
Vision-based beatmap extraction in rhythm game
toward platform-aware note generation

Yeonghun Kim
School of Computing

Korea Advanced Institute of Science and Technology
Republic of Korea

neutrinoant@kaist.ac.kr

Sunghee Choi
School of Computing

Korea Advanced Institute of Science and Technology
Republic of Korea
sunghee@kaist.edu

Abstract—Recent approaches to deep learning-based music
analysis have had significant impact on procedural content gener-
ation in music-based games. However, the lack of understanding
of the unique features of various platforms and interfaces makes
auto-generated content less valuable than manually designed
content. Hand-crafted datasets are required, to enhance the
quality of content in various platforms, but most rhythm games
permit only indirect access to the dataset, as a form of player’s
experience and its replay video. We develop a vision-based
approach to content extraction through video analysis, using
a format named beatmap. We cover some common visualized
features in well-known rhythm games, and construct a mapping
from their content to our beatmap model, using multiple object
detection. Our method correctly detects each action button, type,
and time, and extracts beatmap representations for our target
game.

Index Terms—procedural content generation, music-based
game, video analysis, object detection, beatmap extraction

I. INTRODUCTION

Procedural content generation (PCG) has become a popular
research topic in a range of games, including the music-based
game called the rhythm game [1] [2]. The rhythm game has
common concepts, played by listening to music and taking
appropriate action at a specific times. One of the most popular
designs, which we call keyboard-type, involves an object note,
moving along a fixed route. When the note arrives at specific
location, the user takes an action corresponding to the route.
Many well-known games adopt this type of design, and have
been widely researched on various platforms, including osu!
[2] on the PC, BeatSaber [3] on VR devices, and Dance Dance
Revolution [4] on arcade machines.

In rhythm game design, the manual design of notes is
quite demanding. Naively, the content designer needs to select
proper beats synced with the music, and more importantly
needs to fully understand the interface used, such as the
number of buttons, their shapes, sizes, and even locations
per route. Various platforms have unique interfaces involving
more than just keyboard buttons, and each interface includes
underlying human-centric rules such that 10 fingers cannot
press 11 buttons together, or two feet cannot reach two buttons
together more than a leg length apart. In this context, the

players’ experience of the interface is crucial for naturalness
and for the generation of a high level of entertainment.

Recent work into deep learning has raised the possibility
of producing high performance and scalability of PCG of
rhythm games, using automatic note generation. Yubin’s team
[1] trained their learning model using the osu! beatmap dataset
to generate note data, such as the action time and button
to be pressed, and the model allows any kind of audio as
input. However, the dataset depends strongly on the keyboard
interface, so the generated content does not fit other devices
with different button structures. Hand-crafted datasets can help
to overcome this limitation and facilitate further research, but
most rhythm games permit only indirect access to the dataset
as a form of the player’s experience and its recorded video.

With this motivation, we develop a system for vision-based
automatic note extraction from replay video to build rhythm
game datasets on various platforms. Our method utilizes mul-
tiple object detection (MOD) to detect notes on each frame,
using two-pass video scanning. In the first pass, we analyze
the representation of moving notes, such as notes coming
toward the screen, falling like a waterfall, or other variations.
In the second pass, we use MOD to find notes in each frame
with respect to the note representation, and merge them into
a single rectangular model, which we define as a beatmap.
Since the beatmap comes from hand-crafted data from the
game, it reflects both the correct rhythm of the music, and an
understanding of the underlying interface structure.

There is a similar but different attempt that considers the
game interface in PCG. Azizah’s team [5] points out that
content obtained only from music analysis is not applicable
to VR, since it does not reflect the spatial properties of the
player’s actions. Their solution utilizes human dance to reflect
the unique features of the VR interface and enhance the quality
of note generation. While they target only VR devices, we
target mostly arcade machines equipped with their own unique
interfaces, and even mobile devices and PC.

II. METHODOLOGY

A. The Beatmap Model

The scope of our work is bounded on keyboard-type 2D
rhythm games, as shown in Fig. 1, as follows. There is an
infinitely long road partitioned into multiple routes and a978-1-6654-3886-5/21/$31.00 ©2021 IEEE

Fig. 1. Examples of keyboard-type rhythm games: O2Jam (top-left), Beatma-
nia IIDX (top-right), Deemo (bottom-left), and Nostalgia (bottom-right). Four
games have common features, including multiple tracks and falling notes along
the tracks from top to bottom, but they have different ways of visualization
of notes.

judgement line at a fixed position on the road. On one side of
the road, notes run toward the judgement line along their own
routes, and generally their speeds do not need to be the same.
A frame window records the scene near the line, but visualizes
it with a warped vision. Warping in this situation includes any
kind of perspective transform mapping each horizontal line
segment on the road into another horizontal line segment in
the frame. Using these descriptions, our goal is to extract each
note on a video as a triple (w, t, k), where w is the route index,
t is the arrival time to the judgement line, and k is the note
type. We call the set of triples a beatmap; the name originates
from the osu! rhythm game.

