
This work was supported in part by the National Key Research and Development Program of China under Grant 2018AAA0101005 and in part by Youth
Innovation Promotion Association CAS.
978-1-6654-3886-5/21/$31.00 ©2021 IEEE

Proximal Policy Optimization with Elo-based
Opponent Selection and Combination with

Enhanced Rolling Horizon Evolution Algorithm
Rongqin Liang

School of Artificial Intelligence
University of Chinese Academy of

Sciences
Beijing, China

liangrongqin2020@ia.ac.cn

Yuanheng Zhu, Zhentao Tang
Institute of Automation, Chinese

Academy of Sciences /
University of Chinese Academy of

Sciences
Beijing, China
{yuanheng.zhu,

tangzhentao2016}@ia.ac.cn

Mu Yang, Xiaolong Zhu
Department of Game AI Research

Parametrix.ai
Shenzhen, China

{northyang,
xiaolongzhu}@chaocanshu.ai

Abstract—Two-player zero-sum video game is a basic and
important problem in game artificial intelligence. In 2020,
enhanced rolling horizon evolution algorithm with policy
gradient (ERHEAPI) beat heuristics, Monte-Carlo tree search
and other methods to win the championship of Fighting Game
Artificial Intelligence Competition (FTGAIC). However, the
performance of ERHEAPI in the first round was not good. In
this paper, we present an effective method noted as ERHEAPPO
that combines proximal policy optimization (PPO) and
enhanced rolling horizon evolution algorithm (ERHEA) with
opponent model learning to further improve performance. We
train the PPO agent and find that the Elo-based opponent
selection can improve the sample efficiency. We compare the
performance of the proposed ERHEAPPO with ERHEAPI. The
experimental results demonstrate the effectiveness of
ERHEAPPO.

Keywords—game AI, PPO, deep reinforcement learning,
FightingICE, opponent selection

I. INTRODUCTION
In the last few years, two-player zero-sum games in deep

reinforcement learning (DRL) [1] [2] have gained massive
attention. Many DRL agents have achieved excellent
performances in many games, such as Atari [3], Go [4] and
StarCraft [5] [6].

Fighting Game AI Competition (FTGAIC) is a two-player
imperfect information zero-sum video game [7], which
includes standard mode and fast mode. The standard mode
considers the winner of a round as the one with the hit points
(HP) above its opponent's HP at the end of the game. The
winning condition of fast mode is beating MctsAi (the official
bot of FightingICE [8]) as fast as possible. The FightingICE
game platform is shown in Fig. 1. This has been used as the
platform for the Fighting Game AI Competition series since
2013. FightingICE is a very challenging and entertaining
game genre that requires the agent to decide an action to
perform among many actions within a short response time (16
milliseconds) with imperfect information situation. In this
game, the current enemy information is not clear for both sides.
As to unable to model the opponent behavior precisely, the
performance of ERHEAPI in the first round was not good.

In this paper, we present to combine enhanced rolling
horizon evolution algorithm (ERHEA) [9] [10] and proximal
policy optimization (PPO) [11] in FightingICE game to
increase the winning rate of the first round and improve the
whole performance.

Fig. 1. Game sample of the battle scene in FightingICE

II. 2020 CHAMPION OF FIGHTINGICE: ERHEAPI
The champion of 2020 FightingICE ERHEAPI combines

enhanced rolling horizon evolution algorithm with a policy-
gradient-based opponent model. Rolling horizon evolution
algorithm (RHEA) is a statistical forward planning algorithm
that evolves action sequences through a forward model. After
each evolution, RHEA selects the first action of the best
sequence. ERHEA is a framework that combines RHEA with
a learned opponent model. This framework is designed for
two-player zero-sum game.

