BCIManager: A library for development of
brain-computer interfacing applications in Unity

Filip Skola
CYENS - Centre of Excellence
Nicosia, Cyprus
f.skola@fgs.cz

Abstract—BCIManager is a customizable library helping with
the development of brain-computer interfaces (BCIs) with 3D
graphics scenes, suitable for virtual reality (VR) BCI feedback,
gamified BCI training, using BCIs as game inputs, and similar
use cases. The library forms a layer between Unity game engine
and Openvibe (software for development of BCIs) that provides
control of the EEG recording process from applications made
with Unity. The main feature of the BCIManager is the interface
for bi-directional data exchange between Unity and Openvibe;
for sending markers (stimulations) from the experimental 3D
applications to the EEG recordings, and for sending classification
results, features, or other data from Openvibe to the 3D appli-
cations. BCIManager also wraps around the process of starting
Openvibe and can be used for arbitrary scenarios that include
EEG recording with 3D/VR applications. This project is an open
source, freely available at https://github.com/xskola/BCIManager.

Index Terms—brain-computer interface, virtual reality, 3D
graphics, games, gamification

I. INTRODUCTION

Research in brain-computer interfaces (BCIs) attempts to
create a reliable communication channel using information
from the brain only [1]. Development of BCIs is motivated
mainly by their ability to reconnect severely paralyzed people
(with movement and communication disabilities) with the
outside world [2, 3], but healthy population can also benefit
from the existence of BClIs.

As the current BCls require investment of non-trivial effort
and examination of mental strategies before communication
with usable accuracy is established, quality feedback from the
BCl is a crucial part of the system (Figure 1 shows the typical
parts of a BCI system). In recent years, studies demonstrated
that scenes in 3D graphics and virtual reality (VR) are suitable
for providing feedback in the BCI systems [4, 5]. This has been
especially true in oscillatory paradigms [6, 7] (i.e., based on
changes in neural rhythms), such as mental/motor imagery,
requiring training. Motor imagery BCI trainees consciously
imagine movements of their body parts, leading to modulation
of neural rhythms [3, 8]. Presentation of the corresponding
motor actions in 3D graphics helps in adaptation to the
task [7]. Furthermore, using immersive VR further helps to
accelerate the learning process thanks to the body ownership
transfer illusion (avatar embodiment) [7, 9].

978-1-6654-3886-5/21/$31.00 ©2021 IEEE

Fotis Liarokapis
CYENS - Centre of Excellence
Nicosia, Cyprus
f.liarokapis @cyens.org.cy

Video games can be used either to mediate the training for
BClIs (using gamified training [10]) or a BCI can be used as an
input interface for games [11]. Gamified training can aid users
to overcome psychological difficulties of the training, such as
necessity to focus one’s attention for prolonged periods of
time, while maintain still body posture [10, 12]. Using video
games can help us to understand the BCI user behavior. They
can also provide an implicit performance metric and help in
communicating instructions for the BCI training or usage [13].

Despite existence of game engines for fast development
of advanced 3D and VR scenes (e.g., Unity and Unreal En-
gine) and software for development of BCI scenarios (Open-
vibe [14]), a tool aiding development of BCI applications in
3D or VR has been missing. BCIManager addresses this issue
by providing a customizable library for bridging of the VR and
the BCI development. Specifically, BCIManager helps BCI
researchers and developers to use functionality of Openvibe
in applications made in Unity.

Unity! is a game engine, freely available for non-
commercial purposes and popular among researchers in vari-
ous fields for its simple usage, suitable for people without deep
software development skills. Openvibe? is a state-of-the-art
open-source BCI development tool that employs an intuitive
graphical language (see in Figure 2). Openvibe consists of
two main components; Openvibe Acquisition Server (OVAS)
ensures connection to the acquisition device (e.g., EEG), while
Openvibe Designer (OVD) serves for development of the BCI
components (scenarios).

BCIManager is a library that implements functionality re-
quired for the data transfer between Openvibe and Unity
applications. Firstly, it provides TCP connection for a) sending
event markers (stimulations) from Unity to Openvibe and b)
for retrieval of the BCI data (signals, classification results, or
other data) from Openvibe to Unity. Secondly, it wraps around
Openvibe, taking care of starting and activating the required
OVD scenario from experimental applications made in Unity.

