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Abstract—We introduce the idea of utilizing a recurrent neural
network based representation learning approach to extract and
model the complex and sequentially dependent player behavior in
games. Our approach is based on the dynamical systems of Echo
State Networks, which are very simple to evaluate yet powerful
temporal representation learners. We empirically evaluate our
approach by illustrating a case study for predicting player churn.

I. INTRODUCTION

Previous game analytics research has shown that the behav-
ior of digital game players from macro and micro perspectives
as well as the resulting decisions they make change as a
function of time [1]–[5]. When predicting future activities of
players, analysts and marketing experts nowadays are in need
of scalable and reliable models that can extract and model
the temporal player behavior for building informed decision-
making frameworks. Two commonly observed challenges of
the existing solutions relate to the scope with respect to
the temporal dependency or the complexity of the modeling
approaches. Namely, they either do not provide full-fledged
modeling of the temporal aspects (for instance relying on
the markovian assumption [6], [7] or censored temporal data
representations [8] that do not consider the variable length of
sequential behavioral data) or are very complex for the existing
datasets (e.g. in terms of the necessary number of parameters
to be trained to avoid overfitting) or require expensive compu-
tation infrastructures (such as a dedicated computer cluster).

Taking a look at predicting player departure, i.e. churn,
in games, we note that it has been gaining popularity in
the last years mostly due to the steadily increasing number
of newly released games as well as the financial challenges
related to acquiring new players [9]. This has become more
popular for non-contractual settings (such as freemium games)
as the optional micro-transactional payments usually only
occur for advancing the gameplay quickly or unlocking special
or cosmetic items. Similarly, for advertisement-driven games
keeping the players in the game increases the chances of
clicks as well. Being able to accurately predict players that
might depart beforehand gives the developers and market
managers a competitive advantage, as necessary actions (such
as giveaways in terms of in-game items or currencies) can
be taken to keep such players from quitting interacting with
the system. Given that, introduced in [10], the two popular
established definitions of churn (i.e. hard vs soft churn)
were based on formulating the prediction setting as a binary
classification problem that was based on an observation period
with fixed length and predicted if the user would be likely

to churn or retain in a subsequent period of time. Over the
last years, a variety of different supervised methods has been
proposed to predict churn in the context of freemium games.
Examples of such methods include simple linear classifiers
such as Logistic Regression [10]–[12], tree based classifiers
such as Decision Trees and Random Forests [10]–[14], marko-
vian models such as Hidden Markov Models [6] as well as
feed-forward and recurrent neural network based classifiers
[11]–[13]. Additionally, predicting different customer loyalty
indicators (such as retention, purchase decisions, lifetime value
and disengagement) in freemium as well as retail games, has
also been tackled following similar settings [5], [7], [15]–
[18]. We note that the already utilized methods rely heavily
on extensive feature extraction steps, requiring the analysts to
engineer a set of informative and predictive features as well
as to evaluate their prediction performance before rolling them
out in a productive system [10]–[12].

Although not as widespread as directly building behavioral
predictors with engineered features as explained above, there
has been research work about building automated feature
extractors (a.k.a methods for learning representations) to find
important features for the tackled problem [8], [19]–[21]. For
instance [19] proposed to learn spatio-temporal features by
factorizing a tensor containing the collection of waypoint
graphs encoding their movements in an open-world game.
The features were defined as low dimensional representa-
tions containing affinities among global factors. Similarly [8]
predicted retention by learning temporal behavioral features
by factorizing a tensor containing temporal features players.
[21] consider a combined approach for learning features from
aggregated historic data and sequential data, where features
from the latter are extracted using Long Short-Term Memory
(LSTM) networks, to predict churn in a freemium game.

The main contribution of this work is based on introducing
the idea of utilizing Echo State Networks (ESNs), which
are straightforward-to-implement recurrent neural networks
with random connectivity, to extract sequential representations
from behavioral datasets with minimal effort for a variety
of downstream Game Analytics tasks. We note three main
advantages of utilizing ESNs for tasks involving sequential
data. First of all, unlike matrix and tensor factorization models,
which treat temporal aspects as another data dimension [8],
through their capability of having a dynamic memory, ESNs
provide a more concise representation to model the sequential
dependencies in the dataset and can work with sequential
datasets of varied sizes. The latter is very crucial when, for
instance, extracting temporal player representations. Secondly,
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unlike Hidden Markov Models or temporal difference based
supervised models, they do not necessarily rely on the marko-
vian assumption and can learn longer dependencies [22]. Fi-
nally, ESNs are in general exceedingly easy-to-implement and,
unlike their counterparts, usually contain a reduced number of
(hyper-) parameters to be adjusted according to the solved
task. These two points make them good candidates for fast-
prototyping (as baseline/main temporal feature extractors) as
well as in thin-data scenarios, where the available data to train
models is scarce (for instance in early development phases).

