
Evolving Romanian Crossword Puzzles with
Deep Learning and Heuristic Search

Vadim Bulitko
Department of Computing Science

University of Alberta
Edmonton, Alberta, Canada

bulitko@ualberta.ca

Adi Botea
Eaton

adibotea@eaton.com

Abstract—Crossword puzzles are a challenging game of skill
in which humans have been competing for decades. Recently a
heuristic-search-based Artificial Intelligence (AI) solver for Ro-
manian crossword puzzles achieved competition-level scores. In
this work in progress we tackle procedural content generation of
crossword puzzles. Using genetic algorithms we evolve crossword
puzzle instances on which the AI solver can achieve a high score.
Since the solver takes a substantial time to solve each instance
we first train a deep neural network to predict the solution score
the solver would achieve. We then run the evolution of crossword
puzzles with the network as the fast proxy fitness function. We
show that doing so is an effective way of procedurally generating
numerous crossword puzzles.

Index Terms—genetic algorithms, proxy fitness, deep learning,
procedural content generation, crossword puzzles

I. INTRODUCTION

Crossword puzzles are a popular entertainment option in
many languages. Thematic puzzles, where part of the words
in the solution belong to a common theme, are particularly
interesting. Besides entertainment, thematic puzzles can have
an educational value, presenting interesting information within
the theme chosen, through the clues and through the solutions.
The quality of a thematic crossword puzzle can increase when
the thematic contents is higher. Thus one can define thematic
score as the total length of thematic words used in filling out
a crossword puzzle.

Solving a crossword puzzle is a computational problem:
given a grid size, a pattern of black cells and a list of valid
words, the task is to find a way to fill the grid with words.
With no score defined, many valid solutions can be equally
acceptable. Defining a scoring function, such as the thematic
score, converts this into an optimization problem. In practice,
finding a high-score solution can be more challenging than
finding a valid solution. However, the decision problems asso-
ciated with each of these problems (i.e., with and without the
optimization component) have a similar theoretical complexity,
namely NP-complete [1], [2].

Interestingly, the ability to rank crossword grids, thanks
to the availability of a thematic score, has led to competi-
tions between human contestants. The Romanian Crossword
Competition is a decades-old competition organized by Rebus,
a Romanian publication dedicated to crossword puzzles and

other mind games. Humans have achieved an impressive level
of expertise, beyond the reach of current AI algorithms.

Recent work [2] presented a search-based approach to solv-
ing Romanian Crossword Competition puzzles. The proposed
program WOMBAT achieved champion-level scores in filling
a grid with words from generic and thematic dictionaries.
In other words, WOMBAT addresses only a sub-problem of
the Romanian Crossword Competition problem by taking an
unfilled grid with black cells as an input.

In this paper we tackle the remaining problem: creating
patterns of black cells on a square grid. The resulting grids
can then be given to WOMBAT as an input and filled with
words. To solve this problem we use genetic algorithms to
evolve crossword puzzles with high scores (as computed by
WOMBAT). Since WOMBAT itself is too slow to be used as
a fitness function during the evolution we first train a deep
neural network to predict WOMBAT score. We then use the
trained network as a proxy fitness function in the evolution.
To the best of our knowledge, this is the first published account
of procedurally generating Romanian Competition Crossword
puzzle instances.

II. PROBLEM FORMULATION

An instance of a Romanian Competition Crossword puzzle
is a tuple P = (G,Dg,Dt) where G is a 13 × 13 binary grid
with at most 26 black cells (the rest being empty) and Dg and
Dt are general and thematic dictionaries. The grid G must
satisfy the following constraints: (C1) no two black cells can
be adjacent cardinally, (C2) using only cardinal moves one
must be able to traverse G from any empty cell to any other
empty cell and (C3) it should not be possible to change an
empty cell to a black cell and violate constraint C2 unless the
isolated areas created by the change contain one empty cell.

A crossword grid G defines word slots: maximally con-
tiguous vertical and horizontal sequences of empty cells. A
solution to the puzzle instance P is a mapping of horizontal
and vertical word slots in G to words from the dictionaries Dg

and Dt. Slots of length one can be filled with any letter. Slots
of length two can be filled with any combination of two letters
regardless of Dg and Dt. Neither such two-letter combinations
nor dictionary words can repeat in a solution.