II. METHODS

From the high-level point of view, BCIManager operates
Openvibe scenarios from within Unity applications. Conse-
quently, it consists of set of sources for Unity (written in

Thttps://unity3d.com
Zhttp://openvibe.inria.fr

> Data acquisition

Feature construction

v

Classification

AN J

v

BCl user 4 A

Feedback generation

AN J

Fig. 1. Diagram of a typical BCI system. After acquisition of signals using
EEG or other suitable neuroimaging system, the raw data are cleaned and
processed into features. Real-time classification of the features then serves
for deciding the desired action performed with a BCI. Feedback is crucial
especially in the user training, as trainees adjust they mental strategies based
mainly on the feedback.

C#), communicating with Openvibe scenarios (XML files),
using Windows batch files as intermediates. Both Openvibe
and Unity must be present on the computer, while Openvibe
can optionally be present on a different machine.

The main features of BCIManager are:

« Starting OVD process with the desired scenario

o Sending event markers (stimulations)

« Receiving data (e.g., real-time classification results)

o Logging with autosave functionality

o Shutdown in case of Unity—Openvibe connection issues

A. General

To start using BCIManager in a Unity application, the main
script file BCIManager.cs must be attached to a game object
in the Unity application. Logger.cs should be attached as well.

Enabling/disabling features and configuration of the details
for connection to OVAS and OVD is performed by changing
control variables on the top of the main script BCIManager.cs.
Mainly, users are required to check the installation path of
Openvibe and the scenario they desire to run upon starting the
Unity application.

The connection between Unity and Openvibe is realized
using TCP/IP protocol for both directions of the data stream
(from Unity to OVAS for sending stimulations, and from OVD
to Unity for retrieval of BCI data).

B. Starting OVD with a scenario

The execution of OVD application is mediated using a batch
file located in OpenvibeScripts directory (path to the batch file
must be correctly set in OPENVIBE_RUNNER_PATH vari-
able). The actual Openvibe scenarios (XML files) are present
also in OpenvibeScripts, where simple scenarios for recording
data, signal monitoring, receiving data, etc. are prepared. Users
not experienced with development using Openvibe can start
with these scenarios, or go on with modification of example
scenarios provided by Openvibe installation package.

Starting of the Openvibe process by BCIManager
can be disabled in the main script by setting
DO_NOT_START_OPENVIBE to true. Then the developed
Unity application just connects to an already running
instance of Openvibe (this option is mainly present
for development and debugging purposes). The variable
QUIT_ON_CONNECTION_ERROR (set to true by default)
takes care of early shutdown in case the connection was not
established, helping to prevent experimental data loss. All
actions are logged to the debug window in Unity and to
external file generated by Logger component of BCIManager.

C. Sending stimulations

Sending stimulations to OVAS makes use of the software
TCP tagging functionality of Openvibe; “a software tagging
mechanism for time-accurate placement of event markers
(called stimulations in OpenViBE) in the EEG signal record-
ings” [15]. Sent markers are present in the data flow in OVD
(from “Acquisition Client” box), available for record.

Port for connection to OVAS is found in the configuration
of OVAS (“TCP tagging port”, default value 15361). Sending
stimulations in BCIManager is currently implemented using
SendStimulation(stimulationCode) function. Stimulation codes
are arbitrary integer numbers, but Openvibe implements a
list of commonly used stimulation codes. Handful of these
(e.g., experiment start, experiment stop, start of trial, etc.) are
present in OpenvibeStimCodes.cs file and can optionally be
used instead of user-defined codes.

D. Receiving data

This feature aims to facilitate the interaction process with
a BCI system. Arbitrary continuous data produced in the
scope of an Openvibe scenario can be transferred to a Unity
application via the TCP stream. That means that raw data can
be transmitted in case this is desired, but more likely specific
features or real-time classification results will be transferred
to Unity and used for control of game objects.

To make the connection to OVD possible, a box called
“TCP Writer” must be present in the scenario. This box starts
a TCP server on a port specified in its settings (the default
value is 5678) that the Unity application can connect to with
BCIManager.

In BCIManager, it is required to set RECEIVE_DATA vari-
able to true to make BCIManager try to connect to OVD.
The process of receiving data is demonstrated in one of the
provided example scripts.

E. Logging

Simple logging feature is part of BCIManager library, taking
care of saving information from the BCI session to an external
CSV file. By attaching Logger.cs script to a game object,
logging is enabled. Apart from logging of BCIManager events,
user event can be logged using Logger.LogEvent(description)
function (description is a string containing logged event). For
each line of the log, date and time, and total run time of the
application are logged together with the event. Logging feature
flushes new lines to disk every 2 seconds by default, thus logs
are saved even if the application ends unexpectedly.

