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Abstract—We analyze a series of empirical properties exhibited
by customer lifetime value data, including zero-inflation, heavy
tails, and the varying behaviour of inter-purchase times and
purchase size. Rather than focusing on specific models already
established in the literature (e.g., RFM or Pareto/NBD), what is
emphasized here are empirical properties of mobile games data
which may lead to revisit certain assumptions of existing models.

Index Terms—LTV; Mobile Gaming; Stochastic Modelling

I. INTRODUCTION

The mobile gaming industry has experienced strong sus-
tained growth over the past years, with a particular upward
spike during 2020 when mobile games offered a source of
entertainment while social distancing, and a distraction from
the stress derived from the pandemic. Indeed, during 2020 the
industry observed a +45% increase year-over-year in game
downloads, exceeding the +32% from the year before [1].
Moreover, these figures move to almost +70% when they
are to limited the subset of downloads obtained as result
of a marketing campaign. In terms of revenues the gaming
industry expects a compound annual growth rate of +7.2%,
and forecasts to surpass the $200Bn mark by 2023 [20]. In
such a growing and competitive industry, being able to predict
how much an individual user will spend in the game (i.e.,
customer lifetime value or LTV) is crucial, not only from the
game design perspective but also from the financial point of
view.

In this context, we analyze a series of LTV properties arising
from data in mobile games. Beyond discussing specific models
already established in the literature, what is emphasized here
are empirical properties of the data which may lead to revisit
certain assumptions of existing models. In particular we show
that the inter-purchase times (i.e., time between consecutive in-
app purchases) are not identically distributed, thus questioning
whether models like [12], [21], [22], [24] can be applied to
mobile games out of the box. On the other hand we also
highlight some potential new avenues of research, including
hypothesis testing for LTV, and the unexploited fact that, in
mobile gaming, the monetary value of the purchases follows
a multinomial distribution.

The rest of the content is organized as follows. Section II
provides an overview of different approaches for analytical
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estimation of LTV. Section III present and discuss the main
results, and gives a mathematical formalization for the LTV.
Concluding remarks are given in Section IV.

II. RELATED WORK

Analytical estimation of LTV has been typically approached
by means of three types of techniques: by means of heuristics
based on expert knowledge; by employing machine learning
algorithms; and by calibrating stochastic models. Arguably
the most prominent example of a heuristic used in practical
customer analytics is the so-called Recency, Frequency, and
Monetary value (RFM) framework which was introduced in
the 1920’s —see [2], [23], [29], [30], and Ch. 4 in [28] for an
in-depth discussion about the use of heuristics. On the other
hand, machine learning methods are increasingly being used
to predict LTV in the context of freemium products and free-
to-play mobile games —see for instance [5], [6], [8], [25]–
[27] and references therein. Some benefits of such methods
include (i) the ability to work with relaxed assumptions about
the underlying distribution of the data; and (ii) the capacity
to effectively scale (computationally speaking) when dealing
with games having millions of active players on daily basis.
However, these methods may face major drawbacks when it
comes to model new games for which there is insufficient
historical data available. Furthermore, when such models are
trained in a supervised learning framework, then one may
incur into significant additional development costs (i.e., related
to train, validate business-wise and deploy a new model)
when the business application requires simple modifications. A
common scenario of such modifications arises when marketing
managers require to assess different profitability scenarios
for their marketing investments, say for instance looking at
profitability after nine or fifteen months since the campaign
start, whereas the original model was initially trained for the
fixed horizon of twelve months.

One could say that stochastic models fall somewhere in-
between the heuristics and the machine learning approaches.
These models start by making some assumptions regarding
the purchase patterns and potential attrition of customers. For
purchasing patterns, the most natural starting point (mathe-
matically speaking) would be to assume that the purchases
take place following a Poisson process with rate λ, and
then account for the variation across customers by allowing
the parameter λ to be random itself, say Gamma-distributed.