With this early research work, we intend to propose a new
area of investigation and show a use-case of how ESNs can
be utilized to predict player churn in the context of freemium
games. We will continue this work by shortly introducing the
main idea behind ESNs in Sec. II. Following that, in Sec. III
we will show how unadjusted ESNs can be used to extract
fixed dimensional data representations, which will be later
used in Sec. IV to extract temporal player representations
for predicting churn using a dataset from a casual freemium
mobile game called Dodge the Mud [11]. Finally, we will
summarize this work in Sec. V and present our future research
directions.

II. INTRODUCTION TO ECHO STATE NETWORKS (ESNS)

Belonging to the family of Reservoir Computing, ESNs are
special types of recurrent neural networks that rely on preserv-
ing the patterns in the analyzed dataset by considering a par-
ticular connection and training mechanism, that can be based
on multiple regression. ESNs and their variants have been suc-
cessfully applied as standalone prediction models and feature
extractors to numerous challenging problems e.g. from natural
language processing [23]–[25], financial data analysis [26],
healthcare analytics [27], telecommunication [28] and opti-
mization [29]. Unlike the conventional and nowadays popular
backpropagation methods, ESNs keep randomly initialized
input and recurrent (a.k.a reservoir) weights, while training
the output (also called readout) weights is done by mapping
the network states to the target variables [22] (see Figure 1
for a pictorial illustration). Assuming we are given a sequen-
tial dataset containing T number of observations defined as
input/output tuples as d = {(x1, y1), (x2, y2), . . . , (xT , yT )},
where xi ∈ Rn is an input vector and yi ∈ R is an output
value. Given that xt is the input datapoint at time t and g is the
number of recurrent neurons in the reservoir, the activations
of the network’s hidden state at time t are grouped in ht ∈ Rg

and defined as

ht = fr(Axt +Bht−1), (1)

where fr is the reservoir activation function (typically defined
as the sigmoid or the tanh function), A ∈ Rg×n is the input
weight matrix and B ∈ Rg×g is the reservoir weight matrix.
Following that the output of the network at time t is defined
as ŷt = fo(cTht), where fo is the activation function for the
output unit (usually defined as the unity function fo(q) = q)
and c ∈ Rg contains the output weights.
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Fig. 1: A pictorial illustration of the architecture of an
Echo State Network (ESN) for datasets constructed as d =
{(x1, y1), (x2, y2), . . . , (xT , yT )}, where xi ∈ Rn is an input
vector and yi ∈ R is an output value. For a given nonlinear
reservoir activation function fr as well as the randomly ini-
tialized input- and reservoir weight matrices resp. A ∈ Rg×n

and B ∈ Rg×g , the hidden state of the network at time t
is calculated as ht = fr(Axt + Bht−1). Following that,
only the output (sometimes called readout) weights (in this
example the weight vector c) are learned to facilitate mapping
the hidden states to the output values so that (for a given
activation function of the output units fo) the output at time
t is evaluated as ŷt = fo(cTht). In this work we focus
on obtaining temporal representations of each data entry by
considering their corresponding final hidden states.

The training procedure starts by 1-initializing A and B
randomly (the spectral radius of B is usually selected to be
less than unity in the hopes of reaching a certainty condition
for the so-called Echo State Property [22]), 2- creating a row-
wise matrix of the hidden states G ∈ RT×g s.t. each ith row
is defined as gi: = hi (computed as in (1)), 3- defining a
vector y ∈ RT containing all the output values in d . For
fo(q) = q the training is usually done by minimizing the
sum of the squared differences of the produced output values
and the actual ones observed from the dataset, which can be
obtained analytically considering the linear regression solution

c =
(
GTG

)−1

GTy. We note that for datasets with vector-
valued outputs, the network output is defined as a vector and
this requires solving a multiple regression problem instead.

