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Abstract—Heuristic search is widely used in games for
pathfinding and general planning. High-quality heuristic func-
tions are key to finding a low-cost solution quickly. Commonly
used heuristic functions for video-game pathfinding are either
manually designed and generic or pre-computed for a specific
map. The former fail to take advantage of pathfinding specifics
while the latter tend to have a large memory footprint, may
require substantial pre-computation and are not portable to
other maps or easily presentable to humans. In this work we
attempt to combine the best of both approaches by automatically
synthesizing well performing pathfinding-specific yet compact
and human-readable heuristics. We do so by defining a space
of algebraic formulae expressing heuristic functions and then
conducting an automated search of the space. To make the
synthesis tractable we employ a multi-tier evaluation which
allows us to quickly filter out low-quality heuristics while saving
time to more thoroughly evaluate better ones. Such triage of
candidate heuristics enables us to synthesize compact heuristics
that outperform the standard baseline on video-game pathfinding
benchmarks. By then adding the synthesized heuristics back to
the synthesis space we show that synthesis on new maps can be
substantially sped up to merely few minutes per map.

Index Terms—heuristic search, heuristic function, program
synthesis, video-game pathfinding

I. INTRODUCTION

Heuristic search has been widely used in video games
for pathfinding [1]. Its performance crucially depends on a
heuristic function (a heuristic for short) which guides the
search. Commonly used heuristics are either generic (e.g.,
Manhattan distance) or pre-computed for a given map [2].
The former are easy to explain as they are expressed by com-
pact intuitive formulae but do not take advantage of domain
specifics and offer basic performance. The latter achieve a
greater performance but need to be pre-computed for each
map, can have large memory requirements and cannot be
compactly presented to humans.

In this paper we attempt to combine the best of both
types by automatically discovering formula-based heuristics
via program synthesis. Similar to Manhattan distance, our
synthesized heuristics tend to be compact, human-readable for-
mulae. They are portable across different maps, easily human-
readable and have negligible memory requirements. Further-
more, by exploiting particulars of video-game pathfinding

our machine-synthesized formulae substantially outperform a
common baseline (weighted Manhattan distance).

Fundamentally we propose that human designers define a
space of heuristic functions instead of designing individual
heuristics. Then machines can search through this space,
finding well performing heuristics tailored to a given class
of search problems (e.g., pathfinding problems on maps from
a particular video game).

This approach has several advantages over manual design.
First, it enables an automatic synthesis of heuristic functions
tailored to even a small set of problems (e.g., pathfinding on
a single map) in an attempt to exploit peculiarities/patterns
shared by such problems. Second, the space of heuristic func-
tions can use a human-readable representation which makes
their adoption by a game developer more likely. To illustrate,
one of our synthesized heuristics estimated the remaining
distance to goal by non-linearly combining the remaining
horizontal and vertical distances: h = max{∆x,∆y}2. In
doing so it induced a wall-hugging behavior in A* thereby
substantially reducing the number of state expansions relative
to the baseline weighted Manhattan distance. Yet that formula
can be written on a napkin and implemented in a video game
as a drop-in replacement for Manhattan distance which is
substantially easier than implementing a pattern database [3],
a memory-based heuristic [2] or a Euclidean embedding [4].
Third, the machine-synthesized formulae can be analyzed by
humans to give tradition-defying insights into heuristic design.
Such insights can then inform design of the next space of
heuristics for an iterative computer-assisted design process.

The critical points in realizing these advantages are to
keep the space of heuristic functions tractably small while
using a fast synthesis method over that space. This paper
makes contributions to address both points. We adopt the
recently proposed human-readable representation of heuristic
functions in pathfinding as algebraic formulae encoded by
syntax trees [5]. The space of heuristic functions is then
defined by a context-free grammar. In the spirit of a recent
extension [6], we enrich the grammar by adding synthesized
heuristics back to it. Unlike the recent work [6], we add all
synthesized heuristics as atomic terminal nodes without any
de-composition or filtering. Additionally, unlike the referenced
work [5], [6], we evaluate the approach in the more com-
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mon, non-real-time heuristic search setting. To keep synthesis
tractable we propose triage-based sampling designed to scale
with computational resources. Consequently, our synthesis can
run on home computers and on large clusters.

