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Abstract—Humans and other intelligent animals evolved highly
sophisticated perception systems that combine multiple sensory
modalities. On the other hand, state-of-the-art artificial agents
rely mostly on visual inputs or structured low-dimensional
observations provided by instrumented environments. Learning
to act based on combined visual and auditory inputs is still a
new topic of research that has not been explored beyond simple
scenarios. To facilitate progress in this area we introduce a new
version of VizDoom simulator to create a highly efficient learning
environment that provides raw audio observations. We study
the performance of different model architectures in a series of
tasks that require the agent to recognize sounds and execute
instructions given in natural language. Finally, we train our agent
to play the full game of Doom and find that it can consistently
defeat a traditional vision-based adversary.

We are currently in the process of merging the augmented
simulator with the main ViZDoom code repository. Video demon-
strations and experiment code can be found at https://
sites.google.com/view/sound-rl.

Index Terms—reinforcement learning, machine learning, video
games, artificial intelligence, sound

I. INTRODUCTION

Reinforcement learning (RL) algorithms have reached
tremendous success in the field of embodied intelligence, in-
cluding human-level control in Atari games [1], [2] and in first-
person games [3], [4], and super-human control in competitive
games [5], [6]. These state-of-the-art learning methods allow
artificial agents to discover efficient policies that map high-
dimensional unstructured observations to actions. While the
general framework of deep RL enables learning from arbitrary
sources of data, so far the majority of research in embodied
AI focused on learning only from visual input (for example,
see all the previous citations). We argue that another important
sensor modality, sound, is largely overlooked.

Sound represents a highly salient signal rich with informa-
tion about the environment. Sound cues correspond to discrete
events such as contacts and collisions which might be difficult
to identify from visual data alone. Stereo sound encodes
important spatial information that can reveal objects and events
outside of the agent’s field of view. Finally, sound could be
used to establish a natural communication channel between
agents in the form of speech and hearing, which is one of the
distinguishing features of higher forms of intelligence.

Fig. 1. Trained agent follows visual and sound cues to reach the target object
in a ViZDoom environment.

In computer games, especially in the first-person shooter
(FPS) genre, the ability to perceive and understand game
sounds is one of the essential skills. This is particularly
important in tactical duel scenarios in games like Quake or
Doom: in order to gain an advantage skilled players listen to
their opponent’s actions to understand where they are on the
game level and what resources they possess.

Reinforcement learning on combined auditory and visual
inputs is complicated by the lack of infrastructure. The existing
learning environments either do not support sound, or do
not allow high-throughput parallel simulation necessary for
large-scale experiments. We attempt to improve the situation
by releasing an augmented version of the popular ViZDoom
environment [7] where in-game stereo sound is available to
the agents. Our implementation is decoupled from dedicated
sound hardware typically used for audio rendering, and thus
allows faster-than-realtime parallel simulation. We proceed to
train agents in our environment in a series of increasingly
complex scenarios designed to test various aspects of sound
perception.

II. RELATED WORK

A number of prior projects explored RL with audio obser-
vations. Gaina and Stephenson [8] augmented General Video
Game AI framework to support sound, focusing on 2D sprite-
based games. Chen et al. introduced SoundSpaces [9], a
version of Habitat environment which focuses on audio-visual
navigation in photorealistic scenes. SoundSpaces was further
used in [10] to investigate the problem of separating sound
sources from background noise. Park et al. [11] introduced
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Fig. 2. Illustration of the network architecture and audio encoders used (see
Appendix of [4] for complete details). Here K stands for kernel size, F for
number of filters, S for stride, FC for fully connected layers and STFT for
short-term Fourier transform. All convolutional layers are followed by max-
pool layers with kernel size two.

a general-purpose simulation platform based on Unity engine
with both auditory and visual observations.

While ViZDoom [7] supports in-game stereo sounds, the de-
fault audio subsystem is not designed for faster-than-realtime
experience collection, and thus can only be used in relatively
basic scenarios [12]. To our best knowledge, the version
of ViZDoom presented in this work is the first simulation
platform that enables accelerated embodied simulation with
sounds at tens of thousands of actions per second, enabling
large-scale training. Our experiments with the Doom duel
scenario represent one of the first deployments of an agent with
auditory and visual perception in a full first-person computer
game.

III. VIZDOOM ENVIRONMENT WITH AUDIO

We generate the audio observations for the agents through
the OpenAL1 sound subsystem supported by ViZDoom. Ope-
nAL implementation offers many modern features, such as
3D sounds, reverberation, Doppler shift, and dampening of
the sounds based on the agent’s gaze direction with respect to
the source.