978-1-6654-3886-5/21/$31.00 ©2021 IEEE

The solution score is the sum of lengths of all thematic
words (i.e., words from Dt) in the solution. Note that one can
score a full solution which leaves no empty cells in G or a
partial solution which has some unfilled empty cells.

The problem we tackle in this paper is, given dictionaries
Dg,Dt, to generate a grid G that allows for a high-score solu-
tion. We would like the grid generation to be procedural and
efficiently produce numerous grids with high solution scores.
Additionally we prefer grids that allow for full solutions.

III. RELATED WORK

Procedural content generation is an active field in games
with various types of game content successfully generated in
both research [3]–[8] and in the field [9]–[12]. In particular,
procedural puzzle generation is surveyed by De Kegel and
Haahr [13]. Douglas, et al. [14] use genetic algorithms to
generate crosswords puzzles. However, we focus on the op-
timization version of the problem, aiming at generating grids
with a high score.

Published work on crosswords can be classified into three
categories: solving a puzzle (i.e., filling the words in an
existing grid, based on an existing set of clues [15]), generating
a crossword grid with no notion of a score [16], [17] and
generating a crossword grid where a higher score is preferred
(which is the problem we tackle in this paper). To our
knowledge, published work in the third category pertains to
the Romanian Crossword Competition [2], [18], [19].

IV. OUR APPROACH

To procedurally generate high-score crossword puzzles one
needs to be able to (i) compute a solution score of such puzzles
and (ii) effectively search a space of crossword puzzles.

Computing puzzle scores. Given a crossword puzzle (i.e.,
a grid and dictionaries) we first need to compute a high-quality
solution in order to calculate the solution score. To compute
a solution to a crossword puzzle instance one can engage a
skillful human but doing so is not tractable for many instances.
An AI crossword puzzle solver, WOMBAT, is able to produce
competition-level solutions with scores comparable to those of
human solutions [2]. Thus in our approach we use WOMBAT
to solve crossword puzzles and calculate their scores.

Searching the space of grids. Note that not only valid grids
in Romanian crossword puzzle are subject to constraints C1 –
C3 (Section II) but also their word slots have to be of suitable
lengths as long slots reduce the chance of filling them with
score-accumulating thematic words.

To search the space of grids we use a basic genetic algorithm
as follows. At each generation a population of N crossword
puzzle instances is evaluated using a fitness function f (dis-
cussed below). The bottom M members of the population are
discarded and the remaining N −M instances are transferred
to the next generation. To build the population back up to N
instances we select a random parent from the N −M kept
instances and mutate it to produce a offspring. We repeat this
asexual reproduction M times per generation. Throughout the
evolution we maintain a running best: the best fitness grid

encountered. The evolution runs for pre-specified number of
generations.

Fitness function. WOMBAT takes minutes to solve a single
puzzle instance and is thus too slow to be used as the fitness
function. Thus we use a proxy fitness function. To do so we
first run WOMBAT on randomly generated puzzle instances
and compute their scores. The resulting pairs of grids and their
scores are then used to train a deep neural network (ANN).
The fitness function is then f(G) = α ⋅ lG − sG where G is
the grid and sG is its ANN-predicted score; lG is the length
of the maximum word slot in G and α is a constant. As
lower values of lG tend to improve WOMBAT score, lower
f values are preferred in evolution. We pick α to be larger
than scores predicted by the ANN. Thus our fitness function
combines two objectives: lower maximum word-slot lengths
and higher predicted solution scores. In practice lG provides
a coarse guidance since many grids in a population will share
the same value of lG. The ANN-predicted, real-valued score
then imposes a preference among them.

V. EMPIRICAL EVALUATION

We compared three methods of procedurally generating
crossword puzzle grids. Our implementation used a mixture of
MATLAB and C++ code. Readers interested in our code and
data are welcome to contact us. Throughout the experiments
both dictionaries remained fixed.

