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Abstract—Creating detailed and interactive game environ-
ments is an area of great importance in the video game industry.
This includes creating realistic Non-Player Characters which
respond seamlessly to the players actions. Machine learning
had great contributions to the area, overcoming scalability and
robustness shortcomings of hand-scripted models. We introduce
the early results of a reinforcement learning approach in building
a simulation environment for heterogeneous, multi-agent non-
player characters in a dynamic road network game scene.

Index Terms—reinforcement learning, multi-agent, dynamic
environment, Non-Player Characters, traffic simulation

I. INTRODUCTION

An ongoing challenge in video game design, is the creation
of believable, dynamic environments which respond to the
user’s decisions, in real time. Detailed and interactive gaming
environments aid the feeling of immersiveness in the fictional
world, enhancing the gaming experience and the overall user
enjoyment [1]. Machine learning has several applications in
generating such content, Non-Player Character (NPC) mod-
elling being one of them [2].

As their name suggests, NPCs are dynamic characters whose
behaviour is not controlled by the player. NPCs either interact
with the player as enemies or allies, or they just contribute to
the aesthetics of the game [3]. In either case, as the game scene
evolves and progresses, NPCs should adapt seamlessly and
in real-time to the new environment [4]. Therefore, scripting
their behaviour by hand during the game development stage
is often not feasible, as such models are not easily scalable to
new environments and are prone to errors. Instead, artificial
intelligence provided the means for significant advances in
controlling NPCs.

In this study, we work towards developing a system of
heterogeneous, interacting agents [5] in a dynamic environ-
ment, modelling traffic flow. The agents may include both
vehicles and pedestrians. An agent’s behaviour is influenced by
its interaction with other agents and external parameters. The
latter could be static, e.g. environment boundaries, or dynamic,
such as traffic light signals and road disruptions.
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Ultimately, we are interested in the collaborative-
competitive scenario, where the agents exhibit social be-
haviour. The goal is to infer efficiently and in real-time a model
for traffic flow, that captures, at least in the macroscopic scale,
patterns seen in real life scenarios - e.g., a sense of priority
at the intersections or velocity perception to avoid collisions -
and which scales well with the number of agents in the scene.

We adopt a Reinforcement Learning (RL) strategy [6]
to train the multi-agent system, which allows exploring the
continuous state space thoroughly, without the need to process
large, detailed and exhaustive datasets to capture the complex-
ity of the agent interactions. Moreover, RL permits training
the heterogeneous interacting agents concurrently, reaching
a common optimal solution which is our ultimate goal. RL
was previously used to model traffic signal synchronisation
for traffic congestion [7], [8], but our goal is to attack a
more general problem, with different categories of agents
interplaying in a dynamic environment.

II. PRELIMINARIES

A. Reinforcement Learning

Like any machine learning approach, RL seeks to learn a
rule or mapping; in the particular case to associate observa-
tions to actions. It does so by maximising a reward function ex-
pressing a long-term objective [6], [9]. As already mentioned,
contrary to traditional machine learning techniques, RL does
not require large exemplary datasets describing the mapping
in question. Motivated from human intelligence, in RL, agents
learn by trial-and-error as they explore their environment, by
making educated guesses based on the feedback received from
their last actions [6].

To be more precise, at any time t ∈ N, an agent is observed
to be in a state st. The rule underlying how the agent should act
upon st is expressed by the policy π, associating st to an action
at. The sequence of states and actions (s0, a0, s1, a1, . . . ) is
the trajectory τ . Each time an action is cast and a state is
observed, a reward rt = r(st, at, st+1) is returned, informing
the agent how good the transition from state st to state st+1

given action at was. The objective of RL is to find the policy
π that maximises a notion of the cumulative reward, the return
R(τ). One may use an artificial Neural Network together with
an optimisation method to find an expression for π [10].



B. Proximal Policy Optimisation

Different RL methods use different Value functions as
objective functions to perform optimisation and these typically
fall into one of the two: On-policy and Off-Policy Value
functions [9]. For our preliminary results we employed an
On-Policy Value Function but we will not be restricted to this
necessarily.