Normally the sound engine is designed for human per-
ception and plays back the sound samples in real time,
prohibiting fast simulation. We circumvent this issue by using
OpenAL Soft2 with the ALC SOFT loopback extension which
completely decouples the in-game sound from the device audio
and enables software rendering of sounds on the CPU. This
allows us to generate both visual and auditory observations at
a maximum rate, enabling the environment simulation in the
lock-step fashion typical for a RL setup.

In addition to that, an ALC EXT thread local context ex-
tension allows us to spawn a large number of game instances
generating sound samples simultaneously. We leverage that in
our experiments by starting hundreds of concurrent processes
to achieve high training throughput with an asynchronous RL
framework [4].

By directly accessing OpenAL sound buffers we expose raw
audio observations through ViZDoom API. To give the agents

1https://openal.org/
2https://github.com/kcat/openal-soft

access to all available sound data, we implement configurable
audio frame-stacking, independent of the ViZDoom frame-
skipping parameters. By default, if the agent chooses its action
in the environment once every N simulation steps, we provide
the audio observation containing the sounds for the previous
N steps. The length of this window can be increased if needed,
for example to facilitate training of feed-forward policies.

Another configuration parameter we expose is the audio
sampling rate. A larger sampling frequency is analogous to a
higher screen resolution, it enables more detailed observations
at a cost of increased computation time. In this work we used a
fixed sampling rate of 22050 Hz, which provides fast rendering
and high sound quality.

IV. AUDIO ENCODER ARCHITECTURES

Our focus is on finding a general approach for processing
sound with neural network-based policies. We seek models
that are powerful and general enough to solve different, com-
plex tasks, yet compact enough to facilitate fast learning. Using
deep learning to process raw image pixels has been successful
in RL [1], [3], however processing raw audio samples usually
takes very large models to do efficiently [13], and to this
day many state-of-the-art audio systems rely on some form
of feature engineering (see Garcia et al. [14] for an example).
These features are applicable to different tasks, with varying
levels of performance depending on the task at hand.

For this reason, we propose three different encoders, which
we compare in our experiments. The task of the audio encoder
is to generate a compact representation of the raw sound data.
This representation is then concatenated with the features from
the image processing network. The resulting vector of features
is fed to the rest of the network to generate actions and value
estimates (see Fig. 2).

The raw audio input is a vector s ∈ Rn, si ∈ [−1, 1]
containing n normalized audio samples. ViZDoom runs at a
fixed 35 frames per (realtime) second, so for each simulation
step this input contains audio corresponding to 29ms of
gameplay. With the fixed 22050Hz sampling rate and standard
4-frameskip, our audio observation consists of 2520 samples,
or 114ms of audio. We process both left and right audio
channels separately and concatenate channel features into a
single output vector. Fig. 2 illustrates the high-level structure
of the encoders.

a) 1D Conv.: We downsize the audio by taking every 8th

sample and then feed the samples through two 1D convolu-
tional layers. While this removes high-frequency components
(anything above ≈ 3000Hz), most of the information lies
below this frequency threshold. This downsampling allows
us to reduce computational complexity. The convolutional
encoder can be considered a naive baseline approach

b) Fourier transform: We transform the audio buffer to
frequency domain using fast Fourier transform (FFT) and take
the natural logarithm of the magnitudes sFFT = log FFT(s) ∈
Rn/2, downsample with a 1D max-pool layer and then feed it
through a two-layer, fully connected network. This discards the
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Fig. 3. Results on the main testing scenarios. Fig. 3a shows the comparison of different encoders in a sound source finding task. Figs. 3b and 3c show the
performance of the FFT (Fourier transform) encoder on the Instruction and Instruction Once environments respectively. For each experiment we report mean
and standard deviation of five independent training runs.

"Go to the
Green Pillar"

Fig. 4. Illustrations of the Music Recognition (left) and Sound Instruction
scenarios (right). Locations of target objects and the player starting position
are sampled randomly in each episode.

temporal information inside the 114ms of audio, but enables
robust performance and a simple network architecture.

c) Mel-spectrogram: Motivated by the success of the
mel-spectrogram approach in speech processing [14], we trans-
form samples into frequency domain spectrogram with short-
term Fourier transform (SFTF). STFT works by sliding a win-
dow over the audio samples, computing FFT on that window
and then moving the window by a given hop. Depending on
the window size and the hop length, the resulting spectrogram
can have a large number of feature vectors (depending on
the length of the audio) and frequency bins, with most high-
frequency components containing only a minimal amount of
useful information. Motivated by studies of human audio
perception, mel-frequency scale emphasises higher resolution
at lower frequencies, usually computed by using triangular
overlapping windows [15]. This comes with the additional ben-
efit of reducing the size of the spectrogram. We compute the
spectrogram using parameters from [14], with a window size
of 25ms, 10ms hop size and 80 mel-frequency components.
See Fig. 2 for an example of the spectrograms produced with
these hyperparameters. The resulting spectrogram is processed
by two 2D convolutional layers.

