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Abstract—Representing games through their pixels offers a
promising approach for building general-purpose and versatile
game models. While games are not merely images, neural
network models trained on game pixels often capture differences
of the visual style of the image rather than the content of the
game. As a result, such models cannot generalize well even within
similar games of the same genre. In this paper we build on recent
advances in contrastive learning and showcase its benefits for
representation learning in games. Learning to contrast images of
games not only classifies games in a more efficient manner; it also
yields models that separate games in a more meaningful fashion
by ignoring the visual style and focusing, instead, on their content.
Our results in a large dataset of sports video games containing
100k images across 175 games and 10 game genres suggest that
contrastive learning is better suited for learning generalized game
representations compared to conventional supervised learning.
The findings of this study bring us closer to universal visual
encoders for games that can be reused across previously unseen
games without requiring retraining or fine-tuning.

Index Terms—computer vision in games, generalized represen-
tations, contrastive learning

I. INTRODUCTION

The use of pixels to represent games is gradually dominating
the field of artificial intelligence (AI) in games [1] with appli-
cations that vary from gameplaying agents [2]–[4], and game
content generation [5], [6] all the way to player affect model-
ing [7], [8]. Deep learning methods—predominately variants
of convolutional neural networks (ConvNets)—process the
RGB pixels of the game and convert them into a compressed
representation that approximates the internal state of the game
world. While computer vision methods appear to offer certain
capacities when it comes to their general use across games,
they come with certain limitations including the computational
cost of training and their poor reusability across games.

A common approach for reducing computation effort and
improving on generality is to use and fine-tune pretrained
models such as ResNet [9] that are trained on large datasets
such as ImageNet [10]. While such models can detect many
common everyday real-world objects, they still require fine-
tuning when applied to games as they are far from ideal repli-

This project has received funding from the EU’s Horizon 2020 programme
under grant agreement No 951911.

Fig. 1: Examples of the domain gap problem observed when
comparing different games of the same genre. The scatter-
plots (right) highlight the intra-genre domain discrepancies
with the help of t-SNE visualization of Imagenet-ResNet50
feature vectors on screenshots of various games (left).

cas of the real-world. Importantly, games are not merely im-
age representations; gameplay images contain both functional
properties associated with the game genre (e.g. corridors,
tracks and platforms that define movement constraints) and
aesthetic elements unique to each game (e.g. the various art
styles available in match-3 tile games). As a visual example of
this issue, Fig. 1 displays games with similar content (i.e. same
game genre) but with different visual style. The representations
obtained from these game images with a pre-trained ResNet-
50 model can be visualized on a 2D plane using t-distributed
stochastic neighbor embedding (t-SNE) [11]. We observe that
the 2D embeddings of representations of 3 different Soccer,
FPS and Racing games form their own separate “clusters” in
the Euclidean space. This phenomenon, named domain gap
[12], occurs due to the visual styling differences in each
game, leading to shifts in the distributions. It is therefore
expected that any AI algorithm that builds on representations
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obtained from a pre-trained model will only operate well on
the particular game it is trained on, and will require substantial
fine-tuning (retraining or transfer learning) in order to be of use
on other games. This lack of generalizability and reusability
makes pixel-based deep learning impractical across different
games even if they belong to the same genre.

To tackle the above-mentioned challenges in this paper
we introduce contrastive learning [13] as a novel way to
approach the domain gap challenge in games. Our hypothesis
is that by contrasting pixel-based representations—instead of
merely classifying them—we can fine-tune pre-trained Con-
vNet models that better capture the underlying content of
the game rather than its style. We test our hypothesis on a
new dataset, namely Sports10, featuring 100k images of 175
different games across 10 sports game genres. By training
ConvNets on this dataset via fully supervised and contrastive
learning techniques, we show that the latter is better suited
for not only achieving higher genre-classification accuracy, but
more importantly, for attaining better generalization capacity.
Findings suggest that contrastive learning yields more general
pixel-based representations of games by focusing more on the
content of the game while demonstrating better invariance to
the visual styling differences in the provided images.