This Poisson-Gamma mixture results in a negative binomial
distribution (NBD), which is the common name by which such
a baseline model for purchasing patterns is referred to. The
NBD was derived in the 1920s (as the RFM) by [12], but
introduced in the context of marketing later on in the 1950s
[9]. The next significant extension of the NBD, known as the
Pareto/NBD model, was introduced in [24] by combining the
NBD with a Gamma mixture of exponentials (or Pareto Type
II) as a timing model for customer churn. Since then multiple
extensions have been developed with aims of capturing more
complex behaviours or increasing the analytical tractability of
the model —see [3], [10], [11], [14], [15], [21] and references
therein. However it is worth mentioning that little work has
been done regarding the empirical validation of the aforemen-
tioned approaches. And, to the best of our knowledge, the
present paper may be one of the first works addressing such
validation in the context of mobile gaming. For our analysis
we consider a sample of one million of in-app purchases made
by players across multiple puzzle games developed by the
company Tactile Games.

III. CUSTOMER LIFETIME VALUE: EMPIRICAL PROPERTIES

Let us start this section by providing a mathematical for-
malization for the customer lifetime value: Assume a player
installs the game at time t0 = 0. The total amount of money
this player has spent in the game up to time t ≥ t0 can be
then described by means of the quantity

Vt :=
∑
n≥0

MnI{Tn≤t}, (1)

where Tn and Mn denote the time at which the nth in-app
purchase takes place and its monetary value, respectively. The
indicator function I{Tn≤t} is simply defined as 1 if Tn ≤ t,
and 0 otherwise. As a convention, we shall set T0 := t0 and
set Tn = ∞ if the player does not pay for an nth time. We
refer to the stochastic process {Vt}t≥t0 as the customer value
process. In these terms, the customer’s lifetime value equals
Vτ , where τ describes the elapsed time between the install
date t0 and the last session of the player before churning.

Two remarks are in order. On the one hand, it is customary
to declare players as churned users if they haven’t played
the game for two consecutive weeks; and so that is the
convention we follow in this analysis as well. On the other
hand, practitioners tend to look at specific horizons in order
to evaluate LTV and the return on marketing investment.
Typically a horizon T such that T − t0 equals one year is
considered and, thus, instead of the actual lifetime value one
works with the censored value up to such horizon, that is,
VT∧τ where T ∧τ := min{T, τ}. In what follows by LTV we
shall implicitly mean VT∧τ .

Notice that the formalization in Eq. 1 is given in a general
form, without making any assumptions on the underlying
distribution of its constituents.

A. High-level properties
Similar to other products with freemium business models,

the design of free-to-play mobile games implies the vast

majority of the users will play for free, while only a small
fraction of around 10% or less will make at least one in-
app purchase —typically with the goal of obtaining virtual
goods or gaining access to special content. This zero-inflation
property is well-known (cf. [5]) and applies for our dataset
as well. What is more interesting, both mathematically and
from the game design perspective, is the tail of the LTV
distribution, i.e., the behaviour of the high spenders. Following
the approach in [7], we analyzed this tail distribution and
found that its behaviour is consistent with that of a power-
law (or Pareto) distribution —which is known for its heavy
tail. As an example, when applying this to the players from
the US market we found that for players on an Android
device (resp., iOS device), the tail values of LTV —beyond
the 97% (resp., 96%) percentile— behave like a power-law
with parameter α ' 2.89± 0.03 (resp., α ' 2.49± 0.05). The
high p-value of 0.12 (resp., 0.20) we obtained suggests that a
power-law distribution is indeed a plausible benchmark for the
behaviour of high spenders. It is important to highlight here
that having a parameter 2 < α < 3 implies that the power-
law distribution has finite mean, but an infinite variance. This
could suggest that when dealing with LTV, a better numerical
stability could be achieved by handling the sub-population
of high spenders (e.g., those on the top 3%-4% percentiles)
differently. This observation also leads us to hypothesize that
conducting hypothesis testing —also referred to as A/B testing
by the industry— on LTV using non-parametric bootstrap
methods (cf. [17]) may lead to tests with low power and
higher sample size requirements. Needless to say, this may be
a crucial limitation for game development since it is customary
to drive product optimization by means of A/B testing.
B. Time between consecutive in-app purchases