III. EXTRACTING REPRESENTATIONS WITH ESNS

Having introduced the idea of ESNs, we will now turn
our attention to a methodology to extract fixed dimensional
representations from datasets with sequential dependencies
considering the first two steps of the training process described
above. It is worth noting that, numerous downstream tasks in



game analytics such as time series clustering for profiling and
predicting player churn based on temporal data operate on a
set of sequential datasets to encode dependencies among them
and can majorly benefit from having vector representation of
each dataset encoding its characteristics as each entry might
have a different cardinality value.

Formally, given D = {d1, d2, . . . , dN}, where each entry
is defined as di = {xi1,xi2, . . . ,xiTi

} with length Ti and
xij ∈ Rn ∀ i, j, our goal is for each di ∈ D to find a vector
representation zi ∈ Rg . ESNs have been successfully used
to encode sequential datasets of different lengths into a fixed
dimensional space (see examples from [23], [25]). Instead of
training different networks for different datasets, the main idea
here is to consider a single network with fixed parameters that
can be used as a feature extractor for each set of sequential
observations. To that end, we represent each unit in the dataset
by considering the last hidden state of the network. That is,
given that hi0 and hiTi stands resp. for the initial and the last
hidden state of the ith entry di ∈ D, our approach represents
di using zi = hiTi

by starting with hi0 = 0 and iteratively
evaluating (1) until hitting the final element of di. The whole
approach can be summarized as follows:

• Let D = {d1, d2, . . . , dN}, where each entry is defined as
di = {xi1,xi2, . . . ,xiTi

}
• Let Z contain the fixed dimensional representations of

each element of D s.t. zi ∈ Z corresponds to di
• Initialize the weight matrices A and B
• For each di ∈ D:

– Set h0 = 0
– For t ∈ [1, 2, . . . , Ti]:

ht = fr(Axit +Bht−1)

– Set zi = hTi and add zi in Z
• Use the representations in Z in a downstream analytics

task such as clustering or classification

IV. PREDICTING CHURN IN A FREEMIUM GAME

As a case study to show the effectiveness of our approach
for predicting churn, we considered an offline evaluation [10]
that is based on the publicly available behavioral dataset from
[11] concerning the mobile game called Dodge the Mod. The
dataset contains more than 150k sessions of 25, 954 players
for an observation period spanning more than a year. To have
comparable results to the ones from [11], we considered an
observation period of 5 days and a prediction (churning) period
of 10 days.

A. Data Preprocessing and Methods

To learn temporal representations and/or predict churn we
benchmarked different approaches including k-Nearest Neigh-
bors (kNN), Logistic Regression (LR), Decision Trees (DTs),
Random Forests (RFs), LSTMs (with fully connected final
layer) as well as Tensor Factorization (TF) and ESN based
models coupled with LR (similar to [8], [23]). We also
considered an 80%/20% training/test split of the data, where
the former was used to train the models and the latter to

TABLE I: A summary of the utilized data representations
extracted from the observation period for predicting churn.

Type Content

Hand Engineered
Features

session count, consecutive session
ratio, active duration, normalized best
score index, best score value, mean

score value, standard deviation of the
score value, worst score value, ratio of
the difference between the best score

and the mean score divided by the
mean score, normalized differences

between the best score and the mean
score divided by the session count

Binned Features individually summed scores values for
10-minute intervals

Pure Temporal
Observations

normalized cumulative time from the
first session, normalized numerical
score and the combination of both

values

evaluate their generalization. We used 5-fold cross-validation
on the training split for hyperparameter tuning by maximizing
the F1-Score (shortly F1) and also reported the area under the
Receiver Operating Characteristic (ROC) curve (shortly AUC).