II. REPRESENTATION LEARNING IN GAMES

Recent research in machine learning has often developed in-
telligent systems that use pixel information as the (only) input.
In games, pixel representations have been used for content-
based retrieval for moments [14] and to predict players’
affective states [7]; however, the most prominent application
is Deep Reinforcement Learning. Mnih et al. [2] introduced
one of the first game-playing agents for Atari games that
learns control-policy directly from pixels using ConvNets.
This work was extended by Kempka et al. [15] to play
Doom (id Software, 1993) using screen buffer and depth
information processed by ConvNets in the ViZDoom platform.
Ha and Schimdhuber [3] presented a recurrent model that uses
convolutional auto-encoders with temporal memory to create
a world model of the game. Since auto-encoders are designed
to reconstruct the input from its encoding, this world model
can be seen as a compressed representation of the game that
encodes both content and style information of the environment.

A number of approaches attempt to encode only the content
information so that it makes the subsequent policy-learning
task easier. Srinivas et al. [16], for instance, combined pol-
icy learning along with representation learning in a unified
framework which yields representations that contain only the
content information of the game, which is a better resemblance
of a game’s internal state. Another direction focusing on the
separation of content from style is to derive style-invariant rep-
resentations of the game environment using data augmentation
techniques—such as color shift, gray-scale conversion, etc.—
that produce different styles of the same image [17]. Such
learning frameworks encourage the convolutional encoder to
ignore style-related information of the game that is present in
the screen pixels and focus more on the content. The scope

Fig. 2: The causality framework for generalization in games.
Solid lines represent a causal dependency and dashed lines
represent flow of data. For a given game belonging to one
of the genres (y1..n), the graph showcases the relationship of
style (S) and content (C) of that game’s image (X) with its
learned representation and the predicted genre category (ŷ).

of generalization in such approaches, however, still remains
limited to the game environment that the visual encoder is
being trained on. As a result, these methods are still susceptible
to the domain gap problem described earlier.

When it comes to video games, Luo et al. [18] show how
to use transfer learning to train ConvNets for extracting game
events, but they do not focus on generalization. Khameneh
and Guzdial [19] try to tackle generalization, but their method
operates on game events extracted from internal state rather
than pixels. To the best of our knowledge there have been
no attempts to specifically tackle the domain gap challenge in
computer vision for video games. Motivated by this knowledge
gap and inspired by recent trends in computer vision [20]
we test the capacity of contrastive learning [13], [21] to
train visual encoders for video games and evaluate the extent
to which it can mitigate domain gap problems by learning
representations that can generalize over different games.

III. GENERALIZATION

While the broader definition of generalization in AI may
be rather subjective and open-ended [22], in this section we
provide its formal definition for our work and restrict its scope
in terms of representation learning in video games. We then
discuss how to quantitatively measure it in order to evaluate
the performance of our generalization models.

A. Definition

In this paper we define generalization as the ability of a
trained ConvNet model to process pixels of a game screen
and extract a meaningful representation of the game’s content
without being affected by the graphic styling of the game.
Figure 2 visualizes generalisation in the form of a causality
graph [20] showing the style-invariance requirement for a gen-
eralized game representation. Under this causality framework,



Fig. 3: A subset of the Sports10 Dataset showcasing the variation in graphic styling of different games across each of the 10
sports genres selected.

only the content of the game defines the game genre while the
style only affects the rendered image of the game. Different
video games belonging to the same genre can be thought of
as having the same content but varying style. Thus, a model
that generalizes well should be able to extract representations
from any game within the same genre without exhibiting a
domain gap.

B. Measuring Generalization

We propose to measure generalization in terms of the
mitigation of domain gap across different styles of games of
the same genre. This can be measured in the representation
space, which is a d-dimensional Euclidean Space where d is
the size of the latent representation. In this formulation, better
generalization means the representations of different games of
the same genre form a compact cluster and are well-separated
from representation clusters of other genres. Hence, we choose
the Silhouette Score [23] as a metric for evaluating the quality
of representation clusters.