III. USE CASES

Typical usage of BCIManager is with a Unity application
that either obtains data from EEG (or other recording system
supported by OVAS) and uses them in the real-time, or just
stores them. BCIManager does not manage OVAS, as OVAS
takes care of the acquistion device, and a manual set-up is
required by the experimenter. OVD is started automatically by
BCIManager from the Unity application, including activation
of the provided scenario. Repeated usage of an application
written with BCIManager does not require experimenter to
re-start other components than the experimental application
(OVD is started and shut down together with the application,
OVAS is running and does not disconnect from the acquisition
device).

For development with BCIManager without the necessity to
have the BCI acquisition device at hand, it is possible to use
synthetic data. Either “Generic oscillator” or other generator
of data can be used as the driver in OVAS, or “Generic stream
reader” box (in OVD) can be used to read pre-recorded data
from a file instead of using “Acquisition client” that reads the
data from OVAS.

A. Data recording scenario

The simplest scenario for BCIManager is recording of
physiological data alongside the running Unity application.
In this case, a simple Openvibe scenario that records the
data is sufficient (provided in example OVD scenarios). No
further modifications to BCIManager.cs are required. Re-
searchers utilizing data recording scenario will probably re-
quire sending stimulations marking at least the start of the
visual presentation in the Unity application, and more likely
multiple stimulations will be required. Those can be sent
from anywhere in the Unity application by calling BCIMan-
ager.SendStimulation(stimulationNumber) with a stimulation
number of choice as a parameter. See ExampleScript.cs in
BClIScripts directory for more information on data recording
scenario.

This use case was realized using development versions of
BCIManager in several EEG studies [16, 17], including an
ERP study of visual stimuli in VR [18].

B. Brain-computer interaction scenario

For communication from Openvibe to Unity, data retrieval
from the OVD must be enabled in BCIManager.cs. Developer

Acquisition client
‘F.Y T

<]
|

Generic stream writer

njOutiSet

Time based epoching

o
Simple DSP

njOutiSet

Feature aggregator

njOutiSet

oy A
Classifier - processor
it

Fig. 2. Modification of the prepared Openvibe scenario for on-line BCI
communication with the motor imagery paradigm. Instead of displaying the
classification results in the built-in Openvibe Graz visualisation window, they
are forwarded to the TCP Writer box. Using BCIManager connected to the
box, real-time classification results can be used to control the interaction in
the Unity application.

of such a scenario typically prepares OVD files that cover
most parts of the BCI system (data acquisition, processing,
and classification), although it is possible to implement any
part of the BCI pipeline in the Unity part of the application.

In case motor imagery paradigm is exploited for communi-
cation with a BCI, researchers can start with modifications of
the tutorial Openvibe scenarios. After some data are acquired
and classifiers are trained, by simple modification of mi-csp-
4-online.xml, classifier decisions can be provided into Unity
applications from the running scenario with “TCP Writer”
box (displayed in Figure 2. This box can receive inputs from
“Classification Processor” box, exposing hyperplane distance
for each of the classes on the TCP server (in case the linear
discriminant analysis classifier is used). By subtraction of the
values for each of the two classes, a simple metric about the
currently predominant class is received. This metric can be

improved by adding information about the probability from
the classification result.

This use case was utilized in a study of gamified training
for motor imagery BCI in VR [10]. Users were trained with a
gamified procedure, where they controlled weapons of a space
shuttle and tried to defend an Earth-like planet from asteroids
(using their mental commands).

IV. CONCLUSIONS AND FUTURE WORK

This paper presented BCIManager, an open source library
bridging the development of BCIs in Openvibe with the
development of applications for 3D graphics, VR, and games
(in Unity). BCIManager covers bi-directional data flow be-
tween applications made in Unity and BCI systems written in
Openvibe, helps with automatizing the recording process, and
also contains a simple logging facility and data loss prevention
mechanisms.

By using BCIManager, researchers in psychology, neuro-
science, games, VR, and other fields can easily connect exper-
imental applications with 3D graphics to BCI software without
having to take care of networking and managing the recording
software. This library is open source and freely available
for researchers and developers. When using BCIManager in
research, please cite this paper for reference.

In the future, we plan to extend the library with functionality
specific to development of applications for mental imagery
BCI paradigm. Specifically, features for coupling of organiza-
tion and timing of the stimuli (e.g., for the training process)
with events in Unity applications will be provided.