II. PROBLEM FORMULATION

In this paper we consider the problem of synthesizing
heuristic functions for the standard A*-based heuristic search.
We aim to develop a synthesis method that minimizes hu-
man engineering, is easy to implement and produces human-
readable heuristics that have a negligible memory footprint.
Such synthesized heuristics should take advantage of partic-
ulars of the search domain (e.g., be pathfinding-specific) and
yet be portable (e.g., heuristics synthesized for one map should
work well on a similar map).

We formalize the synthesis problem as an optimization
problem of minimizing the loss `(a, h,P ) where a is a search
algorithm guided by a heuristic h and P is a set of search
problems. Our loss ` is the ratio of mean search effort spent
by a with h solving problems in P to the mean search effort of
a baseline algorithm and a baseline heuristic, measured for a
matching average solution quality. For instance, ` = 0.5 means
that a with h finds solutions of the same average quality as
the baseline while doing half the search effort on average.
In doing so ` combines two measures, search effort and the
resulting solution quality, into a single scalar.

III. RELATED WORK

Memory-based heuristics have been developed for various
search spaces [2], [3], [7], [8]. They provide effective guidance
on a class of search problems (e.g., pathfinding on a particular
map). They do, however, tend to have a considerable memory
footprint, lack portability (e.g., cannot be used as-is on another
map) and can be difficult for humans to read.

Guidance offered by a heuristic function can often be
improved by computing it with respect to a closer subgoal
instead of the original distant goal. Such subgoals can be au-
tomatically placed on a map [1], [9], [10]. These methods are
complementary to our approach as our synthesized heuristics
can also be computed with respect to a subgoal.

Another way to compute high-performance heuristics is
to embed the structure of the original search graph in a
Euclidean space [4], [11]. Then Euclidean distance between
embedded vertices can serve as a heuristic. The embedding
procedure is non-trivial and needs to run for each map. Yet
another body of work learns heuristic functions [12]–[15].
Such methods represent learned heuristic functions as neural
networks which can make human readability a challenge.
Learned policy gradient uses differentiable optimization to
automatically discover reinforcement-learning concepts such
as value functions [16]. We seek to discover heuristic functions
in a compact and human-readable representation.

Procedural content generation (PCG) is an active field in
video games with various types of game content successfully
generated in both research [17]–[20] and in the field [21]–[24].
Yet there has been no published PCG work on synthesizing

heuristic functions expressed in a compact human-readable
way beyond the work we build on [5], [6].

IV. OUR APPROACH

In line with previous work [5], [6], we let synthesized
heuristics take advantage of specifics of a given map by
synthesizing heuristics on a per-map basis. The downside of
this approach is a substantial per-map synthesis cost. The
primary contribution of this work is making per-map synthesis
practical by using a rich, procedurally extended grammar that
defines the space of heuristics. As a result, we are able to
synthesize an effective map-specific heuristic in a few minutes.

Our synthesis method is intentionally simple which (i)
allows for an easier deployment at a video-game studio and (ii)
suggests even better results with a more complex optimization
approach (e.g., genetic algorithms). In our method, we sample
heuristics from a set H of heuristics and use a series of pro-
gressively larger training sets of search problems to evaluate
the samples. The intuition is simple: a candidate heuristic h
drawn randomly from H is likely to yield low performance.
We want to be able to perform a triage and filter out such
heuristics quickly without wasting time on computing just how
bad their performance is. Thus, given an h randomly drawn
from H in line 5 in Algorithm 1 we first run the algorithm a
with h on a small training set of problems Ptrain1 (line 6). We
do so n times and select a heuristic h1 with the lowest loss
on Ptrain1 in the loop in lines 4 – 9.