Random grid generation. We started by generating random
combinations of 26 black cells out of 13 × 13 possible cells.
Each such combination defines a crossword grid. We discarded
all duplicate grids as well as the grids which did not satisfy
the constraints C1 through C3. We then ran WOMBAT on the
remaining 1046 grids. Specifically, we ran WOMBAT in a best-
first search mode, guided by the evaluation function e(s) =
p(s) − w ⋅ `(s), where p(s) is the score of state s achieved
so far, w = 1.5 and `(s) is the sterile load of s (the sum of
the lengths of all slots committed to be instantiated with a
regular (non-thematic) word). The target score was set to 140
points. A partial state was pruned if its current score p plus an
optimistic estimation of the score that can be achieved in the
rest of the grid was lower than the target score. The time limit
was set to 20 minutes and the memory to maximum 2GB per
instance on Compute Canada.

WOMBAT did not find a full solution for any of the 1046
random grids. The average partial solution score was 59.22
(Table I). The grids, their transpositions* and WOMBAT scores
formed a data set of 2092 (grid, score) pairs.

Evolution with the max-word slot length. We then ran
evolution with the maximum word-slot length (mWSL, de-
noted by lG in Section IV) as the sole fitness function (i.e.,
f = lG). Population size was set to N = 1000 and the initial
population was randomly drawn without repetition from the
1046 grids described earlier. On each generation the M = 900
least fit grids were discarded. The remaining N −M = 100

*A transposition of a grid is transposition of its binary matrix. It has the
same score since transposing merely swaps vertical and horizontal word slots.

grids were transferred to the next generation. These 100 grids
also became parents and gave birth to M = 900 offsprings.
Each offspring was formed by mutating one of the 100 parents
chosen at random. The number of mutations per reproduction
was m = ⌈0.1 + ∣e∣⌉ where e is drawn from an exponential
distribution with the mean parameter µ = 5. Each mutation
was a shift of a randomly chosen black cell to a randomly
chosen empty neighboring cell. After the m mutations the
resulting grid is checked against the constraints C1 through
C3. An offspring that violates any constraint is discarded and
another offspring is created by mutating the parent.

The evolution ran for 100 generations (Figure 1, top). We
then removed duplicates from the final population and ran
WOMBAT on the remaining 942 grids. WOMBAT successfully
scored 933 of them†, finding no full solutions. Adding the
transpositions, we formed a set of 1866 (grid, score) pairs.
The average partial score was 95.7 (Table I).

Training the ANN. We randomly partitioned the 2092
random grids and their transpositions into 1992 grids for
training and 100 grids for testing. Then a deep neural network
was trained on random 80% of the 1992 training grids with
the other 20% being used for validation.

The input of the ANN was a 13 × 13 × 1 matrix with
black cells represented by +0.5 and empty cells represented
by −0.5. The input layer was followed by five successive 2D-
convolution layers with batch-normalization and ReLU layers
in between them. The last convolution layer was connected
via a dropout layer (probability of 0.2) to six successive
fully connected layers. We put batch-normalization, ReLU and
dropout layers in between the fully connected layers. The
last fully connected layer had a single neuron used as the
regression output (i.e., predicted solution score) of the ANN.

Training ran for fewer than 100 epochs as the validation
loss no longer showed improvement for some time (Figure 2).
We used the Adam optimizer with the mini-batch size of 256
and the learning rate of 0.01 halved every 20 epochs. The final
validation root mean squared error (RMSE) was 10.4 and the
training took 1.5 minutes on an Nvidia RTX 2080S GPU.

Evolution with the ANN. We then ran an evolution of
grids using the trained ANN as a part of the fitness function.‡

In the notation of Section IV the fitness function was f(G) =

α ⋅ lG−sG and we set α = 1000. Evolutionary hyperparameters
were the same as above. We ran evolution for 100 generations
(Figure 1, bottom). We then removed duplicates from the final
population and ran WOMBAT on the remaining 555 grids.
WOMBAT scored 469 of them, finding full solutions for 14.9%
of the grids. The average score was 128.19 (Table I).

VI. DISCUSSION

As per Figure 3 and Table I, the evolution with the ANN-
predicted score produced grids which have substantially higher

†Occasionally WOMBAT does not produce even a partial solution due to
exceeding the memory limit.

‡For each grid we ran ANN on it and on its transposition and then
averaged the two predicted scores.

TABLE I: Generating grids with different methods.