There are several methods in literature to solve the RL
optimisation problem. We restrict our attention to the Proximal
Policy Optimisation (PPO) method [11], which enjoys algo-
rithmic simplicity, data efficiency and robustness. The method
converges to an optimal solution by iterating between sampling
from the current policy estimate and performing several opti-
misation steps on the sampled data, using stochastic gradient
ascent.

C. Long Short-Term Memory

Delving into the problem-specific algorithmic details, our
agents can benefit from acquiring some notion of memory of
previous states. For example, a vehicle agent could benefit
from knowledge of the traffic light sequence, or knowledge of
the speed of approaching agents. Long Short-Term Memory
(LSTM) [12] is a class of Recurrent Neural Networks (RNN)
incorporating feedback architecture to retain ‘memory’ of
past events over arbitrary time intervals. This is achieved by
preventing back-propagating error information from becoming
arbitrarily small [12]. Thus, using the LSTM architecture
to train our RL algorithm will allow our agents to retain
information of past events over long or short periods of time.

D. Sparse Rewards

A common obstacle in RL is converging to a suboptimal
solution. This is strongly correlated to the choice of reward
function. Thus constructing a good reward function is crucial.
However, there might be factors that are hard to circumvent.
A frequently occurring issue is that of sparse reward signals.
That is, the agent spends most of its time exploring the
space while receiving nearly zero or simply constant reward
signals because no important event occurred. However if a
significant amount of time passes with little change in the
cumulative reward the agent might be ‘discouraged’ to explore
the environment any further. Essentially this means that the RL
algorithm converged to some local maximum of the expected
return, but not the intended one [13], [14].

Consider the following: agents in our environment have a
predefined destination. Suppose our agent is a vehicle and its
target is located straight ahead after it crosses an intersection.
The agent should navigate straight ahead, wait at the crossing
for the green light and then move forwards a bit more until
it reaches the goal. For the most part of its journey, the agent
moves only forwards, while receiving some constant reward
(possibly zero) as not much has changed. We can help the
agent learn by planning an appropriate learning strategy, e.g.
instantiating the agent near the target during the first few
training episodes. But that might not be sufficient, as it is

hard to predict all local optimal solutions an agent might come
across during its learning journey.

We will use a curiosity driven approach [13]. An intrinsic
reward is assigned to each agent in addition to the extrinsic
one introduced in Sec. II-A. This intrinsic reward favours
unfamiliar actions to be explored, by amounting for the
prediction error of the next state given the current state and an
auxiliary action. The intrinsic and extrinsic rewards are added
together to make up the total reward fed to the RL training
algorithm. Generating intrinsic reward signals is achieved
with the aid of two coupled neural networks, comprising the
Intrinsic Curiosity Module (ICM) [13].

III. METHODOLOGY AND RESULTS

We implemented our game environment with the help of the
ML-Agents Toolkit of the Unity Engine [15]. Training was
performed using the PyTorch library [16]. A demonstration
can be found at https://youtu.be/-qwFddCkyDo.

We are assuming the left-hand traffic system. Our game
scene consists of bi-directional lane components, {`m}M1

m=1,
and intersection components, {ım}M2

m=1, complemented by a
set of traffic lights. We marked these on diagram Fig. 1a.
For the purposes of training we use a simple crossroad scene,
comprised of a single intersection component and four lane
components, illustrated in Fig. 1b. We call this the basic scene.
We will also use a simplified intersection scene, as shown in
Fig. 1c to assist training. An episode begins with one agent
in each of the lane components in the scene. We will describe
the set of actions allowed for each agent, as well as the set of
observations describing a state and the rewards received.

A. Actions

The action space of an agent is spanned by 5 discrete
movements: moving forward by a fixed amount d ∈ R, moving
backwards by the same amount d, turning clockwise at a 2°
angle, turning anticlockwise at a 2° angle and staying idle.
In our implementation, the ratio of d to the length of a lane
component is 1 : 100.

(a) Lane and intersection components

(b) Basic scene (c) Simplified scene

Fig. 1: Stills from the game scene: (a) shows a lane component `m shaded in blue and
intersection component ı1 shaded in orange, (b) shows the basic crossroad scene and (c)
the simplified scene.