Algorithm 1: A single synthesis trial
input : training problem sets Ptrain1, Ptrain2, heuristic

space H , synthesis budget b, loss function `,
triage ratio n

output: synthesized heuristic htrial
1 l2 ←∞

2 repeat
3 l1 ←∞

4 for k ∈ {1, . . . , n} do
5 draw h ∼H
6 l ← `(a, h,Ptrain1)

7 if l < l1 then
8 l1 ← l
9 h1 ← h

10 l ← `(a, h1, Ptrain2)

11 if l < l2 then
12 l2 ← l
13 htrial ← h

14 until b is exhausted

If the set Ptrain1 is small (i.e., ∣Ptrain1∣ ≪ ∣P ∣) then computing
the loss `(a, h,Ptrain1) is fast but the result may not be
representative of the loss on all problems P of interest. To
alleviate such overfitting to Ptrain1 we test the selected h1 on
a larger training set Ptrain2 in line 10. If the resulting loss is
lower than the previously observed best then we update the
running best in line 13.



Computing heuristic loss on sets Ptrain1 and Ptrain2 involves
running the search algorithm a which expands states. The total
number of states expanded counts against the synthesis budget
b. Once the budget is exhausted (line 14) the lowest Ptrain2-loss
heuristic found becomes the trial’s output, htrial.

The single synthesis trial described in Algorithm 1 produces
a single heuristic htrial. Since it is based on random sampling
from the space H , the resulting heuristic is likely to vary
significantly from trial to trial. In response we run many syn-
thesis trials independently. The htrial synthesized on each trial
is evaluated on the third and largest training problem set Ptrain3.
The heuristic with the lowest Ptrain3-loss becomes the single
output of the entire synthesis process, hsynth. The synthesized
heuristic hsynth is thus our solution to the optimization problem.
Its test loss `(a, hsynth, Ptest) is computed on a separate set Ptest.

Note that the synthesis process is designed to take advantage
of both within-CPU parallelism and across-CPU parallelism.
Specifically, we can compute the loss function `(a, h,P ) by
partitioning the problem set P by its goal states. Then each
CPU core computes ` for all start states for a single goal in
P . Our across-CPU parallelization is realized by running each
synthesis trial on a separate CPU (e.g., a cluster node).

V. EMPIRICAL EVALUATION

We used video-game maps from the standard benchmark
repository MovingAI [25]. Two non-overlapping sets (A and
B) of six Dragon Age: Origins maps each were chosen to cover
diverse pathfinding scenarios such as open outdoor pathfinding
versus cluttered indoor pathfinding (Figures 1 and 3). We
treated the maps as four-connected grids with all edge/move
costs being 1. We added a single-cell border to each map if it
was not already bordered.

Fig. 1. Map set A.

To generate a set of problems on a map we first computed
the largest connected component of the map, randomly se-
lected N distinct goal states in it and, for each of them,
randomly selected M start states. This gave us N × M
problems on a map. Since each goal state is shared by M
problems a heuristic function has to be computed only N times
for a set of N ×M problems.

A. Baseline Space of Heuristic Functions

We adopted a previously published [5] representation of
heuristics via algebraic formulae. Specifically we defined the
heuristic space as H = {h(x, y, xg, yg) = F} where (x, y) is
the state for which the heuristic value is computed and (xg, yg)
is the goal state. The formula body F is generated by the
following context-free grammar:

F → T ∣∣∣ U ∣∣∣ B

T → x ∣∣∣ xg ∣∣∣ y ∣∣∣ yg ∣∣∣∆x ∣∣∣∆y ∣∣∣ C

C → 1 ∣∣∣ 2 ∣∣∣ . . . ∣∣∣ 6

U →

√

F ∣∣∣ ∣F ∣ ∣∣∣ −F ∣∣∣ F 2

B → F + F ∣∣∣ F − F ∣∣∣ F × F ∣∣∣
F

F
∣∣∣max{F,F} ∣∣∣min{F,F}

Here ∆x = ∣x − xg ∣ and ∆y = ∣y − yg ∣. The space includes
Manhattan distance ∆x+∆y and weighted Manhattan distance
w × (∆x +∆y) as both are expressible in the grammar.