Method Grids Solved Partial/full score (mean ± std)

random sampling 2092 0% 59.22 ± 13.14
mWSL evolution 1866 0% 95.70 ± 18.03
ANN evolution 938 14.9% 128.19 ± 21.17

WOMBAT solution scores than either random grids or the grids
evolved with the maximum word-slot-length as the fitness
function. Additionally, ANN-guided evolution was the only
method that generated any grids fully solvable by WOMBAT.
We show such grid examples and their solutions in Figure 4.

This is not surprising since the ANN appears to be a better
predictor of WOMBAT score than the maximum world-slot
length (mWSL). Comparing both on the 100 random grids
held out for testing, the Spearman’s rank correlation coefficient
between negative ANN score and WOMBAT score is −0.64
whereas for mWSL and WOMBAT score it is only −0.24. Thus
evolutionary selection of grids with lower ANN score is more
likely to increase WOMBAT score than by merely minimizing
mWSL. Figure 5 shows the 100 individual data points as well
as the least squares linear fit for both predictors.

VII. FUTURE WORK

A straightforward extension of this work is to increase
the size of the training set for deep learning by generating
more random grids and running them through WOMBAT.
The resulting trained ANN is likely to be a better predictor
of WOMBAT solution scores, guiding the evolution better.
Furthermore, the specific ANN used is ad hoc in its topology
leaving a number of questions for future investigation.

Independently, one can add the higher-quality grids evolved
by ANN-guided evolution and their WOMBAT solution scores
to the training set and re-train the ANN. Then the evolution can
be repeated, hopefully producing yet higher-score grids. The
iterative process can then be repeated. Future work can also
investigate applicability of generative adversarial networks [8]
to generation of valid high-score crossword grids.

It will also be of interest to re-evaluate the evolved grids
(i.e., compute their solution scores) with WOMBAT with a
higher time limit and a higher memory limit per puzzle
instance. Since WOMBAT is under active development, future
work will benefit from its stronger forthcoming versions.
Finally, it would be of interest to evaluate evolved grids with
competition-level human crossword solvers.

VIII. CONCLUSIONS

This work-in-progress paper presented an effective method
for procedural generation of high-quality Romanian crossword
puzzles. To do so we evolved crossword puzzle instances using
a deep neural network as a part of the fitness function. Evalu-
ating the evolved puzzles with a state-of-the-art AI crossword
solver showed a substantial improvement over random grid
sampling as well as over a basic evolution without the network.

Fig. 1: Top: grid evolution with mWSL as the sole fitness function. The solid line shows mWSL for the best grid per generation.
The dotted line shows population average. The fittest grid found is on the right. The x-axis is the number of grids whose
fitness was computed. Bottom: Grid evolution with mWSL and ANN as the fitness function. The solid lines shows ANN and
mWSL for the best grid per generation. The dotted lines show population averages. The fittest grid is shown on the right.

Fig. 2: Learning curves for ANN training.

ACKNOWLEDGMENT

We appreciate support from Compute Canada and the
anonymous reviewers.

REFERENCES

[1] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness (Series of Books in the Mathematical
Sciences). W. H. Freeman, 1979.

[2] A. Botea and V. Bulitko, “Scaling up search with partial initial states
in optimization crosswords,” in Proceedings of the Symposium on
Combinatorial Search (SoCS), 2021.

Fig. 3: Full/partial score distributions with different grid-
generation methods.

[3] J. Togelius, A. J. Champandard, P. L. Lanzi, M. Mateas, A. Paiva,
M. Preuss, and K. O. Stanley, “Procedural content generation: Goals,
challenges and actionable steps,” in Dagstuhl Follow-Ups, vol. 6, 2013.

[4] S. Risi and J. Togelius, “Neuroevolution in games: State of the art and
open challenges,” IEEE Transactions on Computational Intelligence and
AI in Games, vol. 9, no. 1, pp. 25–41, 2017.

[5] V. Bulitko, S. Carleton, D. Cormier, D. Sigurdson, and J. Simpson,
“Towards positively surprising non-player characters in video games,”
in Proceedings of the Experimental AI in Games (EXAG) Workshop at
the AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment (AIIDE), 2017, pp. 34–40.

[6] V. Bulitko, K. Doucet, J. Simpson, and A. Flynn, “A-life for non-
playable characters in video games,” in Event Proceedings for Late-
breaking Abstracts at A-LIFE conference, 2018.