B. Inverse Warping

Warping by frame window makes note-tracking harder,
since it causes each note to change its shape and speed accord-
ing to its relative location on the frame. To correctly analyze
the moving pattern of notes, we construct an inverse map of
the warping function between two different coordinates, before
and after warping. Based on our assumption in Section II-A,
it is sufficient to find line-to-line correspondences on each y-
coordinate. A line is mostly shown as a bar in rhythm games.

A bar, called a measure as a musical element, is visualized
as a horizontal line in many rhythm games. We use bar lines
to analyze the moving pattern of notes on the frame. Line
segment detection [6] is used to detect all of the horizontal
lines appearing on all of the frames, with their y-axis locations,
lengths, and the instantaneous velocities v(y) approximated as
below:

v(y) = (y − ypre) · r (1)

where r denotes the frame rate and ypre denotes the y-
coordinate of location of the same line in the previous frame.
In general, the domain of v is only a subset of [1, H], for
frame height H . To expand the domain, we use Gaussian
process regression (GPR) [7] and predict v(y) in a domain
[1, H]. Since GPR has an ability of fitting sample points to any

Fig. 2. Figure 2. Three examples of line-to-line mapping between non-uniform
frame coordinates and uniform rectangular coordinates. Left figures are the
game screenshots applying visual options in our target game, named Approach
(row 1), Splash (row 2), and Slope (row 3). Right figures are the corresponding
results of inverse warping of the bar lines (green) and notes detected.

continuous function without prior knowledge, it is suitable for
covering many possible designs of falling notes and shapes of
tracks.

Suppose that a line on a frame moves from y = 1 to h for
th seconds, then the corresponding line on a frame window
moves from y = 1 to yh, which is approximated by Euler’s
method on a pixelated coordinate, as below:

yh = H ·
∑h

i=1 δi∑H
i=1 δi

(2)

δi =
1

v(i)
(3)

where δi denotes the time taken for the line on frame to
move from y = i − 1 to i. Similar analysis is done for
the x-coordinates of lines. We first define xl(y) and xr(y)
as the x-coordinates of left end and right end of the line
of which y-coordinate is y, respectively, and predict them
in the domain [1, H] using GPR. Fixing x′l = 1 as a left
end and x′r = W (width of the frame window) as a right
end for a line on a frame window, we obtain the line-
to-line correspondence between the two coordinates directly
from the three pairs: (h, yh), (xl(h), x′l), and (xr(h), x

′
r). For

simplicity, we represent each correspondence as 2×2 linear
transform matrix, and cache all the matrices at runtime. Three
examples of the inverse warping process are illustrated in Fig.
2.

C. Multi-Template Matching

Vision-based object detection enables the detection of notes
in each frame. Previous work using deep learning-based
schemes produce rapid improvements on multiple object de-
tection. However, labeled note datasets are not sufficiently
detailed to train models for our goal, and thus limit the
scope of games. For simplicity and scalability, we use multi-
template matching [8] with manually designed templates from
each different shaped note. Each target frame and templates

are gray-scaled and matched using the normalized correlation
coefficient R as below:

R(x, y) =

∑
x′,y′ Tw

x,y(x
′, y′) · I(x+ x′, y + y′)√∑

x′,y′ Tw
x,y(x

′, y′)2 ·
∑

x′,y′ I(x+ x′, y + y′)2

(4)
Tw
x,y = Lx,y(T) (5)

where T and I denote the template and target image,
respectively, both normalized to zero mean. Each coefficient
for (x, y) on the given frame I is calculated by scanning all the
points (x′, y′) on the warped template Tw

x,y , which determines
similarity between the template and the patch compared in the
frame. Lx,y is a template image transformation on an (x, y)
location derived from the inverse warping function described
in Section II-B. For our target game, we choose Lx,y = s(y)
for scaling function s, to transform each note shape, but in
general L can be any other function that entirely depends on
the game setting.

After processing all templates on a frame, Non-Maximum
Suppression (NMS) [9] was used to identify the best matching
locations of labeled bounding boxes. This step is followed
by additional color-based analysis on the pixels inside each
bounding box, producing each note location (x, y) and note
type label k, defined in the game, including simple note,
start/end of hold note, and slide note moving left to right.