Consider the nth inter-purchase time as defined by ∆Tn :=
Tn+1 − Tn for n ≥ 1, where the convention T0 := t0
implies that the first inter-purchase time ∆T1 corresponds to
the elapsed time (in days) between install and the first in-app
purchase if that exists. A natural question to ask is whether
the inter-purchase times {∆Tn}n≥0 are equally distributed, or
if at least they show some regularity. In order to assess the
similarity between the inter-purchase times, Table I shows the
Kolmogorov-Smirnov distance between ∆Tn and ∆Tn+1, and
also between ∆Tn and some natural theoritical benchmarks —
which are fitted by MLE and then discretized. In addition, we
inspect these differences by means of the empirical probability
generating function (EPGF), which is defined as

ϕk(t) :=
1

k

k∑
j=1

txj (2)

for every t ∈ [0, 1], where x1, x2, ..., xk is a sample from
a given discrete distribution [19]. As an example, Fig. 1
illustrates how the EPGF looks like for the first k := 15
transactions of a group of users, each of which made at least
k in-app purchases in the game. This alternative inspection
coincides with the reading that the first in-app purchase made
by a user may have a different statistical distribution than the



Table I. Kolmogorov-Smirnov distance between the nth inter-purchase time
and various benchmark distributions: next inter-purchase (n+ 1),

Exponential (Exp), Weibull, Gamma and Generalized Gamma (Gen. G.).

n=1 n=2 n=3 n=4 n=5 n=10 n=20

n+ 1 10.8% 5.3% 3.3% 3.1% 2.4% 1.3% 0.8%
Exp 32% 26% 23% 21% 19% 14% 8.5%

Weibull 9.1% 6.8% 6.3% 6.2% 6.2% 5.4% 5.3%
Gamma 7.4% 5.9% 6.0% 6.3% 6.4% 5.3% 4.9%
Gen. G. 5.9% 8.2% 8.4% 8.5% 8.2% 7.2% 6.2%

Fig. 1. Logarithm of the EPGF for the time between consecutive transactions.
The first in-app purchase shows a consistent different behaviour than the rest.

subsequent consecutive transactions. We also observed that
this fact holds when controlling for other co-factors (e.g.,
country, mobile device type) and varying k.

These results suggest that:
(i) ∆T1 may have a different distribution than the rest of

the subsequent inter-purchase times, and thus could be
modelled separately (cf. [26]).

(ii) On early transactions (e.g., 1 < n ≤ 10) the inter-
purchase time ∆Tn does not appear to be exponentially-
distributed, which may lead to invalidating the usage of
Poisson processes to model occurrence of transactions
(cf. [12], [24]) in gaming.

(iii) Outperforming the exponential distribution benchmark
we find the Gamma and the Weibull alternatives; this
provides evidence in favour of approaches like [13] and
[18], respectively.

(iv) Overall, the inter-purchase times {∆Tn}n≥1 are not
equally distributed, which questions the validity of ap-
proaches like [21], [22].

(v) The statistical distance between ∆Tn and ∆Tn+1 seems
to decrease as n increases, suggesting that most engaged
paying users have regular playing habits.

C. Expected player lifetime

The expected player lifetime (τ ) is another crucial element
that determines customer lifetime value. Naturally, the study
of τ fits well into the area of statistics known as survival
analysis [16] where a variety of methods have already found

success in other industries. We borrowed some of the well-
known parametric distributions used in survival analysis and
used them as benchmark for the behaviour of τ and the player
survival probabilities, defined for every t ≥ t0 as P(τ > t),
i.e., the probability of staying at least t days in the game before
churning. The results of this analysis are depicted in Fig. 2. We
observe that player survival probabilities deviate significantly
from the benchmarks given by the following distributions:
Exponential, log-logistic, log-normal, and Gompertz. Inter-
estingly, the Exponential —i.e., the case of a constant haz-
ard rate— and Gompertz distributions massively overestimate
P(τ > t) at the beginning, e.g., for t ≤ 7, which is when
most of the new players tend to abandon the game. Hence the
Gompertz model proposed in [4] does not seem applicable
in gaming. Similarly, the Gamma benchmark (cf. [21], [22])
may not be enough to describe player survival probabilities for
the t ≤ 30. This region (t ≤ 30) is crucial since it involves
most of the population, and here the two-parameter Gamma
is clearly outperformed by its multi-parameter counterparts,
the Generalized Gamma and Generalized F. Finally, The
deviation from log-logistic behaviour is also worth noticing
since this model is typically used in scenarios similar to player
engagement —i.e., scenarios where the churn rate increases
initially (as the player discovers the new game) and decreases
later (as the player engagement grows).