[7] V. Bulitko, M. Walters, M. Cselinacz, and M. Brown, “Evolving NPC
behaviours in A-life with player proxies,” in Proceedings of the Ex-
perimental AI in Games (EXAG) Workshop at the AAAI Conference

P I T T A R D L U E S

S I M I A N D B E N D A

C E N T R E D U C A R

H R R E C L A S A G T

M I C U S I V E V A R

I T I V I Z I R I N E

D I O R I E L I A D E

T T A C U A S T A O

B O U E L T I L E A

S O R T N E H R U P N

V U I R A N D A S U C

E B S E N S T O U R E

D E N I A U P E R L E A

C A R A G I U B A C H

T I L E M A N C O C E A

I O A N I D R A U T S

V T A L I G O T E L D

I O A N L O C A B E E

R M L A M A B A C U

D I O R I A R S I C A

J C U Z A D U C A S

U T L E N S T I L E A

V U I A T A C U B O R

A D N I E D E S A N T

R O S E T E L I A S R

A R A F A T E L I A D E

B E A T R I X B A C H

P E R C I U N M A T E I

A R E I C V O I C U O

L L R A D E S C U L T

L I G A I L I U S E T

A E R S E I S T A C U

D R A G U T O C I L A

Y M A T I R O L E C

C O L U M B S E Y N I

G A N E N A F T A O O

O R T V L E E T I R

M O M A S S U D U C A

A L L A I S D O C S A N

Fig. 4: High-score ANN-evolved grids and their full solutions.

Fig. 5: WOMBAT scores and parts of the fitness function.

on Artificial Intelligence and Interactive Digital Entertainment (AIIDE),
2018.

[8] R. Rodriguez Torrado, A. Khalifa, M. Cerny Green, N. Justesen, S. Risi,
and J. Togelius, “Bootstrapping conditional gans for video game level
generation,” in Proceedings of the IEEE Conference on Games (CoG),
2020, pp. 41–48.

[9] S. Risi, J. Lehman, D. D’Ambrosio, R. Hall, and K. Stanley, “Com-
bining search-based procedural content generation and social gaming
in the petalz video game,” in Proceedings of Conference on Artificial
Intelligence and Interactive Digital Entertainment (AIIDE), 2012.

[10] Xbox Wire Staff, “Forza Horizon 2: What’s a drivatar, and why should
I care?” Xbox Wire, 2014.

[11] Hello Games, “No Man’s Sky Next,” 2018.
[12] T. Soule, S. Heck, T. E. Haynes, N. Wood, and B. D. Robison, “Dar-

win’s Demons: Does evolution improve the game?” in Proceedings of
European Conference on the Applications of Evolutionary Computation,
2017, pp. 435 – 451.

[13] B. De Kegel and M. Haahr, “Procedural Puzzle Generation: A Survey,”
IEEE Transactions on Games, vol. 12, no. 1, pp. 21–40, 2020.

[14] D. Bonomo, A. P. Lauf, and R. Yampolskiy, “A Crossword Puzzle
Generator Using Genetic Algorithms with Wisdom of Artificial Crowds,”
in CGAMES. IEEE Computer Society, 2015, pp. 44–49.

[15] M. L. Littman, G. A. Keim, and N. Shazeer, “A probabilistic approach
to solving crossword puzzles,” Artificial Intelligence, vol. 134, no. 1,
pp. 23–55, 2002.

[16] M. L. Ginsberg, M. Frank, M. P. Halpin, and M. C. Torrance, “Search
Lessons Learned from Crossword Puzzles,” in Proceedings of the
National Conference on Artificial Intelligence, 1990, pp. 210–215.

[17] A. Botea, “Crossword Grid Composition with A Hierarchical CSP
Encoding,” in Proceeding of the 6th CP Workshop on Constraint
Modelling and Reformulation, ModRef-07, 2007.

[18] C. Lecoutre and O. Roussel, “Proceedings of the 2018 XCSP3 compe-
tition,” CoRR, vol. abs/1901.01830, 2019.

[19] G. Audemard, C. Lecoutre, and M. Maamar, “Segmented tables: An
efficient modeling tool for constraint reasoning,” in Proceedings of the
European Conference on Artificial Intelligence (ECAI), vol. 325, 2020,
pp. 315–322.