D. Beatmap Construction

Using the approach described in Section II-C, we obtained
points represented as (x, y, k, f), consisting of the relative note
location (x, y) on the frame with bottom left coordinate as
(0,0), its label, k, and the frame number, f . Our final step is
to track the movement of points to extract the action time t,
for each note.

To track note by note, we first set a route number, w, for
each point according to game-dependent fixed ranges of routes,
and group all the points by route number. For each group of
points, we scan points in increasing order of y, and decide
whether to add each point to a new or existing note cluster.
A note cluster is defined as a group of points indicating the
same note. Each note cluster is in a cluster queue and can get
a new point (x, y, k, f) if its y is less than or equal to the
minimum y of points in the cluster. A new point is added to
the earliest-generated note cluster in the queue satisfying the
y-coordinate condition, or otherwise is added to a new cluster
in the queue. We dequeue the cluster after its corresponding
note moves out of the frame rectangle. We predict the note-
escaping time moment by using the note speed calculated from
two points in the cluster. Note that this dequeuing process is
only applied to clusters having at least two points.

After the scanning and all of the clusters are made, we use
linear regression for the (y, f) pairs of points in each note
cluster to predict (yjudge, fjudge). yjudge is the y-coordinate
of the judgement line relative to the frame, and fjudge is the
frame number at which the note arrives at the line. Since the
action time, t, is equal to fjudge · r for a fixed frame rate, r,

Fig. 3. The interface design of our target rhythm game, Nostalgia. The arcade
machine has piano-like 28 buttons arranged in a row and has a sequential
mapping between each button and route on the screen.

we obtain a triple (w, t, k) for each cluster, and integrate all
of them into a final beatmap.

III. RESULTS AND DISCUSSIONS

The proposed method covers most of the keyboard-type
rhythm games, but still depends on a target game having
unique visual effects and settings as obstacles. We targeted
Nostalgia, a piano-based arcade game launched by KONAMI
in 2017, to test our method. Fig. 3 shows the 28-key buttons
interface of Nostalgia, and its features applicable to our work,
summarized below.
• 28-key buttons and their corresponding routes.
• Various note falling effects: vertical, approach, splash,

and slope.
• Various note types: simple, tenuto, trill, and glissando.
• Two or more notes with different colors or with inclusive

relationships to each other.
The use of 28 buttons limits the maximum number of notes,

and their pairwise distances needed to be handled together. For
instance, a player with 10 fingers cannot handle 11 notes at
the same time, or three notes located at either end and the
middle. These implicit features naturally appear in the game
contents, especially in the beatmaps that we aimed to extract.

We manually obtained replay video datasets by recording
the output signal of the arcade machine. Each video has a
fixed 60 fps frame rate and 1280×720 pixel resolution. We
prepared several note template images cropped from the video
with vertical note falling effects.

We first analyzed the accuracy of our method quantitatively
(Table I). Ten songs with up to 1,983 notes were recorded,
with three different non-vertical falling effects as options in
Nostalgia. Since we have no public ground truth for songs,
we first extracted beatmaps in vertical falling effects, and
manually adjusted every action time per note. These machine-
assisted ground truth beatmaps were compared with each effect
by measuring the F1 score and mean squared error (MSE).
True positives for F1 are defined in our work as all note pairs
located on the same route and having at most 1/60 second of
the action time difference between note pairs. For MSE, we
used the action times only for true positives; the mean squared
error of time differences for correctly found note pairs. The
average F1 scores for 10 songs was about 0.98.

Next, we analyzed the processing time of our proposed
method, step by step. Table II shows time elapsed per step for

TABLE I
AVERAGE F-SCORE AND MSE OF 10 SONGS IN DIFFERENT VISUAL

EFFECTS. THREE EFFECTS ARE VISUALIZED, AS DESCRIBED IN FIG. 2.