Assume that a given dataset D contains images X belonging
to a set of game genres Y = {y1, y2, ..., yn}. Let’s denote
the ith image of this dataset as Xi ∈ X having genre
label yi ∈ Y . The pixel-representation extracted from Xi is
denoted by xi where |xi| = d. Let’s denote the average intra-
cluster Euclidean distance (cluster compactness) of this image
representation within its own genre as a(xi). Likewise, let’s
denote the average inter-cluster distance (separation from other
clusters) to the nearest cluster as b(xi). Then, the Silhouette
Coefficient s(Xi) of this image is defined as:

s(Xi) =
b(xi)− a(xi)

max{a(xi), b(xi)}
(1)

with the assumption that the set of images belong to more than
one game genre (|Y| > 1). The combined Silhouette Score
S(D) for the entire set of images can be defined as the average
silhouette coefficient over all points i in D. This S(D) lies
within [−1, 1] with higher values indicating more compact and

better separated clusters. If we group visually different games
of the same genre and assign them the same cluster label,
we expect the silhouette score of this group of images would
quantify domain gap issues present in the dataset. Based on
the properties of S(D), we argue that it is a good measurement
of generalization capability across different games.

In addition to the silhouette score, we use t-SNE [11] for
qualitative analysis by visualizing the representation space,
which offers an approximate 2-dimensional projection of the
d-dimensional representations learned by the visual encoder.
Note that this technique is merely used in our work for
its intuitive visualization of what the ConvNet models have
learned, rather than evaluation or comparison of the results.

IV. SPORTS10: A DATASET OF SPORTS GAME GENRES

In order to learn style-invariant features of games from
pixels, we created a new game genres dataset1 for our
experiments. It contains 100, 000 gameplay images of 175
different games across 10 game genres that are extracted
from publicly available sports video game titles. Each of the
10 genres—American Football, Basketball, Bike Racing, Car
Racing, Fighting, Hockey, Soccer, Table Tennis, Tennis and
Volleyball—contain exactly 10, 000 hand-curated images of
the game-play sequence, ensuring the removal of all menu,
transitions or cutscenes of the game. Fig. 3 shows a glimpse
of the variety of games that are a part of this dataset, divided
into our interpretation of three visual styling categories: retro
(arcade-style, 1990s and earlier), modern (roughly 2000s) and
photoreal (roughly late 2010s). The genre and styling-wise
breakdown of total games in our dataset is given in Table I.

Note that we limit the scope of study to only include
games that are grounded in reality in terms of both game-
play as well as visual appearance. This means that fictional or
fantasy game genres have not been included in our dataset.
The reason for this is two-fold. First, we use pre-trained
models in our experiments that are trained on real-world

1Available at github.com/ChintanTrivedi/contrastive-game-representations



TABLE I: Summary of total games per genre in the dataset and
their distribution across the different visual styling categories.

Game Genre Retro Modern Photoreal Total
American Football 2 11 6 19
Basketball 3 12 3 18
Bike Racing 8 7 4 19
Car Racing 5 5 5 15
Fighting 3 11 9 23
Hockey 9 7 1 17
Soccer 7 8 2 17
Table Tennis 3 10 5 18
Tennis 6 4 2 12
Volleyball 6 9 2 17
Total 52 84 39 175

data. Second, it is more difficult to define a common game
genre when a fictional/fantasy game contains unique game-
play elements and visual tropes not found in any other games.
Any game within these genres that satisfies this grounded-in-
reality criterion, however, can be considered within the scope
of generalization. In future studies the scope of generalization
can be expanded to cover additional game genres of interest.

V. GAME REPRESENTATION LEARNING

This section describes the training procedure of the ConvNet
visual encoder to obtain generalized representations. Since
we are trying to learn general-purpose representations that
can be used for a number of core AI applications in games
[1] including game-playing, game content generation, affect
modeling, etc., we need to formulate our training method with
a proxy learning task which acts as a general-purpose learning
framework. Based on the analysis carried out by Mitrovic et al.
[20], we formulate the task of learning game representations
from pixels as an image classification problem.