A. Opponent model of ERHEAPI invalid in round 1
The performance of ERHEA depends on the opponent

model in the fighting game. Therefore, the prediction accuracy
of opponent model [12] is important. In the first round, we
couldn't get the opponent strategy for modeling, so ERHEA
combined with random opponent model becomes a temporary
solution. However, random opponent model performs worse
than ERHEA, since the random opponent model may ruin the
evaluation process of the rolling horizon and mislead the bot
to inappropriate decisions. When battling with a strong
opponent, ERHEA with random opponent model would lose
the first round.

B. Problems modeled by opponents
In FightingICE, how to make our bot cannot be modeled

by opponent is a problem to be solved. The effective use of
opponent information can gain a great advantage in this game.
For the enemy, how to improve the complexity of opponent
modeling is a problem. Because there are 15 frames of delay
in the game, using two different strategies can produce two
distinct actions under one observation. It is difficult to use
opponent modeling to get two sets of opposite outputs under

one input. Therefore, the combination of conservative and
offensive strategies increases the complexity of adversary
modeling.

III. DEEP REINFORCEMENT LEARNING
Deep reinforcement learning (DRL) is a general and

powerful algorithm based on deep neural network and it
solves the problem that reinforcement learning cannot be used
in high dimensional state space. We use proximal policy
optimization (PPO) [11], of which the policy loss is as follows:

ˆ ˆ ˆmin(() ,clip((),1 1)) ,()CLIP
t t t t tt AL Aθ θρ ρ θ= − + ， (1)

 ,
(|)

|
()

()
old

t t

t
t

t

a s
a s

θ

θ

π
θ

π
ρ = (1α)

1

1 1

1

ˆ () () ,
where () ()

T t
t t t T

t t t tV
A

r s sVθ θ

δ γλ δ γλ δ
δ γ

− +
+ −

+

= + + +

= + −

 (1β)

where st is a state from t, at is an action from t, (|)t ta sθπ is a
probability of current strategy, (|)

old t ta sθπ is a probability of
previous strategy, Vθ is a state-value function from θ , t
specifies the time index in [0, T], and clipping , GAE
parameter λ , the discount factor γ are hyperparameters. The
value loss, ()VF

tL θ is a squared error as follows:

 ()2() () ,VF
t t tL V s Rθθ = − (2)

where Rt is the total discounted sum of rewards from time
index t. The main objective of the whole PPO is the following:

1 2 ,() ()ˆ () []()CLIP VF S CLIP VF
t tt t tL L c L c S sθθ θ θ π+ + = − + (3)

 [],[] log (|)t ta
S a sθ θπ

π π= −

 (3α)

where []S θπ indicates the entropic regularization and c1, c2
are coefficients.

 The neural network (NN) of the PPO agent in our
experiment consists of three layers. The input of the NN
consists of a vector with 432 components, representing three
observations that can be obtained from time index t-2 to t in
the game. There are two hidden layers, and each layer has 64
nodes. The output layer has 40 nodes, representing 40 actions
of the PPO agent. The discount factor is set to 0.99 and other
settings are the same as the default setting of PPO [11]. For
detailed definition of state and action, refers to [9].

A. Reward design
We use two different reward shaping schemes in standard

mode and fast mode. In the standard mode of fighting game,
the condition of victory is that our side has more hit points
than the other side at the end of the game. Therefore, we can
get the reward of PPO by the hit points difference between the
last time-step and the current time-step. The reward is as
follows:

() ()old now old now
standard

oppHP oppHP myHP myHP
r

C
− − −

= ，(4)

where myHPold is last hit points of our side, myHPnow is current
hit points of our side, oppHPold is last hit points of opponent
side, oppHPnow is current hit points of opponent side, and C is
a coefficient. (4) means that the greater the reward, the larger
the difference between hit points of our side and hit points of
opponent in the current moment.