Visual effect F1-score MSE [sec2]
Approach 0.974 2.15× 10−4

Splash 0.980 2.15× 10−4

Slope 0.981 2.11× 10−4

TABLE II
ELAPSED TIME (MIN.) OF EACH STEP DESCRIBED IN SECTION II,

INCLUDING CACHING. THREE EXAMPLE SONGS WERE PROCESSED: zeeros
HAS TWO TEMPLATES AND 7,676 FRAMES; La Campanella HAS THREE

TEMPLATES AND 7,406 FRAMES; AND Moonlight HAS FOUR TEMPLATES
AND 8,372 FRAMES.

step zeeros La Campanella Moonlight
Inverse Warping 0.078 0.073 0.075
Caching 5.110 4.759 5.846
Multi-template Matching 37.076 38.590 78.823
Beatmap Construction 10.598 9.596 13.711
total 52.863 53.018 98.456

three songs, using an Intel i7-8700 3.20 GHz processor and
48 GB RAM with multi-processing of 12 CPUs. To improve
performance, we added another step, Caching, which consisted
of cropping frames and caching all matrices referred to Section
II-B. Multi-template matching took up the most out of the
total processing time, and its per-frame time varied according
to two factors. One was the large frame size, which caused
a high cost for comparison, as shown in Eqn. 4, while the
other was the number of templates used. Neither factor had
inter-frame dependency; therefore, further speedup would be
possible by adopting a GPU multi-threading scheme.

Fig. 4 shows a part of the beatmap of the song Moonlight.
The vertical axis contains an integer coordinate corresponding
to the frame number, closely related to the action time of the
note. The input video has 8,371 frames, and our proposed
method found 1,931 notes almost correctly. For this song,
we used four templates with their thresholds, experimentally
chosen for template matching.

A. Conclusion

We developed a vision-based automatic beatmap extraction
algorithm from replay video of keyboard-type rhythm games.
We tested several videos from our target game, which has a
unique interface and non-vertical note falling effects. The algo-
rithm found every note per frame, and successfully integrated
them into a single beatmap. Quantitative experiments showed
a high accuracy of our method, with a maximum average F-
score of 0.981 and a minimum average MSE of 2.11× 10−4

of action time differences.
Our work can be applied to many arcade, mobile, or PC

rhythm games, but its performance depends on the pre- and
post-processing for a target game. Visual effects and options
need to be covered, as does the way in which the falling note
is warped against its location. Therefore we focused on the

Fig. 4. An example of a beatmap extracted from the song Moonlight and
related scenes in the video. The figure on the left visualizes various types of
notes and bar lines detected in the frames on the right.

common features in well-known rhythm games, and proposed
general but simple methodologies covering as many features
as possible. Our work is expected to improve the quality and
diversity of rhythm game datasets, and to encourage further
research.

ACKNOWLEDGMENT

This work was supported by Institute of Information &
communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government(MSIT) (No.2019-0-
01158, Development of a Framework for 3D Geometric Model
Processing)

REFERENCES

[1] Y. Liang, W. Li, and K. Ikeda, “Procedural content generation of rhythm
games using deep learning methods,” in Joint International Conference
on Entertainment Computing and Serious Games. Springer, Conference
Proceedings, pp. 134–145.

[2] G. A. Salsabilla, H. Fabroyir, D. Herumurti, I. Kuswardayan, and S. C.
Hidayati, “Tachyon: Multiplatform rhythm game with automatic beatmap
generation,” in 2020 International Conference on Computer Engineering,
Network, and Intelligent Multimedia (CENIM). IEEE, Conference
Proceedings, pp. 162–167.

[3] A. Szpak, S. C. Michalski, and T. Loetscher, “Exergaming with beat
saber: An investigation of virtual reality aftereffects,” Journal of Medical
Internet Research, vol. 22, no. 10, p. e19840, 2020.

[4] C. Donahue, Z. C. Lipton, and J. McAuley, “Dance dance convolution,”
in International conference on machine learning. PMLR, Conference
Proceedings, pp. 1039–1048.

[5] R. N. Azizah, Y. S. Lee, J. J. Jung, and B.-S. Sohn, “Gesture recognition
for note generation in vr rhythm game,” in 2021 International Conference
on Information Networking (ICOIN). IEEE, Conference Proceedings, pp.
521–524.

[6] J. H. Lee, S. Lee, G. Zhang, J. Lim, W. K. Chung, and I. H. Suh,
“Outdoor place recognition in urban environments using straight lines,” in
2014 IEEE International Conference on Robotics and Automation (ICRA).
IEEE, Conference Proceedings, pp. 5550–5557.

[7] C. E. Rasmussen, “Gaussian processes in machine learning,” in Summer
school on machine learning. Springer, Conference Proceedings, pp. 63–
71.

[8] G. Bradski, “The opencv library,” Dr Dobb’s J. Software Tools, vol. 25,
pp. 120–125, 2000.

[9] A. Neubeck and L. Van Gool, “Efficient non-maximum suppression,” in
18th International Conference on Pattern Recognition (ICPR’06), vol. 3.
IEEE, Conference Proceedings, pp. 850–855.