V. ACKNOWLEDGMENTS

This research was partially supported by the project that has
received funding from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement
No 739578 and the Government of the Republic of Cyprus
through the Deputy Ministry of Research, Innovation and
Digital Policy.

REFERENCES

[1] Bernhard Graimann, Brendan Allison, and Gert
Pfurtscheller, eds. Brain-computer interfaces: revolu-
tionizing human-computer interaction. Frontiers col-
lection. OCLC: ocn707710772. Heidelberg: Springer,
2010.

[2] Luis Fernando Nicolas-Alonso and Jaime Gomez-Gil.
“Brain Computer Interfaces, a Review”. In: Sensors
(Basel, Switzerland) 12.2 (Jan. 2012), pp. 1211-1279.

[3] Fabien Lotte, Laurent Bougrain, and Maureen
Clerc. “Electroencephalography (EEG)-Based
Brain—Computer Interfaces”. In: Wiley Encyclopedia of
Electrical and Electronics Engineering (2015).

[4] T. Sollfrank et al. “The effect of multimodal and
enriched feedback on SMR-BCI performance”. En-
glish. In: Clinical Neurophysiology 127.1 (Jan. 2016),
pp. 490-498.

(5]

(6]

(7]

(8]

(9]

[12]

[13]

[18]

Athanasios Vourvopoulos et al. “Effects of a Brain-
Computer Interface With Virtual Reality (VR) Neuro-
feedback: A Pilot Study in Chronic Stroke Patients”.
English. In: Frontiers in Human Neuroscience 13
(2019).

Toshiyuki Kondo et al. “Effect of instructive visual
stimuli on neurofeedback training for motor imagery-
based brain—computer interface”. In: Human movement
science 43 (2015), pp. 239-249.

Filip Skola and Fotis Liarokapis. “Embodied VR envi-
ronment facilitates motor imagery brain—computer in-
terface training”. In: Computers & Graphics 75 (Oct.
2018), pp. 59-71.

Gert Pfurtscheller and Christa Neuper. “Motor imagery
and direct brain-computer communication”. In: Pro-
ceedings of the IEEE 89.7 (2001), pp. 1123-1134.
Maryam Alimardani, Shuichi Nishio, and Hiroshi Ishig-
uro. “The Importance of Visual Feedback Design in
BClIs; from Embodiment to Motor Imagery Learning”.
In: PloS one 11.9 (2016), e0161945.

Filip §kola, Simona Tinkova, and Fotis Liarokapis.
“Progressive Training for Motor Imagery Brain-
Computer Interfaces Using Gamification and Virtual
Reality Embodiment”. English. In: Frontiers in Human
Neuroscience 13 (Sept. 2019), p. 329.

Bojan Kerous, Filip Skola, and Fotis Liarokapis. “EEG-
based BCI and video games: a progress report”. English.
In: Virtual Reality (Oct. 2017).

Eva Maria Hammer et al. “Psychological predictors
of SMR-BCI performance”. In: Biological Psychology
89.1 (Jan. 2012), pp. 80-86.

David A Washburn. “The games psychologists play (and
the data they provide)”. In: Behavior Research Methods,
Instruments, & Computers 35.2 (2003), pp. 185-193.
Yann Renard et al. “Openvibe: An open-source software
platform to design, test, and use brain—computer inter-
faces in real and virtual environments”. In: Presence:
teleoperators and virtual environments 19.1 (2010),
pp. 35-53.

Nathanael Foy. Extensions: TCP Tagging (Software
Tagging). English. 2018. URL: http://openvibe.inria.
fr/tcp-tagging/ (visited on 05/28/2021).

Filip Skola and Fotis Liarokapis. “Study of full-body
virtual embodiment using noninvasive brain stimulation
and imaging”. In: International Journal of Human—
Computer Interaction (2021), pp. 1-14.

Filip Skola et al. “Virtual Reality with 360-Video
Storytelling in Cultural Heritage: Study of Presence,
Engagement, and Immersion”. In: Sensors 20.20 (2020),
p. 5851.

Filip Skola and Fotis Liarokapis. “Examining and En-
hancing the Illusory Touch Perception in Virtual Reality
Using Non-Invasive Brain Stimulation”. In: Proceedings
of the 2019 CHI Conference on Human Factors in
Computing Systems. CHI *19. New York, NY, USA:
ACM, 2019, 247:1-247:12.