To show the fact that ESNs can indeed be used by an-
alysts to learn temporal features with minimum overhead,
we benchmarked our approach against models trained on
the 10 hand-engineered features as well as the binned score
representations from [11] (see Table I for an overview of
the utilized data representations). For the former, to encode
playtime related information we considered the number of
sessions (i.e. play count), the total time spent in the game
(i.e. active duration) as well as the ratio of consecutive plays
(by considering the ratio of sessions with a difference less
than 1500 seconds). Following that we considered the average
and the standard deviation of the score values, the index of
the best score (normalized by the session count), the values
of the worst and the best scores, the (Laplace-normalized)
ratio of the difference between the best score and the mean
score divided by the mean score (a.k.a. bestSubMeanRatio
[11]) as well as the normalized differences between the best
score and the mean score divided by the session count (a.k.a.
bestSubMeanCount [11]). Note that, for reproducibility of the
results, we will list the used hyper-parameters of the models.
Similar to [10], [11] we trained our DTs, with gini index as the
heterogeneity measure and tuned the maximum depth of the
trees for the range [3, 4, . . . , 7]. Considering the same setting
for each of their decision trees, for the RF we also tuned the
number of trees within {41, 51, 61, 71}. For the kNN classifier,
we considered the Euclidean distance with the parameter for
the number of similar points for inference (i.e. k) being in
{1, 11, 21, 31, 41}. For all the runs of LR (including the ones
for ESNs and TF) we considered l2 regularization with unity
weights and using the BFGS-Algorithm for the optimization.

Similarly, as utilized in [11], we considered binning the
scores in 10 minutes intervals to consider them as inputs to



the LSTMs to have a xi ∈ R720 for each ith player. We
used the Adam optimizer with a batch size of 64, while fixing
the activation functions of the fully connected layer and the
output layer resp. to be the rectifying linear units and the
softmax function. As reported in [11] to have comparable
results to ESNs, we evaluated the sizes of the states to be in
{100, 150, 200}. In order to evaluate whether TF can extract
useful patterns in this context as well, we matricized each
binned score vector such that Xi ∈ R120×6, where each
row corresponds to the hours and columns to correspond to
the 10 minutes chunks. For TF we considered the Tucker 2
decomposition described in [8] using the algorithm from [30],
that constrains the basis matrices to be column orthogonal.
The TF algorithm factorizes a bipartite tensor (a collection of
bipartite matrices of the same size) such that each matrix in
our case is described as Xi ≈ LW iJ

T , where L ∈ R120×r

and J ∈ R6×v are the basis matrices describing the global
patterns in the dataset (for the hours and the 10 minutes
chunks resp.) and W i ∈ Rr×v are the player individual
coefficients. As proposed in [8], we will train our TF model
on the training set and train a classifier (here we used LR)
that takes the vectorized coefficient matrices as input (i.e. for
each ith player the input vector is vec(W i)) and whether the
player churned or not is defined as the label to be learned.
For unseen datapoints, the coefficients are generated from L
and J (see [8]). For the parameter search, we considered
r ∈ {10, 20, 30} and v ∈ {2, 3, 4} (note the dimensionality
of each player matrix for the latter).

Finally, following a similar approach to [8], we consider sin-
gle ESNs with fixed input and reservoir weight vectors A and
B that are randomly generated using the uniform distribution
between -0.5 and 0.5 (i.e. aij , blm ∼ U(−0.5, 0.5) ∀ i, j, l,m),
where each di in this case corresponds to the temporal ob-
servations of the ith player. The activation function for the
reservoir neurons is selected to be the tanh function. We only
tuned the size of the hidden states to be in {100, 150, 200}
(as in the case for LSTMs) and the spectral radius to be
in {.85, .9, .95, 1, 1.05}. To assure the latter, we multiplied
B by the desired radius divided by the maximum absolute
eigenvector of B. To make use of the recurrent connections
in (1) for the players with single sessions, we duplicated their
single session information and added it to the dataset s.t. the
cardinality is equal to two. Following that to keep the data
processing to the minimum we created three types of datasets
for the ESNs, where for each player we had:

• ESN-T: Containing the cumulative time from the first
session (normalized by the number of seconds in 5 days);

• ESN-S: Containing the observed numerical score (nor-
malized by the value 1000);

• ESN-TS: Containing the combination of both the nor-
malized time and score values to evaluate whether both
observation types have an impact on the churn behavior.

We emphasize the fact that, unlike the previous two data
representations, in this case, each observation has a variable
length and containing the normalized pure observations.