B. Observations

Three stacked observations will be used to feed the LSTM
network, capturing the information of positions, velocities and
accelerations of agents in the environment (see Sec. II-C).

Each agent makes a total of 5×(7+2)+2 = 47 observations.
More specifically, an agent is assigned 5-rays of overlapping
sphere perception sensors, spanning a 70° angle (see Fig. 2),
to detect the following 7 objects in its vicinity: other agents,
scene boundaries, the traffic lights’ waiting line and the four
traffic light indications: green, amber, red, amber-red. Each of
the 5 rays returns 7+2 observations at each learning time step.
The first 7 return binary information of hitting any of the 7
detectable objects. For the latter 2 observations, the first returns
true if nothing was hit and false otherwise; this is important
since a non-detectable object may intercept the rays sensors
(for example one of the targets), and the second returns the
fraction of the ray at which the hit occurred if any and 1.0
otherwise.

The remaining 2, out of the total of 47 observations, encode
a notion of distance and direction. In particular, consider
a single agent, located in lane component, `A and target
destination located in, say `T. Let êA and n̂A be the unit
vectors along and normal to the direction of motion of `A.
Similarly, define êT and n̂T for `T. Let xA and xT be the
positions of the agent and target respectively. We define the
following two scalar observations:

δA(xT,xA) = (xT − xA) · (êA + n̂A), (1)
δT(xT,xA) = (xT − xA) · (êT + n̂T). (2)

To elaborate on this choice, let h1, h2 ≥ 0 be the distances
the agent has to traverse to reach its target as illustrated in
Fig 3. As shown in Table I, the pair of observations {δA, δT}
uniquely defines the distances h1 and h2 and the three possible
trajectories: no turn, right turn or left turn. However, we need
to be careful with the above choice, as this is not the case when
h1 � h2, i.e after the intersection, and the agent might end
up in a different lane than the one of its desired destination.
We observed that this issue is resolved in most cases due to
the memory of the agent’s velocity (see Sec. II-C), although
this is not necessarily an issue for us as long as the agent does
not drive back into its starting lane component. Identifying the
correct target is not our goal for the purposes of constructing
a model for controlling NPCs. What is important is that, the
agents follow acceptable trajectories and the target is used only
to guide the agent during training.

In practice, feeding the RNN with these 2 observations to
describe the position of the target instead of the actual position

Fig. 2: Still from the scene view, showing the 5 ray sensors cast by an agent, to detect
nearby objects.

of the target relative to the agent was more robust during train-
ing and required minimal hyperparameter tuning to achieve
convergence of the RL algorithm. This can be attributed to fact
that, in the second case, not enough information is encoded
regarding the geometry of the system.

C. Reward

In a time step t of an episode k, we consider 9 events in
which the agent is awarded a reward rt,k, listed in Table II.
We terminate each episode after a maximum of T = 3000
time steps, after which an episode is considered unsuccessful.
A total reward Rk =

∑T
t=0 γ

trt,k < 1 for a discount factor
γ ∈ (0, 1) is assigned to each episode k. Deciding the values
of rt,k was achieved by hand-tuning.

D. Training and Results

We trained an LSTM RNN architecture using the PPO
method, as explained in Sec. II. In particular, the RNN consists
of 2 hidden layers, each having 128 units. We keep a sequence
of 64 experiences and a memory buffer of size 128 for the
LSTM. A linearly decaying learning rate of 3 × 10−4 and a
batch of 128 experiences is used for each iteration of gradient
descent. The policy is updated after a total of 1024 experiences
are collected. For the PPO implementation, we set the entropy
coefficient β = 0.01, the change in policy is restricted within
a threshold of ε = 0.2, the regularisation parameter for the
Generalised Advantage Estimator (GAE) [17] is set to λ =
0.95 and the number of epochs through the experience buffer
while performing gradient descent optimisation is set to 3.
Extrinsic rewards carry a strength of 1 and are discounted by a
factor of γ = 0.99 in calculating the expected return. Curiosity
intrinsic rewards carry a strength of 0.1 and are discounted by
a factor of γ = 0.99. The ICM network is made up of 2 hidden
layers each with 128 units and this is trained with a learning
rate of 3×10−4. Rewards are truncated after a time horizon of
64. Training was allowed to reach a total of 7× 106 episodes.

