Khaldun: GOAP for both Procedural Level
generation and NPC Behaviors

Mael Ahmad Addoum*, Jannah Mekhaemar*, Maxime Rouffet*, Eric JacopinT
* International School of Video Game and Animation 3D-FX, Isart Digital, Paris, France
TCREC, Ecoles de Saint-Cyr Coétquidan, Guer, France

Abstract—We investigate the capability of Goal Oriented
Action Planning (GOAP) to perform a double-objective: (1) to
control the Non-Player Character (NPC) behaviors, and (2) to
generate dungeon levels. We demonstrate its application for a
2D custom platformer roguelike game. Our first results show
GOAP’s ability to generate a wide range of playable and stable
dungeon levels while producing unpredictable NPC actions.

Index Terms—GOAP, Procedural Level Generation.

I. INTRODUCTION

We address the use of Game AI Planning for online
level generation. Automatically generating levels is a chal-
lenge and a creatively demanding task where both func-
tional and structural requirements must be met [1]. Related
works mainly concerning the search-based methods [2], while
Hauck and Aranha proposed a new graph-based grammars
system for Super Mario Bros [1]. Khalifa et al. combine
evolutionary algorithms with quality-diversity algorithms that
create levels with varying characteristics [3]. Du et al. have
coupled both search and genetic algorithms to generate re-
spectively the player path and monster sequences that make
the levels playable [4]. GOAP has been mainly used for
generating NPC behaviors. In our custom platformer game
named khaldun, we investigate the use of GOAP to gener-
ate dungeon levels in addition to NPC behaviors. Khaldun,
Fig. 1, https://victorcavagnac.itch.io/khaldun, is a 2D roguelike
game where the player incarnates a lone traveler seeking the
Fountain of Eternity to cure his illness. To the best of our
knowledge, no other study has reported the use of GOAP to
automatically generate platformer levels, with one exception
of puzzle generation in an adventure game [5].

II. PROCEDURAL LEVEL GENERATION

The first step consists in hand-designing rectangular rooms
where the fixed elements and enemies are carefully placed
within a 32x19 map. The designer can easily sketch the
desired structure in a very simple way (Fig. 2-top). The list of
these elements with their colors and layout are given in Table
I.

After adding decorations, the designed rooms are then
generated and transformed as prefabs assets in the game engine
(Fig. 2-bottom). Rooms are equivalent to actions that are
used in the behavioral-planning algorithm while the level is
equivalent to its plan. Each generated room has a list of
preconditions and post-conditions that should be satisfied in

978-1-6654-3886-5/21/$31.00 ©2021 IEEE

R eeededed
rys

PERERERRLYE
PEEREERRRSR)
ERCEREN

A
a
a
n
i
3
Iy
'y
Y
Iy
Iy
4
i
3
‘

89 /100

Fig. 1. Three enemies chasing the player in Kaldhun.

order to place it in a suitable position within the level. These
conditions are represented by the entrances and exits on the
left, right, top or bottom of the room. It is important to
sequence the rooms that will hold game events so as to guide
the player progression. In Kaldhun, the planner locates the
rooms with respect to randomly weighted coefficients taking
into account the connection between the neighbored rooms.
These coefficients aim at adding variety to the dungeon and to
place top and bottom strategics rooms in order to avoid simply
aligned rooms. The constructed plan is therefore a sequence
of several connected rooms that constitute the entire dungeon
level where at least one non linear valid path is ensured.

III. RESULTS

Based on designers’ parameters, a generated level aims
to last between 10-15min of gameplay. Figure 3 depicts
two different examples of procedurally generated levels; both
levels are visually appealing and pleasing and guarantee at
least one solvable path traveling from left to right. The player
can explore the dungeon in the vertical direction due to the
top and bottom rooms’ positioning. This is ensured thanks
to the random coefficients used in the generator that avoid
obtaining a straightforward boring path. The computation cost
to produce a whole level is neglected allowing hence an
online generation. Empirical tests showed that the generated
dungeons are unique, solvable, and have high replayability
while respecting game design. Moreover, our algorithm leads
to unpredictable NPC actions which avoids redundant behav-
iors. Despite the simultaneous plan generation for the NPC
present in a single room, as in the case of figure 1, the

TABLE I
MAIN ELEMENTS USED IN THE PROCEDURAL LEVEL GENERATION.

Elements Color Layout

Floor .
Wall .

Rope

Platform

Chest

Spawn location for the enemy

Teleport Stele

Fig. 2. Hand-designed 32 x 19 sketch map (top), and the corresponding
generated room (bottom).

Fig. 3. Two examples of dungeons levels automatically generated with GOAP.

planning runtime remains efficient and does not impact the
game quality. Finally, designers can easily add or remove
actions or room structures within the planner so as to evolve
the developed game and extend its durability.

IV. CONCLUSIONS

We presented a GOAP architecture able to generate both
2D dungeons platformer levels and NPC behaviors. Our first
results show that our game Al planning architecture represents
a robust and online co-creative tool to automatically synthesize
a wide range of 2D stable and solvable levels that provide an
enjoyable and entertaining game immersion. We believe this
architecture can be applied to produce various others structures
for other game genres.

REFERENCES

[1]1 E. Hauck and C. Aranha, ”Automatic Generation of Super Mario Levels
via Graph Grammars,” [EEE Conference on Games, pp. 297-304, 2020.

[2] A. Liapis, ”10 Years of the PCG workshop: Past and Future Trends,”
International Conference on the Foundations of Digital Games, New
York, USA, no. 96, pp. 1-10, 2020.

[3] A. Khalifa, M. C. Green, G. Barros, and J. Togelius, “Intentional
computational level design,” Genetic and Evolutionary Computation
Conference, pp. 796-803, 2019.

[4] Y. Du et al., ”Automatic level Generation for Tower Defense Games,”
IEEE 3rd Information Technology, Networking, Electronic and Automa-
tion Control Conference, pp. 670-676, 2019.

[5] 1. Dart and M. Nelson, ”Smart terrain causality chains for adventure-
game puzzle generation”, IEEE Conference on Computational Intelli-
gence and Games, pp. 328-324, 2012.