B. Synthesis Method

Using maps from the MovingAI repository as well as our
own synthetic maps [6], we explored the space of hyperpa-
rameters for the synthesis process and chose the following:
per-map training sets are Ptrain1 of 9 problems (3 goals ×

3 start states for each), Ptrain2 of 100 problems (10 goals ×

10 starts) and Ptrain3 of 100 × 100 = 104 problems. The sets
Ptrain1 and Ptrain2 were generated randomly on each trial. The
set Ptrain3 was generated randomly once per map and kept
constant for all trials so that the Ptrain3-losses from different
trials were meaningfully comparable. Finally, for each map
we generated a single random test set of problems Ptest which
contained 200 × 200 = 4 × 104 problems. The triage ratio n in
Algorithm 1 was set to 20.

We used the classic A* that does not re-open nodes on the
closed list as our algorithm a. Ties in f = g + h were broken
towards higher g. Remaining ties were broken in an arbitrary
fixed order. Thus all loss values were computed as `(A*, h,P ).

Our synthesized heuristics can be inadmissible causing A*
to produce a suboptimal solution. Thus the baseline had to be
a suboptimal algorithm as well. We chose the classic weighted
A* [26] without re-opening closed nodes. It used the priority
function f = g +w × h with w ∈ {1,2, . . . ,10} and Manhattan
distance as the heuristic. We linearly interpolated between the
ten points (Figure 2). Higher weights tend to yield longer paths
but fewer states expanded to find them. We computed two sets
of the baseline data for each map: one using problems in the
training set Ptrain3 and one with the test problems Ptest. The
former baseline data was used to compute loss during synthesis
while the latter was used to compute test loss.

C. Heuristic Synthesis on Map Set A

We ran 160 synthesis trials for each of the six maps in
set A (Figure 1) with the synthesis budget b = 108 states.
Collectively, 160 trials took an average of 9.6 hours per
map. Evaluating outcomes of each trial on the training set
Ptrain3 took additional 10.4 hours per map. For each map the



Fig. 2. Weighted A* as the baseline. The six lines correspond to the six maps
in map set B. Markers are per-map averages over the 4 × 104 test problems.
Each marker corresponds to a value of weight w ∈ {1,2, . . . ,10}.

synthesized heuristic with the lowest Ptrain3-loss is listed in the
Table I, manually simplified for clarity.

Each of the six heuristics was then evaluated on the test
set Ptest. The test loss varied between 0.29 and 0.62 (Table I).
Thus our synthesized heuristics sped up weighted A* search
by 1.6 to 3.4 times without sacrificing solution quality.

TABLE I
HEURISTICS FOR MAP SET A SYNTHESIZED WITH BASE GRAMMAR.

Map Test loss Synthesized heuristic

brc202d 0.4990 h1 = max{∆y2,∆x × yg}2
den000d 0.2907 h2 = 75 ×max{∆y,∆x}
den501d 0.6232 h3 = max{√6 +∆x,∆y}2
lak505d 0.5771 h4 = max{∆y,∆x}4
orz103d 0.5422 h5 = max{∆y,∆x}4
ost000a 0.4100 h6 = max{∆y,∆x}4 −√1 −∆y

D. Heuristic Synthesis on Map Set B

The synthesized heuristics are effective in part because they
contain important building blocks. For instance, the expression
max{∆y,∆x}

2 causes A* to hug walls in its search which
is efficient in video-game pathfinding.

To measure portability of the heuristics synthesized for
maps in set A we applied each heuristic to each of the novel
six maps in map set B (Figure 3). Per-map average loss
was 0.6030,0.5063,0.7017,0.4811,0.4363,0.4548 for maps
brc100d, brc201d, den505d, lak100c, orz701d, orz702d
respectively. Further averaged over the six maps the test loss
was 0.5305 (i.e., a 1.9x speed-up over the baseline).