TABLE II: Predicting churn in a freemium casual mobile game
using different representation and prediction models presented
in terms of the F1-Score (shortly F1) and the area under
the ROC curve (shortly AUC). (a) shows prediction results
on an unseen test set followed by a cross validation based
model selection using three different representations: hand-
engineered features (for DT, RF, LR, kNN), binned score
representations (for LSTM and TF) and the pure observations
(for ESNs) that are based on time (*-T), score (*-S) and both
(*-TS) and only normalized the data by static values. (b) shows
the how different DT-, RF- and kNN-based classifiers predict
churn based on representations extracted by ESN-TS. See the
text for the abbreviations and a more in-depth explanation.

(a) cross validation results

Method F1 AUC

DT 96.35 79.88
RF 96.37 80.45
LR 96.37 79.17
kNN 96.21 77.99

LSTM 96.25 78.25
TF+LR 96.19 74.00

ESN-T+LR 96.07 78.85
ESN-S+LR 96.34 79.99

ESN-TS+LR 96.41 80.86

(b) further ESN evaluations

Method F1 AUC

DT-1 96.35 78.23
DT-2 96.32 77.54
RF-1 96.38 80.85
RF-2 96.37 80.75

kNN (1) 93.78 58.32
kNN (11) 96.25 73.09
kNN (21) 96.29 76.21
kNN (31) 96.27 77.80
kNN (41) 96.27 78.00

B. Prediction Results

Having followed the above steps for building the prediction
models, we show the results in Table IIa. Taking a look at the
results of the predictors that are trained and evaluated with the
hand-engineered features, we note that while kNN performed
the poorest, we obtained similar AUC values with minor
discrepancies for DT, RF and LR as in [11] with different
order probably due to having different hyperparameter values.
Considering the results with binned representation, we note
that LSTMs outperformed TF based models both for F1 and
AUC, yet the previous results were overall better. Considering
the prediction results with ESNs we note that the results where
ESN representations only learned on time were the lowest
overall, yet the solely score based results (i.e. ESN-S) were
better among the best in terms of AUC and comparable to the
results from the models trained with hand-engineered features.
Having the temporal as well as score information as input gave
the best results in terms of F1 and AUC. We note that the
results for LSTMs might increase with a larger hyperparameter
search especially on dedicated training hardware, yet using
optimized libraries for their training in a CPU machine, the
run time for training and inference of an LSTM with the
hidden space of size 150 was 563.68 times higher compared
to extracting features from the corresponding ESN (with
g = 150) with time and score information and training a LR
model for classification (6.98 vs 3934.45 seconds for a single
run).

We also performed a further evaluation to test the predictive
power of ESN-TS for different classifiers (see the results from
Table IIb). Namely, we input the hidden states extracted by



the ESN-TS (whose hyperparameters were tuned based on
LR) and evaluated the performance of predicting churn for
kNN classifiers with k ∈ [1, 11, 21, 31, 41] (results referred
to as kNN(k)), two DTs with maximum depths of 3 and 4
(resp. referred to as DT-1 and DT-2) and two RF models with
maximum depths of 4 with 51 and 71 random trees (resp. RF-1
and RF-2). In terms of F1 score, the prediction results for kNN
improved and the AUC scores seem to be comparable with the
previous results. Compared to the prediction performance of
ESN-TS+LR, DT and RF based results are similar in terms
of the F1 score and the RF results are comparable to the
AUC score showing that ESN based features can indeed be
combined with decision tree based classifiers to predict churn.

V. CONCLUSION AND FUTURE WORK

In this work took a look at an alternative approach towards
alleviating some of the commonly faced challenges of model-
ing temporal behavior. Our approach was based on the idea of
utilizing unadjusted Echo State Networks, that do not require
an expensive training process, for extracting temporal features,
but rather requires the evaluation of a dynamical systems
equation that is capable of capturing the dynamical aspects
of players’ behavior and can be easily implemented without
necessarily requiring dedicated hardware infrastructures. We
evaluated the proposed approach by presenting a brief case
study on predicting player churn. Our results indicated that
ESN-based features can better predict player churn compared
to hand-engineered features and learned features that are based
on binned data.

Our future work involves evaluating the above framework
for predicting future behavior in different games. We note that
finding the right architecture for the weights of ESNs is an
open question in the Reservoir Computing research. Given that
it would also be interesting to evaluate the performance of
different ESN architectures (e.g. Deep ESNs [27]) for behavior
prediction tasks. Additionally, it will be interesting to evaluate
the performance of ESN based representations for different
applications such as behavioral profiling, outlier detection and
temporal recommender systems.
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