V. EXPERIMENTAL SETUP

We train our agents using an asynchronous RL framework
Sample Factory. We follow ViZDoom experiments in the
original paper [4] and use the same algorithm, hyperparam-
eters, and model architectures. In particular, we use the asyn-
chronous proximal policy optimization (PPO) algorithm with
clip loss [16] and V-trace off-policy correction [17]. Our model

consists of a three-layer, convolutional network to process
the RGB image, a chosen audio encoder, a gated recurrent
unit layer [18], and a fully-connected layer to produce action
probabilities and value estimates. We ran all our experiments
on a single 36-core server with four Nvidia RTX 2080Ti
GPUs.

A. Environment scenarios

In order to test the audio encoders and the agent’s overall
problem-solving abilities we designed three different scenarios
based on the map layout depicted in the Figs. 1 and 4, where
six visually distinct pillars are placed in four different rooms.
The ordering of pillars and the agent starting position is
randomized in each episode. Our fourth and final scenario is
a self-play duel in a full game of Doom.

a) Music Recognition: Each pillar plays a different music
track in a loop throughout the episode. One pillar is randomly
chosen to play an unique target track. The agent is given a
+1 reward upon touching the pillar that plays the target track.
Touching other pillars terminates the episode with a 0 reward.
The attenuation value of the sound sources is high, therefore
the agent has to move close to a pillar to hear the sound. Thus
the agent’s strategy shall be to move from pillar to pillar and
listen, until it finds the pillar playing the target track.

b) Sound Instruction: During the episode the agent re-
peatedly hears a command in spoken English, which instructs
it to go to a particular object. The agent is rewarded for
touching the correct object and receives zero reward otherwise.
Unlike the previous scenario where the decision to move close
to an object was purely based on the sound, here the agent has
to use both visual and auditory input to complete the task.

c) Sound Instruction Once: A more complex version of
the Sound Instruction environment where the instruction is
only given once at the beginning of the episode. This scenario
tests a combination of multimodal perception and the ability
to memorize instructions.

d) Duel: Finally, we train our agents in a 1v1 self-play
matchup in the full game of Doom, following a setup similar
to [4] except with full access to in-game sounds. We evaluate
the agent against a separately trained agent that is not equipped
with the sound encoder, and we hypothesise that the agent with
access to sound can outperform the deaf agent.



TABLE I
RESULTS OF 1V1 MATCHES BETWEEN OUR AGENT THAT HAS ACCESS TO
THE SOUND AND A VISION-ONLY AGENT. “SOUND (DIS.)” IS THE MAIN

AGENT WITH SOUND INPUTS DISABLED DURING THE EVALUATION.

Match Wins Losses Draws

Sound vs No sound 53 31 16
Sound vs Sound (dis.) 74 17 9

B. Training settings

We test all audio encoders in the Music Recognition sce-
nario, where training converges within 5 × 108 environment
steps. We then choose the best-performing encoder for other
experiments, where we train for 109 steps in Sound Instruction
scenarios and for 2×109 steps in Duel scenario. We fixed the
image resolution to 128x72 and set the frameskip to 4 for all
environments except Duel which was run with 2-frameskip.

VI. RESULTS

After the initial testing on the Music Recognition scenario
we found that the Fourier transform encoder was the most
efficient (Fig. 3). We continued to test the FFT encoder on
Sound Instruction and Sound Instruction Once scenarios. In
the majority of the training runs the agent was able to reach
optimal performance in each of these scenarios. The high
variance in the results suggests that 109 steps of training are
still not sufficient for all seeds to converge. We also found
that the agent showed slightly better final performance on
the supposedly harder task Sound Instruction Once. Although
it is likely this is just a statistical anomaly given the high
variance and low number of independent runs (limited by
the computation budget), we leave full explanation of this
surprising result for future work.