Let’s denote our game genres dataset as D = {(Xi, yi)}
for all pairs where Xi is an RGB image of height h and
width w drawn from the set X ⊂ Rh×w×3. yi ∈ Y is the
game genre label for Xi belonging to a set of different game
genres. Thus, our image classification problem can now be
defined as learning a function f : X → Y . In our experiments,
we are using ConvNets to estimate the function f by iterating
over the training dataset D. Thus, the function f can be seen
as a composite function f = c ◦ r where r : X → Rd is
estimated by the visual encoder comprising of convolutional
layers, Rd is the d-dimensional representation space learnt by
the encoder and c : Rd → Y is the classifier comprising
of fully-connected layers giving the output class prediction.
After investigating various architectures and baseline models,
we select the ResNet-50 [9] architecture as our visual encoder
for all experiments reported in this paper due to its reasonable
size (∼ 25 · 106 learnable parameters) to performance ratio.
Moreover, we initialize the learnable parameters of this model
with the weights learnt from pre-training it on the ImageNet
dataset (available at keras.io). Lastly, the classifier contains
two fully-connected layers with a dropout rate of 0.2 and
the last layer employs the softmax-activated cross-entropy loss
function for learning class probabilities.

Fig. 4: Examples of the different image augmentation tech-
niques used with associated random probabilities.

In the following subsections, we first present the different
data pre-processing techniques employed to prepare the input
images for feeding into the neural networks. Then, we lay
out the two different training approaches—Fully Supervised
Learning and Supervised Contrastive Learning—that we use
for learning the functions r and c.

A. Data Pre-Processing

Before feeding the images from our dataset to the ResNet
encoder for training, we perform multiple data-preprocessing
steps. First, we resize the images to h = 224 and w = 224
regardless of the original image dimensions. We settle upon
this size for two reasons: (a) the version of pre-trained ResNet
model used has been originally trained on this image size, and
(b) this also happens to be the ideal image size we can fit onto
our GPU hardware (8GB VRAM) for training.

Then, we split our dataset into training set DT and valida-
tion set DV such that DT ∩ DV = ∅ and DT ∪ DV = D.
Instead of naively dividing all the images in D into the two sets
based on their genre, we algorithmically select DT and DV

such that the games selected for the training set do not overlap
with those in the validation set. This ensures that the models
are tested on games that are not encountered during training,
enabling us to evaluate the out-of-distribution generalization
[24] performance of our models, i.e., on new/unseen games.
Moreover, this algorithm aims for roughly 75%—25% split
and tries to pick equal ratios of games across the visual styling
categories, so that the balance of retro, modern, and photoreal
games is maintained in both the training and validation sets.

Next, we perform image data augmentation using various
techniques studied in [25] such as horizontal flipping, zoom,
brightness, height/width re-scaling and rotation, shown in
Fig. 4. These augmentations are re-applied with a different
probability each time an image is loaded for training across
multiple training epochs. This ensures that the input batches
given to the neural network during each epoch are slightly
different, making the training process more robust and limiting



Fig. 5: Supervised Contrastive Learning Framework.

over-fitting on the training images. We shall denote this step as
the function aug : Rh×w×3 → Rh×w×3 and X

′

i = aug(Xi)
which means X

′

i is a randomly augmented version of image
Xi. Note that this function is only applied to the images in
DT and not in DV .

B. Fully Supervised Learning

The most popular method for training ConvNets for im-
age classification tasks is standard supervised learning. This
method trains both the encoder r and classifier c during the
same training iteration. We sample batches of size b = 64
from DT and for all the images Xi in this batch, we obtain
its augmentation X

′

i = aug(Xi). Then, we compute the
representation of this augmented image using the ResNet-
50 encoder, given by xi = r(X

′

i). The class probabilities
predicted by the classifier are given by σi = c(xi) where
the probabilities are normalized with softmax activation over
n = 10 classes of our dataset. The network is trained to
minimize the categorical cross-entropy loss, defined as:

Lce = −
∑
∀σi

yilog(σi) (2)

where yi is the true label of input image Xi. Lce is used
to calculate the gradients using the Adam optimizer [26] to
update the parameters of both the encoder and the classifier
networks. After hyper-parameter tuning, we settle on using a
decaying learning-rate initialized at 0.001, a batch size of 64
and |DT |/10 training steps per iteration for this experiment.

