half-interval. Then we check, whether
p∗ ∈ [p(σ′higher), p(σ

′
lower)]. If it does not, then the algorithm

returns one step back and chooses the other side of the interval.
After that, the current half-interval is divided into g = 10
equal parts and this division is passed as an interval to the
next iteration.

Based on the previous step, we calculate the frequency
of each appeared support vector for the kernel-distance pairs
that returned exactly with weight w = 1 and w = 0.5 to
both of the approximate solutions, in order to account for
both returned support vector matrices. Then the frequency
of the appearance of each support vector is calculated as
ν(s ∈ Si) =

∑h
i w(l(Si)), where w(l(Si) 6= 6) = 0.5,

w(l(Si) = 6) = 1, l is number of support vectors in the
support vector matrix Sm×l, h is the number of resulting
distance-kernel support matrices with h = 29 according to
Table III.

VI. OBSERVATIONS

The resulting classes obtained from the paper [6] using
Simplex Volume Maximization (SIVM) are Planters, Miners
(that have respectively average scores across the performance
features, but very high Planting or Mining skill respectively),
Auction Devils (focused on using the Auction house feature of



No Friends Quests Achievements Mining Plants Kills Loot Total Deaths Auctions TypeCompleted Monsters Items Monsters
1 15.0 279.0 80.0 73.0 7.0 11130.0 1574.0 26.0 201.0 Auction Devil
2 2.0 277.0 55.0 36.0 129.0 4696.0 659.0 4.0 3.0 Planter
3 5.0 177.0 48.0 28.0 1.0 6603.0 1308.0 80.0 0.0 Straggler
4 2.0 346.0 75.0 76.0 21.0 14649.0 2444.0 15.0 13.0 Elite
5 7.0 198.0 58.0 163.0 5.0 5867.0 1119.0 11.0 37.0 Miner
6 16.0 274.0 62.0 8.0 5.0 9180.0 901.0 6.0 0.0 Friendly Pro

TABLE V
PROFILES OF SIMPLEX VOLUME MAXIMIZATION(SIVM) [14] WITH MIN MAX SCALING.

No ν Feature
TypeFriends Quests Achieve- Mining Plants Kills Loot Total Deaths Auctions

Completed ments Monsters Items Monsters
1 18.0 4.0 283.0 61.0 0.0 9.0 7283.0 1162.0 13.0 11.0 Exclude (svs=1)
2 8.0 15.0 279.0 80.0 73.0 7.0 11130.0 1574.0 26.0 201.0 Auction Devil
3 7.0 2.0 346.0 75.0 76.0 21.0 14649.0 2444.0 15.0 13.0 Elite
4 7 1.0 183.0 42.0 5.0 13.0 4638.0 647.0 7.0 0.0 Straggler
5 6.5 11.0 282.0 60.0 155.0 50.0 8539.0 1345.0 8.0 15.0 Friendly Pro/Miner
6 6.5 3.0 253.0 57.0 9.0 4.0 7447.0 1026.0 12.0 0.0 Central
7 6 6.0 285.0 72.0 122.0 128.0 6587.0 1165.0 11.0 16.0 Planter

TABLE VI
TOP 7 FREQUENT RESULTS FROM THE ENSEMBLE OF KMEBS. THE PROTOTYPE NUMBER ONE IS EXCLUDED FROM RESULTS AS EXACTLY SAME SUPPORT

VECTOR IS OBTAINED FOR ALL DISTANCE-KERNEL PAIRS WHEN SUPPORT VECTOR MATRIX CONSISTS OF JUST ONE SUPPORT VECTOR.

the game, gaining Achievements, Loot, strong social networks
and high Mining skills), Friendly Pros (similar to the Auction
Devils, but exhibit low Auction and Loot scores, and otherwise
strong scores in the performance features), Elite (high scores
overall, except for Mining/Plants and deaths from monsters
with no Auctions created) and finally Stragglers with low
scores overall and a high number from Death from Monsters.

Indeed, reproducing the results of SiVM is illustrated in
Table V. The first prototype is clearly distinguished as the
Auction Devil, second and fifth prototypes as respectively
Planter and Miner, majoring in the respective skill and having
the other skills averaged. The third prototype is exposing
the Straggler behaviour but rather according to the k-means
definition of the class with the death of monsters peaking. The
fourth prototype is identified as Elite with a high number of
Quests completed. The sixth prototype exhibits the behaviour
of Friendly Pro with the high number of Friends.

Results in Table VI obtained from the ensemble show the
similar narrative with two prototypes matching (highlighted in
bold). Prototype number five exposes the behavior of Friendly
Pro, yet due to high Mining skill, it can be posed as a Miner.
With more extreme Straggler prototype four, the ensemble also
returns Central prototype six acknowledging not only for the
extreme data. The Planter at place seven exhibits high Mining
revealing the complementary skills in the player’s behavior.

VII. CONCLUSION

In this work, we have presented an ensemble approach
for extracting prototypes from heterogeneous datasets with
nominal and numerical behavioural data. Our approach showed
itself successful with respect to determining all the player
classes mentioned in [6] and moreover, provided us with more
central prototypes. The ensemble showed another outlook on
the data, exposing new dependencies and complementing the
data analysis. At last, we have discussed the importance of
Distance Substitution Kernels in terms of using the hamming

distance and proved that for KMEBs the use of positive
definite, or even conditional positive definite kernels is not
necessary to acquire tangible results.
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