In the Music Recognition scenario, we saw the agent achieve
the expected behaviour, where it uses the stereo sound to
navigate to the correct pillar. The agent explores the map
listening to different music and moves closer to the source
when the target music track is recognised. We also saw the
agent move towards pillars backwards, showing that visual
input is often superfluous in this task. In the Sound Instruction
Once scenario, we noticed that the agent goes to the center of
the map early to await the instructions, which helps minimize
the average time to complete the task. While the agent is
waiting it keeps turning around memorizing the locations of
the objects. Once the instruction starts the agent would quickly
turn and approach the target object. This behaviour shows the
agent’s ability to combine auditory and visual cues to quickly
explore its surroundings and map the sound instruction to the
appropriate action. Besides, we noticed the agent’s ability to
memorize the instructions for the entire episode, courtesy of
the recurrent model architecture.

Table I shows the benefit of having access to sound informa-
tion in the Duel scenario. Here we trained two sets of agents
using population-based training and self-play, with a small
population of 4 policies. The main population (“Sound”) used

the FFT encoder and had access to both auditory and visual
observations. Another set of agents (“No sound”) used only
image observations. After training for 2× 109 steps we chose
the best agents from both populations and ran two series of one
hundred 4-minute matches between them. In the first series of
games we compared ”Sound” and ”No sound” versions of the
agents. Our main agent won in more games, demonstrating the
advantage of the enhanced sensorium. In the second series of
games we tested our ”Sound” agent against a version of itself
with its auditory observations replaced with silence (“Sound
(dis.)”). The agent with disabled hearing played significantly
worse, demonstrating the strong reliance of our agent on sound
cues.

When analysing the behavior of the main agent in the duel
environment we noticed the reduced usage of loud ammuni-
tion. We believe this allows the agent to conceal its position
from the opponent which facilitates surprise attacks. The agent
also uses its spatial sound perception to discover the location
of the enemy by listening to the opponent’s gunfire.

VII. TRAINING THROUGHPUT

To measure the total computation cost added by rendering
and processing sound in our experiments we tracked the
average training throughput. In single-agent experiments we
collected experience using 72 parallel workers, each worker
sampling 8 environments sequentially for a total of 72 ×
8 = 576 parallel environments per experiment. We ran 4
such experiments at a time on a 36-core machine with 4
GPUs to maximize the hardware utilization. We observed
training throughput of 1.5× 105 game frames per second per
experiment with disabled sounds and 1.2 × 105 when sound
is enabled.

We did not notice a significant difference in performance
in Duel scenario. Here we trained a population of 4 policies
at a combined framerate of 6.7 × 104 both with and without
the sound. The training performance in multi-agent VizDoom
envs is bottlenecked by slow network-based communication
between game instances in the multi-agent setup, and thus ad-
dition of sound rendering workload does not have a significant
effect.

VIII. CONCLUSIONS AND FUTURE WORK

In this work we introduced an immersive environment based
on ViZDoom that provides access to both auditory and visual
observations while maintaining high simulation throughput.
We introduced new scenarios that test the agent’s ability to
hear and identify sounds, as well as combine sound with
visual cues. Our results indicate that transforming the audio
samples into frequency domain with FFT is sufficient for fast
and effective RL training when combined with a recurrent
neural architecture. This is evident from the results of our
experiments with sound separation and instruction execution,
as well as results on a full game where the agents with aug-
mented sensorium prevail. We hope that access to the efficient
environment that simulates auditory experience will enable



large-scale experiments and can facilitate further research in
this area.

Being a preliminary work, there are still a myriad of open
questions and limitations to address. We only used one RL
algorithm in our experiments and only three different audio en-
coders, without excessive hyperparameter and/or architecture
tuning. The scenarios used in our experiments could also be
extended: we used a limited bank of sounds in the experiments,
and to assess how well the agent learned to “understand sound”
instead of overfitting to specific cues, we need a larger bank of
sounds to pick from. This can be done by adding more natural
sounds and by augmenting the existing ones with random noise
and other transformations to prevent the neural network from
memorizing the exact samples.

While it is evident from our experiments that the agents
benefit from the addition of auditory observations, it is not
clear how exactly the agents utilize the sound cues. For our
agents trained in the Duel scenario the behavior of the hearing
agents can be studied in-depth, i.e. to find out in what ways
the agent utilizes the sound and how well it can localize its
opponent in 3D. We leave this interesting research direction
for future work.

Finally, while this work used a recurrent neural architecture
for temporal modelling (“memory” for the agent), it is unclear
whether agents can understand long audio sequences. One
should assess this with, for example, longer-lasting audio
cues or longer, more dynamic commands (e.g. not only “go
to X”, but also “do not go to X”, etc.) Preferably, these
experiments should be combined with other cognitive tasks
like in DMLab30 [17] to evaluate the agent’s ability to really
understand sound information. This could be compared to
a pipelined baseline approach, where audio is preprocessed
through a speech recognition system to assess the agent’s
ability to learn language understanding with pure end-to-end
RL.
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