The winning condition of fast mode is to win the official
bot as fast as possible, so the reward is the following:

 1
1

2

 if
,now now

fast

r myHP oppHP
r C

r otherwise
>

= − +

，

，
 (5)

 1
()

,old nowoppHP oppHP
r

C
−

= (5α)

 2
() ()

,old now old nowoppHP oppHP myHP myHP
r

C
− − −

= (5β)

where C1 is a time penalty, which can make PPO faster to beat
the opponent. (5) means that we pay more attention to the
change of hit points of the opponent which is considered as
the reward when our hit points are greater than the enemy's.
When our hit points are less than that of the opponent, we need
to consider whether PPO can defeat the opponent.

B. Mask mechanism
Among the 40 actions that can be selected by the agent,

there are two types of actions: air action and ground action. If
the current character is in the air, the ground action cannot be
selected, and vice versa. Therefore, some actions should be
masked in running of the game. If the action mask is not used
in the training process, PPO will randomly select the action
that cannot run, resulting in a larger action space. Hence, PPO
needs more time to learn the optimal policy. We add the mask
mechanism after the output of neural network filtered the
action.

C. Elo-based opponent-selection mechanism
PPO uses all historical competition bots for training.

During the training, we design an Elo-based opponent-
selection mechanism, so that weak bots will not appear
frequently as opponents. The probability of an opponent being
chosen is as follows:

2

2

1

(1 1/ (1 10)) ,
(1 1/ (1 10))

i

i

t

i n
t

i

P

=

− +
=

− +∑
 (6)

 ,i
i

M
t

C
= (6α)

where iM is Elo rating of the ith opponent:

 (),i i iM M K Z E′= + × − (7)

where iM ′ is previous Elo rating of the ith opponent, K is a
coefficient and Z is the result of a round. If the opponent wins,
it is equal to 1. Otherwise, it is equal to 0. Ei is the expectation
of current Elo rating:

1 ,

(1 10)ii LE =
+

 (8)

 .i
i

M
L

C
′−

= (8α)

According to (6), (7) and (8), we can draw a conclusion
that in the case of our bot with a high winning rate, the
probability of the opponent being selected later will decrease
after calculation. In our bot with a low winning rate, the
probability of the opponent being selected later will be
increased after calculation. Through the training of the Elo-
based opponent-selection mechanism, the utilization rate of
effective samples of PPO can be greatly improved.

IV. PPO COMBINED WITH ERHEA
Based on ERHEAPI, our method uses PPO instead of

ERHEA with random opponent model in the first round and
uses the data of the first round to model the opponent. The
performance of PPO algorithm is enough to fight and win the
easy opponent. When the PPO strategy fails due to a strong
opponent, our strategy switches to ERHEA with opponent
model, which can make ERHEA show the most powerful
performance. The flow diagram is presented in Fig. 2.

Fig. 2. Program flow chart and its explanation

The switch strategy between two different and powerful
policies is more robust. Our strategy makes the enemy with
opponent model impossible to model in a relatively small
amount of data. This strategy reduces the possibility of
exposing the drawback of our bot.

A. Change to a better strategy in the first round
ERHEA shows powerful performance with genetic

evolution under the action of forward model and optimization
function objective. However, in the game with imperfect
information for two players, the action of opponent has an
effect on the forward model. The random opponent model
cannot predict the opponent's action in the first round.
Therefore, ERHEA has a high probability of losing the first
round under a stronger opponent, and the winning rate of the
PPO strategy is higher than that of ERHEA.

B. Switch strategy through loss
In the game, the opponent bot will also use the opponent

model. Therefore, how to disrupt the opponent modeling for
our opponent has become an important problem. Because PPO
is a conservative strategy and ERHEA is an offensive strategy,
it is impossible to integrate the two strategies in one round.

Therefore, we propose to switch to another strategy when we
lose the first round.

V. EXPERIMENTS

A. Experimental Setup
The experimental platform is version 4.50 of FightingICE

game. The test environment is Linux, and the CPU is Xeon
gold 6240R. In FightingICE, each player can use only one
thread.