To motivate learning, we start training on a restricted scene:
lane components are kept short and both the agent and the
target are located near the intersection. After a while, the lanes’
length increases progressively, until the lanes reach their full
extend. To prevent the agent from converging to an idle state
before it explores the scene thoroughly (see Sec. II-D on sparse
events), the termination of an episode varies through training.
In particular, termination is always invoked if the number of
training time steps t exceeds T = 3000, if the target is reached,

TABLE I: Observed values, δA and δT defined by (1) and (2) of the agent’s and target’s
position xA and xT. The values of |δA| − |δT|, δA + δT and δA − δT are also
depicted, illustrating that they define uniquely the trajectory and distances the agent
should traverse to reach its target.

Trajectory
Quantity No turn Right turn Left turn

δA(xT,xA) h1 + h2 h1 + h2 h1 − h2
δT(xT,xA) −h1 − h2 h1 − h2 −h1 − h2
|δA| − |δT| + 0 −
δA + δT 0 2h1 −2h2
δA − δT 2(h1 + h2) −2h2 2h1



h1

h2

(a) No turn

h1

h2

(b) Right turn

h1

h2

(c) Left turn

Fig. 3: Schematic representation of the desired trajectories (dashed line) the agent (blue cube) should follow: (a) no turn required, (b) right turn, and, (c) left turn. The teal tiles
represent the lane components the agent will trace. The agent is required to move a distance ∼ h1 up to the intersection and a distance ∼ h2 thereafter to reach the target.

TABLE II: Events giving a reward rt,k to the agent in time step t out of a total of T
time steps, of an episode k. Rewards are summed to give a cumulative reward Rk =∑T

t=0 γ
trt,k , where γ ∈ (0, 1) is a discount factor. All episodes begin with Rk = 0.

Event Reward (rt,k)
reached target 1

crossed green light Rk + 1.0/T
crossed amber light Rk − 0.8/T

crossed red light −1
crossed red-amber light −0.5

crossed lights against stream −1
collision with obstacles −1

collision with agent −1
unsuccessful step (target not reached) Rk − 0.1/T

if the agent collided with a boundary or an agent, and if the
agent crossed the intersection line in the opposite direction. At
later episodes, crossing the intersection at the red or amber-red
lights also causes the episode to terminate. When inferring a
trained model the latter termination condition is ignored.

During training, 12 replicas of the basic scene were used,
together with 4 replicas of a simplified scene (refer to Fig. 1).
Fig. 4 shows, in blue, the cumulative reward and respective
episode length per training episode. We refer to the resulting
model as model A. The results of inferring the model are
shown in the first column of Table III, where from a sample
of 5000 episodes we record the number of times per episode
an agent crosses a traffic light, reaches its target, collides
with another agent or a scene boundary, as well as, the mean
number of time steps needed to complete a single episode. As
seen in Table III and expected from the plots of Fig. 4, in
model A, agents respond to the traffic lights and traverse the
correct trajectory with high success rate. However, the agents’
motion is not smooth, which is reflected in the relatively
large episode length. Instead, the agents often change their
orientation abruptly and have a tendency to wonder while
waiting at the traffic signals. This is reflected in the results
of Table III by the fact that summing the numbers the agents
cross the traffic lights per episode is greater than 1. Finally,
even though in Table III we see that the number of collisions
per episode is small, in reality the agents rarely avoid collisions
with other agents, a consequence of the small number of agents
in the scene, resulting in agents rarely meeting other agents
during training and inference.