The results obtained from this learning method after 10
training epochs are presented in Section VI. The accuracy
metrics are calculated based on the class predictions; the
silhouette scores and t-SNE embeddings are calculated using
the representation xi.

C. Supervised Contrastive Learning

In this section, we introduce contrastive learning as an
alternate method to train the ConvNet model. Contrastive
learning operates with both labelled [21] and unlabelled [13]

data; since our dataset contains game genre labels we pro-
ceed with the supervised variant and compare it to standard
supervised learning in order to test and highlight the impact of
this training framework in improving generalization in (game-
based) computer vision tasks.

The contrastive learning framework involves training the
functions r and c in two steps using two separate loss
functions, unlike the previous method where only one loss
function (Eq. (2)) is employed for both. The first pre-training
step for the encoder uses a pairwise loss function, namely
the contrastive loss (Eq. (3)). In this step, we take the rep-
resentation xi and use a projection network to map it onto a
lower-dimensional embedding space which is a hyperspherical
manifold of unit radius, as explained in Fig. 5. Let’s denote
this as p : Rd → R128 so that zi = p(xi) gives us the
embedding of image Xi. The function p is also learnt by a
fully connected neural network layer, chosen to be of size 128
in our experiments. Then, the supervised contrastive loss can
be calculated on a given batch of images as:

Lcon =

{
‖zi − zj‖22, when yi = yj

max(0,m− ‖zi − zj‖2)2, when yi 6= yj
(3)

where m is the margin hyper-parameter and its value is set
to m = 1.0 in our experiments. Eq. (3) is the max margin
variant of contrastive loss as proposed by Hadsell et al. [27].
In principle, this function pulls representations of same-class
labels closer together on the hyperspherical manifold and
pushes apart those that belong to different class labels, as
explained in Fig. 5 using the terms positive pair and negative
pair. This arranges the representations so that images of the
same label form a compact cluster and the clusters formed
by images of different labels are as well separated from
this cluster as possible. Hence, the representations learnt by
the encoder under this framework are expected to be better
organized in the representation space compared to the fully
supervised approach. Preliminary experiments tested other



TABLE II: Fine-tuning the pre-trained models on the Sports10
dataset after 10 epochs. We present average values across 5
runs and corresponding 95% confidence intervals.

Learning Method Training
Accuracy

Validation
Accuracy

Silhouette
Score

Pre-Trained (ImageNet) - - -0.03 ± 0.01
Fully Supervised 99.64 ± 0.08 90.41 ± 1.53 0.22 ± 0.01
Supervised Contrastive 91.83 ± 0.39 93.42 ± 0.70 0.56 ± 0.01

variants of the contrastive loss function such as supervised NT-
Xent [21], triplet [28] and multi-class n-pairs [29] but none
performed as well as the max margin loss.

In the second step of this framework, we train the classifier c
on the learned representations using the cross-entropy loss (Eq.
(2)). The projection network p is discarded at this point and
the weights of the encoder r are set to be non-trainable since
the representations are already well-organized in the Euclidean
space due to the pre-training step. At this point, the task of
learning c becomes trivial for the classifier. The accuracy and
silhouette metrics are calculated for this method similar to the
fully supervised method as described in Section V-B.

VI. RESULTS

In this section, we first present an objective comparison of
the two training methods in terms of classification accuracy
and silhouette metrics. Then, we dive into comparing the
representation spaces learned by each method and explain its
importance towards evaluating generalization.