B. Experimental Results
We show the training process of PPO agent in Fig. 3 to Fig.

5 and the testing performance of ERHEAPI, PPO and our
method ERHEAPPO in Table I. There are three different
characters in FightingICE, ZEN, LUD and GARNET. We
choose the most powerful bot during the FightingICE game
from the year of 2013 to 2020 as the opponents to test the
performance of our ERHEAPPO agent.

Fig. 3. Episode rewards achieved by PPO agent in FightingICE during

training.

In Fig. 3, we show the training process of our PPO agent,
and train PPO agent for 4 million steps. According to (4) , (5),
and Fig. 3, we know that the PPO agent in the early stage
cannot defeat any other opponents, and beat the opponents
stably in the later stage.

Fig. 4. Elo rating of each opponent in FightingICE during the training

process.

Fig. 4 and Fig. 5 show the Elo rating and the resulting
probability of selecting different bot of our PPO agent,
respectively. The probability of being chosen as training
opponents for the PPO agent is calculated according to (6). In
general, the higher the Elo rating of the agent is, the larger
probability of the agent is selected. High Elo rating of the
opponent means that the opponent is strong, and the PPO
agent pays more attention to these opponents.

PPO

ERHEA

ERHEAPPO

Opponent model

switch

AIInterface

train

Opponent Action

Output Action

-30

-20

-10

0

10

20

30

0 50 100 150 200 250 300 350 400

ep
is

od
e

re
w

ar
ds

training steps ×10⁴

-600

-400

-200

0

200

400

600

0 50 100 150 200 250 300 350 400

El
o

ra
tin

g
of

 o
pp

on
en

t

training steps ×10⁴

BCP JayBot_GM SimpleAI
DiceAI KotlinTestAgent Dora
LGIST_Bot Toothless FalzAI
ReiwaThunder TOVOR HaibuAI
MctsAi UtalFighter

TABLE I. ERHEAPI, PPO, AND ERHEAPPO WINRATE TABLE

 P1
P2

ERHEAPI PPO ERHEAPPO

ZEN LUD GARNET ZEN LUD GARNET ZEN LUD GARNET
ReiwaThunder 0.67 0.67 1.00 0.75 0.98 0.63 0.92 1.00 0.83

Thunder 0.67 1.00 0.67 0.92 1.00 0.63 1.00 1.00 0.75
TeraThunder 0.67 0.50 0.67 0.93 0.97 0.78 1.00 1.00 0.92

EmcmAi 0.50 0.83 0.50 0.75 0.75 0.85 0.83 0.83 0.89
MctsAi 1.00 1.00 1.00 0.88 1.00 0.83 1.00 1.00 1.00

CYR_AI 0.67 1.00 0.67 0.98 0.87 0.88 1.00 1.00 0.92

ERHEAPI - - - 1.00 0.85 0.67 1.00 0.67 0.83
PPO 0.00 0.15 0.33 - - - 0.50 0.58 0.75

ERHEAPPO 0.00 0.33 0.17 0.50 0.42 0.25 - - -

Fig. 5. Probability of being selected each opponent in FightingICE during

the training process.

In FTGAIC there are three rounds in a game. It can be seen
from the results of Table I that ERHEAPI uses random
opponent model and loses in the first round, but wins in the
following rounds, so the winning rate of ERHEAPI for most
opponents is 67%.

The table shows that PPO will always win against ordinary
opponents, but the winning rate is relatively low against strong
opponents such as ReiwaThunder, EmcmAi and ERHEAPI.
This proves that PPO can be used only in the general opponent,
instead of using the ERHEA strategy.

It can be seen from the results of Table I that ERHEAPPO
can defeat general opponents with PPO, such as Thunder and
CYR_AI. For some powerful opponents such as
ReiwaThunder, EmcmAi and PPO, strategy switching can
play a better effect than ERHEA and PPO alone. ERHEAPPO
can observe the opponent's reaction against two different
strategies and build a more perfect opponent model.

