Stereotypes as Design Patterns for Serious Games
to Enhance Software Comprehension

René Gokmen*, David Heidrichf, Andreas Schreibert, and Christoph Bichlmeier*
*Faculty of Informatics—Game Engineering, University of Applied Sciences, Kempten, Germany
goekmen.rene @web.de, christoph.bichlmeier @hs-kempten.de
1 Institute for Software Technology, German Aerospace Center (DLR), WeBling, Germany
david.heidrich@dlr.de
Y Institute for Software Technology, German Aerospace Center (DLR), Cologne, Germany
andreas.schreiber @dlr.de

Abstract—Stereotypes support a high-level software compre-
hension by implying roles and responsibilities of classes in
software systems. We propose the idea of using stereotypes as
design patterns for serious games to enhance object oriented
software comprehension. These design patterns can reduce the
complexity of software systems and encode software knowledge
into game mechanics. We provide examples of possible game
mechanics and discuss the application of the proposed design
patterns.

Index Terms—Serious Games, Design Patterns, Software En-
gineering, Software Comprehension, Stereotypes

I. INTRODUCTION

In object-oriented programming, classes contain the be-
havior and data of a software system. Hence, understand-
ing the role and responsibilities of classes is necessary for
many software engineering tasks [1]. Due to the abstract and
complex nature of software systems, this can quickly evolve
into a mentally demanding and time consuming activity. For
example, professional developers invest more than 50% of
their working time on software comprehension instead of
writing source code [2].

Serious games can be an effective tool for acquiring ex-
pert knowledge in basically every area [3]. By encoding
expert knowledge in game mechanics, the player repetitively
applies knowledge [4]. This repetitive knowledge applica-
tion ultimately results in a learning effect [5]. Additionally,
well-designed video games are highly engaging and produce
flow [6], [7]. Flow is also called the optimal experience or
being in the zone and it ultimately increases a player’s intrinsic
motivation for knowledge acquisition [8].

The design of serious games in software comprehension
is generally considered very challenging, due to the high
number of different concepts [9]. Still, a few serious games in
the broader area of software comprehension exist [10]-[12].
However, designing serious games specifically for software
comprehension features some challenges. Depending on the
size of the software system, the amount of knowledge that
must be taught can be very high. Software comprehension

978-1-6654-3886-5/21/$31.00 ©2021 IEEE

requires knowledge of—for example—class properties (e.g.,
names or lines of code), dependencies between classes, or
dependencies between all other software elements [13]. Even
in medium-sized software systems, the number of different
classes can easily reach into the thousands. Hence, it would
be far too time-consuming to integrate all these properties
into the game design by hand. Additionally, no two software
systems are alike and the distribution of class roles can differ
strongly [14], which amplifies this design challenge even more.
Thus, there is a need for a general reusable solution to design
serious games for software comprehension, i.e., game design
patterns [9], [15].

We propose the use of stereotypes as game design patterns
for serious games. Stereotypes are a high-level implication of
a class’ role and responsibility in a software system [14], [16].
Class roles contain implications on—for example—activities
and dependencies, which allow for interesting and diverse
game design patterns. Stereotypes help in comprehending
high-level software systems—independent from the source
code. Hence, stereotypes can also enable non-expert users,
who cannot understand source code, to gain insight of a
software system.

In the following, we propose the idea of using game design
patterns based on stereotypes (Section II) and discuss their
application (Section III).

II. STEREOTYPES AS GAME DESIGN PATTERNS

Stereotypes are classified roles of software objects [16]
that can help developers to gain and maintain a better
understanding of a software system [18], which is crucial
for understanding its functionality and for modifying source
code [19]. For example, a stereotype indicates how a class
collaborates with other classes or how important a class might
be to the software system (Table I). Since every software
system is different, the distribution of stereotypes can differ
strongly [14], [16]. Hence, before designing a serious game
for a specific software system, the stereotype distribution of
that software system should be studied by the game designer.

TABLE I

OVERVIEW OF THE CLASS ROLE STEREOTYPES [16] WITH GAME DESIGN PATTERNS AND AN EXAMPLE OF THEIR PROBABILITIES [17].

Stereotype Description Game Design Pattern Prob.

Controller Make decisions and control others Controllers have the power to tell all other stereotypes what to do and how 2.5%
actions. to do it.

Coordinator Delegate work to other objects Coordinators do not like to make own decisions. They rather delegate work 10.1%
when triggered by events. to Service Providers when being told by Controllers, Interfacers, or events.

Coordinators may report back to the Controller.

Information Holder Knows certain information and Information Holders provide Controllers, Coordinators, and Service 29.7%
provides information to others Providers with information on demand.