D. Monetary value of in-app purchases

A very specific feature of modelling LTV in mobile games is
that, in order to be listed in the main app market places like the
App Store or Google Play Store, the in-app purchases offered
by the game can only take values within a predetermined
set of price points. This directly implies that the random
variable Mn in Eq. 1 follow a multinomial distribution. To
the best of our knowledge, this very specific feature seems to
be currently unexploited by the literature regarding customer
lifetime value —while natural approaches like a Multinomial-
Dirichlet Bayesian model could be easily be explored.

As with the inter-purchases times, it is natural to inquire
if the monetary values {Mn}n≥1 are identically distributed.
We see that is not the case by applying a Chi-squared test on
each pair (Mn,Mn+1) of consecutive transactions: For n ≤ 3
we obtained a low p-value under 10−4 suggesting that the
purchases prices are not identically distributed. This fact seems
to change as n increases since for next group of comparisons
(e.g., 3 < n < 15) we observed p-value bigger than 0.10,
with an average value around 0.74. Table II illustrates the
distribution of purchases per price point for the nth in-app
purchase —i.e., the distribution of Mn. Notice that higher
price points tend to have higher purchase rate as the number
of transactions increases, which is consistent with the notion
that most users will prefer lower price points at the beginning
when they are still in the process of discovering the new game.
Although we also observed a small number of players having
a very expensive first in-app purchase giving them access to
a lot of virtual goods. We attribute this behaviour to a special
type of players who prefer to discover the game deeper and



Fig. 2. Left: Relative error between the observed player survival probability and theoretical benchmarks. Right: Comparison between the logarithm of the
EPGF of player survival probabilities and a variety of benchmarks.

Table II. Distribution of purchases per price point for the nth transaction.
All values are normalised using the value of the $1.99 price point in the

corresponding row (e.g., a value of 50% means that price point was
purchased half as frequently than the $1.99).

n $99.99 $49.99 $19.99 $9.99 $6.99 $3.99 $0.99

1 0.3% 0.7% 5.3% 29.1% 2.5% 6.7% 57%
2 0.2% 0.6% 6.3% 33.3% 4% 7% 12.5%
3 0.3% 0.8% 6.7% 31.1% 3.2% 7.5% 7.4%
4 0.4% 1% 6.8% 33.2% 2.4% 8.4% 4.4%
5 0.4% 1% 7.2% 33.7% 3.2% 7.8% 4.5%

faster than the game economy allows it to the average non-
paying player.

IV. CONCLUDING REMARKS

We have analyzed a series of empirical properties exhibited
by customer lifetime values (LTV) using data arising from
mobile games. Our results emphasize the challenges one may
find when modelling LTV, e.g., handling zero-inflation, heavy
tails and non-identically distribution of the constituents in
Eq. 1. At the same time some avenues of future research
have been suggested, e.g., assessing the power of bootstrap
methods for hypothesis testing on LTV, and exploding the
unique behavior of {Mn}n≥1 with Bayesian methods. It would
be also interesting to further analyze the interaction between
different variables in Eq. 1; in particular, the interaction
between the inter-purchase time ∆Tn and the monetary value
of the last transaction, Mn.

It is worth highlighting that the properties discussed here
may help researchers to construct synthetic LTV datasets,
which may prove to be valuable since at the time writing this
paper no public datasets were known.

Altogether, it is our hope that this work will contribute to the
advancement of industry knowledge-sharing regarding LTV
and its potential stylized facts: a set of properties, common
across many games, markets and time periods.
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