VI. CONCLUSION AND FUTURE WORK
For the problem of the 2020 champion ERHEA: opponent

model is not training yet in the first round of the FigthingICE
game, and ERHEA often fails in this round, we present the
solution to introduce a deep reinforcement learning method
PPO in the first round, and use policy switching strategy to
combine the advantages of PPO and ERHEA for the game. To
improve the sample efficiency of PPO agent in the training
process, we add the mask mechanism and Elo-based opponent
selection strategy. ERHEA's performance on the standard

mode has been improved to a new level. In the future, we will
separate the actor and critic networks and introduce auxiliary
tasks to improve the performance and generalization of our
PPO model.

REFERENCES
[1] D. Zhao, K. Shao, Y. Zhu, D. Li, Y. Chen, H. Wang, D. Liu, T. Zhou,

and C. Wang, “Review of deep reinforcement learning and discussions
on the development of computer Go,” Control Theory and Applications,
vol. 33, no. 6, pp. 701–717, 2016.

[2] Z. Tang, K. Shao, D. Zhao, and Y. Zhu, “Recent progress of deep
reinforcement learning: from AlphaGo to AlphaGo Zero,” Control
Theory and Applications, vol. 34, no. 12, pp. 1529–1546, 2017.

[3] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, and G.
Ostrovski, “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[4] J. Schrittwieser, I. Antonoglou, T. Hubert, et al. “Mastering atari, go,
chess and shogi by planning with a learned model,” Nature, vol. 588,
no. 7839, pp. 604-609, 2020.

[5] O. Vinyals, T. Ewalds, S. Bartunov, P. Georgiev, A. S. Vezhnevets, M.
Yeo, A. Makhzani, H. Kttler, J. Agapiou, and J. Schrittwieser,
“StarCraft II: A new challenge for reinforcement learning,” arXiv
preprint arXiv:1708.04782, 2017.

[6] K. Shao, Y. Zhu, and D. Zhao, “StarCraft micromanagement with
reinforcement learning and curriculum transfer learning,” IEEE
Transactions on Emerging Topics in Computational Intelligence, vol.
3, no. 1, pp. 73-84, 2018.

[7] D. Perez-Liebana, S. Samothrakis, J. Togelius, T. Schaul, and S. M.
Lucas, “General video game AI: Competition, challenges and
opportunities,” in Thirtieth AAAI Conference on Artificial Intelligence,
2016.

[8] F. Lu, K. Yamamoto, L. H. Nomura, S. Mizuno, Y. Lee, and R.
Thawonmas, “Fighting game artificial intelligence competition
platform,” in IEEE Global Conference on Consumer Electronics, pp.
320–323, 2013.

[9] Z. Tang, Y. Zhu, D. Zhao and S. M. Lucas, "Enhanced Rolling Horizon
Evolution Algorithm with Opponent Model Learning," in IEEE
Transactions on Games, doi: 10.1109/TG.2020.3022698, September
2020.

[10] R. D. Gaina, S. M. Lucas, and D. Perez-Liebana, “Rolling horizon
evolution enhancements in general video game playing,” in 2017 IEEE
Conference on Computational Intelligence and Games, CIG, pp. 88–
95, 2017.

[11] J. Schulman, F. Wolski, P. Dhariwal, et al. “Proximal policy
optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.

[12] H. He, J. Boyd-Graber, K. Kwok, and H. Daume III, “Opponent
modeling in deep reinforcement learning,” in International Conference
on Machine Learning, pp. 1804–1813, 2016.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200 250 300 350 400

Pr
ob

ab
ili

ty
 o

f b
ei

ng
 se

le
ct

ed

training steps ×10⁴

BCP JayBot_GM SimpleAI
DiceAI KotlinTestAgent Dora
LGIST_Bot Toothless FalzAI
ReiwaThunder TOVOR HaibuAI
MctsAi UtalFighter