Interfacer Transforms information and re- Interfacers are often controlled by a Controller. Interfacers might collaborate 9.9%
quests between distinct parts of a with Coordinators and Service Providers to move certain information across
system. different system layers.

Service Provider Performs work and offer services Service Providers do work and can store information by collaborating with ~ 41.5%
to others. Imformation Providers and Structurers.

Structurer Maintains relationships between Structurers organize and store informations in Information Holders. Struc- 6.3%

objects and provides information

turers may collect information and link it to several information holders.

about those relationships.

A stereotype’s role, responsibility, and collaboration can act
as design patterns to support the idea generation and help
create a game design. Initially, a game designer should not
have to dive into the potentially overwhelming amount of data
of a software system. Rather, they start by gaining a high-
level insight of the software system, by classifying classes
into stereotypes. The design patterns of the stereotypes add
game characteristics and game behaviours to the classes. Ad-
ditionally, the game designer gains insights of the stereotype
distribution of the software system, which can further support
the idea generation. The game characteristics of the classes
become even more diverse, when the game designer adds
additional software metrics that further enhance the software
comprehension — such as dependencies or lines of code.
The results are game design patterns that provide insights
into the software system by using stereotypes and software
metrics. As these design patterns are not based on specific
source code, the game designer can also apply them to other
comparable software systems. The final step is to convert the
design patterns into a concrete game design that respects the
identified game characteristics of the classes.

In the following, we describe the stereotypes design patterns
and possible example game mechanics in detail—including an
overview of all stereotypes and their game design implications
(Table I).

e Controller classes are designed to make decisions and
to control others actions. They make complex decisions
on basis of their provided information and then tell all
other stereotypes what to do and how to do it. This could
be implemented into the game design as a general that
makes decisions and orders its subordinates.

e Coordinator classes delegate work to other stereotypes
when being triggered by events. Coordinators do not like
to make own decisions. They rather delegate work to
Service Providers when being told by a Controller, an

Interfacer, or on a specific event. Coordinators may report
back to the Controller. This could be implemented into
the game design as a unit leader that receives orders from
the general and then delegates the fighters to complete the
order. If the fight was waged the unit leader may report
back to the Controller.

Information Holder classes know certain information and
provide information to others. They provide Controllers,
Coordinators, and Service Providers with information on
demand. This could be implemented into the game design
as a storage container or a prison room that is organized
by an overseer. The storage container shares its content
with the general, unit leader and fighter on demand.
Interfacer classes transform information and request be-
tween distinct parts of a system. Interfacers are often
controlled by a Controller. Interfacers might collaborate
with Coordinators and Service Providers on different
system layers to conduct a cross-layer task. This could be
implemented into the game design as a medium between
different stereotypes like a radio or telephone.

Service Provider classes do all kinds of work and offer
services to Coordinators, Interfacers, and Controllers. For
example, they can store information by collaborating
with Information Holders and Structurers. This could be
implemented into the game design as a fighter in the front
line, awaiting orders. The fighter concentrates only on
fulfilling its task and may use the storage container and
overseer to access or store information.

Structurer classes maintain relationships between ob-
jects and expose information about those relationships.
Structurers organize and store information in Information
Holders. This could be implemented into the game design
as an overseer, which makes sure that the content of
the assigned storage container are organized. An overseer
may receive content from fighters and generals.

III. DiscusSION

Using serious games for software comprehension is chal-
lenging. In this domain, game designers must be experts in
software engineering to understand complex software systems
and to translate this knowledge into game design. Additionally,
as each software system differs, the game design for one
software system might not work with other software systems.
Hence, every software system may require the game designer
to fundamentally rethink their game design.

Using automatic identification of stereotypes [14], [17]
can help and speed up the software comprehension process
required by the game designer. That way, instead of inspecting
and interpreting each class’ source code, classes’ roles and
responsibilities are instantly apparent to the designer. Addi-
tionally, software systems can be compared based on their
stereotype distribution. Similar distributions should be able
to share similar game design approaches. Since all object-
oriented software systems are based on the same basic stereo-
types, well-designed games might even be able to address
different stereotype distributions and different sizes of software
systems (i.e., the number of classes).

All these considerations, however, require an automatic
analysis of stereotypes that does not misidentify stereotypes.
When classes cannot be assigned to a specific stereotype or
when a wrong stereotype is assigned, the educational aspect
of the serious game will be undermined. Especially in big
software systems, it becomes unreasonable to verify every
single class stereotype. For this reason clear classification rules
(e.g., based on a classes method properties [14]) must be used.

In addition to the proposed design patterns, we encourage
game designers to use additional software metrics that fur-
ther enhance the software comprehension. Possible software
metrics are—for example—number of methods or code com-
plexity [20].