Is it possible to achieve even better performance on set-B
maps without having to re-discover useful building blocks in
the synthesized heuristics? To answer this question, we added
the six set-A heuristics (Table I) as six additional terminal
symbols by modifying the grammar as follows:

T → x ∣∣∣ xg ∣∣∣ y ∣∣∣ yg ∣∣∣∆x ∣∣∣∆y ∣∣∣ C ∣∣∣ h1 ∣∣∣ h2 ∣∣∣ h3 ∣∣∣ h4 ∣∣∣ h5 ∣∣∣ h6

Fig. 3. Map set B.

where each hi takes (x, y, xg, yg) as the input.
The enriched grammar was then used to synthesize six new

heuristics for map set B. To do so we ran a single synthesis
trial per map with the synthesis budget of 108 states. The
synthesized heuristics for each of set-B maps are found in
Table II (manually simplified for clarity). Despite the fact
that the synthesis took an average of only 9.3 minutes per
map, the synthesized heuristics have the test loss of 0.4027 to
0.6670, causing A* to expand 1.5 to 2.5 times fewer states than
the baseline to produce paths of equal quality. Note that the
synthesized heuristics all incorporate the new terminal nodes
hi in the enriched grammar. Averaged over the six maps the
test loss is 0.4975 which is better than simply using set-A
heuristics on set-B maps (average loss of 0.5305).

We then conducted a scalability study by running a series
of progressively costlier synthesis trials with the base and the
enriched grammars. For the base-grammar runs we used the
synthesis budget of 108 with the number of synthesis trials
in {1,4,16,64,160}. We then increased the budget range to
5 ⋅108 and ran 160 more trials. For the synthesis runs with the
enriched grammar we used the synthesis budget of 108 and
the number of synthesis trials in {1,4,16,64}.

Fig. 4. Heuristics synthesized for set-B maps using different grammars.

The results are plotted in Figure 4. Heuristics synthe-
sized specifically for set-B maps indeed outperformed set-A



TABLE II
HEURISTICS FOR MAP SET B SYNTHESIZED WITH ENRICHED GRAMMAR.

Map Test loss Synthesized heuristic

brc100d 0.5741 h6 +∆x −√y2
brc201d 0.4602 (h2 + 5)2 +∆x − y
den505d 0.6670 1

x
× (∆x2 + h2)2

lak100c 0.4027 min{∆y,min{4,1 −max{∆y, y}}2} +max{h4,h3,h6}
orz701d 0.4080 ∆y − y +

√
max{h6

2,
√
h3} + h6

orz702d 0.4727 max{h1
4
,3 − h1}

heuristics (shown with the flat dashed line the figure) with
either grammar. However, the enriched grammar substantially
accelerates the synthesis. For instance, in about 9 minutes/map
synthesis with the enriched grammar yielded the mean test loss
of 0.4975 whereas it took about 16 hours/map with the base
grammar to do better.

VI. FUTURE WORK

In this paper we used a series of progressively larger prob-
lem sets to discard poor heuristics quickly. One alternative is to
use a surrogate fitness function which does not involve running
A* at all (e.g., a deep neural network). Future work will
also explore more advanced synthesis methods such as evolu-
tionary computing [5]. Another important direction for future
work is to explicitly bias synthesis towards more compact
and therefore likely more human-readable heuristics. Finally,
future work will attempt to jointly synthesize heuristics and
search algorithms [27].

VII. CONCLUSIONS

Heuristic search is widely used in video games for pathfind-
ing and general planning. Its performance depends critically
on the guiding power of a heuristic function. Traditionally
used heuristics are either manually constructed but generic
or precomputed on a per-map basis and require substantial
memory. In this paper we kept the compact representation and
portability of the former while increasing performance towards
the latter. To do so we conducted a stochastic search of a
space of heuristic functions expressed as algebraic formulae,
evaluating candidate heuristics on a set of progressively larger
training sets. To make such per-map synthesis practical we
procedurally extended the grammar that defines the synthesis
space. As a result, we were able to synthesize effective and
compact heuristics in less than ten minutes per map.
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