To treat in-between agents collisions, we subsequently
trained a new model, by initialising the network of each agent
from model A. This time we populated the scene with 4 agents
in each lane and we use the full extend of each lane component
throughout training (no need to restrict the boundaries of the

Fig. 4: Cumulative reward received (top) and episode length (bottom) during training.
In blue we show the results for training session of model A, where at t = 0, each lane
component is occupied by 1 agent, and in orange we have the results for the training
session of model B with 4 agents per lane component at t = 0 and with each agent’s
network initialised from model A.

scene, since the agents inherit knowledge of the environment
from model A) and we also relaxed the termination condition
when agents cross the intersection at the red or amber-red
lights. The rest of the configuration parameters are kept the
same, as during training of model A, but we terminated training
at 9×106 episodes. We refer to the resulting model as model B.
The cumulative reward and episode length per training episode
are plotted in orange in Fig. 4. The remaining columns of
Table III, summarise the results of inferring model B on a
scene of 1,2,3 and 4 agents per lane, recorded from samples
of 5000 episodes.

Comparing the results of Table III for the two models, model
B performs similarly to model A with respect to crossing the
traffic lights and reaching the agent’s target, independently
of the number of agents in the scene and despite relaxing
the episode termination condition when crossing the red and
amber-red lights when training model B. The two models
perform similarly with respect to the mean episode length,
as well. Further we see that model B successfully reduces
the number of collision with scene boundaries by 5 times,
independently of the number of agents in the scene and
comparing the models for the cases where 1 agent per lane
is used, the number of collisions with other agents is 5 times
smaller for model B (the number of collisions with agents
appears to be increasing linearly with the number of agents
per lane). However, even though interactions between agents
are improved for model B, there are other shortcomings yet to
be resolved, like achieving smooth motion for the agents.



TABLE III: Number of times per episode an agent crosses a light, reaches its target and
collides with other agents or scene boundaries when inferring model A on a scene of 1
agent per lane and and model B on a scene of 1,2,3 and 4 agents per lane on samples
of 5000 episodes. The mean episode length for each case is also depicted.

Event per Model (agents per lane)
episode A (1) B (1) B (2) B (3) B (4)

green light 0.72 0.72 0.69 0.67 0.63
amber light 0.29 0.29 0.29 0.27 0.28

red light 0.033 0.024 0.026 0.021 0.024
amber-red light 0.0056 0.0018 0.003 0.0016 0.002
reached target 0.88 0.96 0.91 0.85 0.81
agent collision 0.024 0.0048 0.052 0.11 0.16

boundary collision 0.054 0.0086 0.012 0.013 0.012

Mean episode
length 600 570 570 570 590

IV. CONCLUSIONS AND FUTURE WORK

We presented a reinforcement learning strategy to train a
multi-agent environment of vehicles, navigating a simple four-
way road intersection to reach a target destination, whilst
interacting with other vehicles and obeying the traffic lights.

The trained model succeeds in classifying the 4 traffic light
signals and identifying the correct trajectory to reach the target
destination relatively fast. However it falls short in resolving
prospective collisions and often this leads to agents ‘forgetting’
their planned trajectory upon meeting another agent. This was
improved after training with a larger number of agents in
the scene. Calibrating the LSTM hyperparameters will likely
help treating this further. Moreover, an agent’s motion exhibits
undesirable fluctuations along its axis of motion and at the
red traffic lights, agents tend to move around until the lights
turn green. Nonetheless, the results are promising in respect
to successfully navigating the road network. Achieving better
scalability seems plausible, as suggested by the convergence
rate and stability of the second training session.

After resolving the above shortcomings, we will proceed to
achieve our ultimate goal which is also the most challenging
part. That is, to introduce different families of agents in the
system, like pedestrians, stray animals, etc. (see for exam-
ple [18]), and to enhance the environment with parameters
such as pavements, traffic signs, road disruptions, etc. Until
now, we focused on agents sharing the same self-centred pol-
icy, resulting in competitive agents, each seeking to maximise
their own reward function. The only sense of collaboration
comes intrinsically from each agent’s goal to avoid other
agents, without explicit communication. For our next steps
we seek to generalise the reward function to one that allows
communication across agents and thus enhance collaboration
between them. This will allow, not only to enhance collision
avoidance, but also to describe more complex behaviours
when our system involves different types of agents and more
perplexed environments.
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