IV. CONCLUSION AND FUTURE WORK

Stereotypes contain characteristics and behaviors that can be
translated into design patterns. These design patterns support
the game designer by reducing the overall complexity of the
software system and by supporting the idea generation. Result-
ing game designs can be applied to varying software systems,
because stereotypes are dissociated from specific software
systems or source code. Most importantly, our design patterns
encode the knowledge of the classes’ roles and responsibilities
into game mechanics. Hence, the proposed design patterns
should be suited for serious games. Therefore, future work
includes the application of the proposed game design patterns
to exemplary serious games with different types of software
systems to evaluate learning effects.

[1]

[2

—

[3]

[4

=

[5]

[6]

[7

—

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]
[16]

(171

[18]

[19]

[20]

REFERENCES

N. Dragan, M. L. Collard, and J. I. Maletic, “Reverse engineering
method stereotypes,” in 2006 22nd IEEE International Conference on
Software Maintenance. 1EEE, 2006, pp. 24-34.

X. Xia, L. Bao, D. Lo, Z. Xing, A. E. Hassan, and S. Li, “Measuring
program comprehension: A large-scale field study with professionals,”
IEEE Transactions on Software Engineering, vol. 44, no. 10, pp. 951—
976, 2017.

K. A. Ericsson, R. T. Krampe, and C. Tesch-Romer, “The role of delib-
erate practice in the acquisition of expert performance,” Psychological
review, vol. 100, no. 3, p. 363, 1993.

S. Oberdorfer and M. E. Latoschik, “Knowledge encoding in game
mechanics: Transfer-oriented knowledge learning in desktop-3d and vr,”
International Journal of Computer Games Technology, vol. 2019, 2019.
J. P. Gee, “What video games have to teach us about learning and
literacy,” Computers in Entertainment (CIE), vol. 1, no. 1, pp. 20-20,
2003.

M. Csikszentmihalyi and M. Csikzentmihaly, Flow: The psychology of
optimal experience. Harper & Row New York, 1990, vol. 1990.

J. Chen, “Flow in games (and everything else),” Communications of the
ACM, vol. 50, no. 4, pp. 31-34, 2007.

C. J. Dede, J. Jacobson, and J. Richards, “Introduction: Virtual, aug-
mented, and mixed realities in education,” in Virtual, augmented, and
mixed realities in education. Springer, 2017, pp. 1-16.

G. Zavcer, S. Mayr, and P. Petta, “Design pattern canvas: towards
co-creation of unified serious game design patterns,” in 2014 6th
International Conference on Games and Virtual Worlds for Serious
Applications (VS-GAMES). 1EEE, 2014, pp. 1-2.

M. A. Miljanovic and J. S. Bradbury, “Robot on! a serious game for
improving programming comprehension,” in Proceedings of the 5th
International Workshop on Games and Software Engineering, 2016, pp.
33-36.

R. Bryce, “Bug wars: a competitive exercise to find bugs in code,”
Journal of Computing Sciences in Colleges, vol. 27, no. 2, pp. 43-50,
2011.

N. Tillmann, J. Bishop, N. Horspool, D. Perelman, and T. Xie, “Code
hunt: Searching for secret code for fun,” in Proceedings of the 7th
International Workshop on Search-Based Software Testing, 2014, pp.
23-26.

L. Merino, M. Ghafari, C. Anslow, and O. Nierstrasz, “A systematic lit-
erature review of software visualization evaluation,” Journal of Systems
and Software, vol. 144, pp. 165-180, 2018.

N. Dragan, M. L. Collard, and J. I. Maletic, “Automatic identification of
class stereotypes,” in 2010 IEEE International Conference on Software
Maintenance. 1EEE, 2010, pp. 1-10.

J. Holopainen and S. Bjork, “Game design patterns,” Lecture Notes for
GDC, 2003.

R. Wirfs-Brock and A. McKean, Object design: roles, responsibilities,
and collaborations. Addison-Wesley Professional, 2003.

A. Nurwidyantoro, T. Ho-Quang, and M. R. Chaudron, “Automated clas-
sification of class role-stereotypes via machine learning,” in Proceedings
of the Evaluation and Assessment on Software Engineering, 2019, pp.
79-88.

S. Yusuf, H. Kagdi, and J. I. Maletic, “Assessing the comprehension
of uml class diagrams via eye tracking,” in 15th IEEE International
Conference on Program Comprehension (ICPC’07). 1EEE, 2007, pp.
113-122.

T. Ball and S. G. Eick, “Software visualization in the large,” Computer,
vol. 29, no. 4, pp. 3343, 1996.

M. Lanza and R. Marinescu, Object-oriented metrics in practice: using
software metrics to characterize, evaluate, and improve the design of
object-oriented systems. Springer Science & Business Media, 2007.