A. Quantitative Analysis

Table II shows the comparison of classification accuracy
results between the two training methods in terms of mean and
95% confidence interval over 5 runs with random seed initial-
ization. We observe that while the fully supervised method
achieves higher accuracy on the training data, contrastive
learning achieves significantly higher accuracy (p < 0.05)
on the validation data. However, this is only a marginal
improvement and overall both approaches seem to be able
to learn the image classification problem. Additional experi-
ments with different training/validation splits showed similar
trends in training and testing accuracies. Merely observing the
average accuracy values obtained, there does not seem to be a
major advantage of using supervised contrastive learning over
the conventional method. Findings appear more interesting
and relevant, however, when one compares the representation
spaces themselves, instead of their classification capacities.

At the start of the training process, we use the pre-trained
ResNet model with ImageNet weights. The average silhouette
score for this model is −0.03, which means that the different
game genres have poor clustering and the representations
of all games are not arranged well in the Euclidean space.
We observe, however, that fine-tuning this model with fully
supervised training improves this average silhouette score to
around 0.22, offering an improvement in the clustering of
representations by a significant margin. Fine-tuning the rep-
resentation via supervised contrastive training offers a much

Fig. 6: Confusion Matrix in terms of validation accuracy (%).

larger (and significant) improvement that reaches silhouette
scores of 0.56, on average. This indicates that the clusters of
game genres obtained via contrastive learning are much more
compact and well separated compared to standard supervised
learning. Based on our findings in the Sports10 dataset we
conclude that supervised contrastive learning is better suited
(compared to fully supervised learning) for solving domain
gap problems, thereby making it the preferred method towards
generalization in pixel-based game representations.

Lastly, we want to look into the genre-wise classification
accuracy for our best performing model. Fig. 6 gives us
the confusion matrix showcasing the overlap between true
label and the predicted label. Based on this matrix, it seems
that the two genres Volleyball and Basketball are tougher to
classify relative to other genres. Basketball games sometimes
get misclassified as Fighting and Bike Racing while Volleyball
games are often confused as Basketball or Hockey. This
happens when the representations of these genres lie closer
to the clusters of other genres than their own, leading to
misclassification.

B. Qualitative Analysis

In addition to the quantitative results above, we present
an alternative qualitative analysis by directly visualizing the
representation space and seeing the layout of the clusters for
all game genres. Fig. 7 visualizes the three representation
spaces: (a) ImageNet Representations without fine-tuning; (b)
Fine-tuning via Fully Supervised Learning; (c) Fine-tuning via
Contrastive Learning, using t-SNE on the validation dataset.
Note that none of the games in the validation set were seen
during training, so these results give a fair indication of how
these models will perform on unseen games of these 10 genres.



(a) ImageNet (b) Fully Supervised Learning (c) Contrastive Learning

Fig. 7: Two dimensional projections of t-SNE embeddings calculated on a random sample taken from the validation set.

Notably, we observe that the t-SNE analysis is in alignment
with the silhouette scores obtained. Without training (see Fig.
7a) all 10 game genres are poorly clustered; their clustering
improves slightly when fully supervised learning is employed
(see Fig. 7b) due to fine-tuning. The representations in this
space appear to form separate clusters for each genre which
are distant to other clusters. Within each cluster, however, we
can observe islands of sub-clusters formed by the different
games present under that genre label. The observation of
Fig. 7b indicated that there still exist domain gaps within the
genres, albeit to a lesser extent compared to the ImageNet pre-
trained model. The t-SNE embeddings obtained via contrastive
learning (see Fig. 7c) showcase the best-formed clusters,
while addressing both inter-genre separability and intra-genre
compactness. Such a representation space can only be expected
to generalize well over any game of these genres and the
applications built on top of one game are expected to be easily
transferable to other games of that genre.

VII. APPLICATIONS OF GENERAL REPRESENTATIONS

This paper applies representation learning to a broad set
of games that follow real-world patterns. Results indicate
that contrastive learning can capture the genre-specific visual
content while filtering out stylistic differences between games.
This opens up a number of interesting directions for applica-
tions that benefit from general pixel-based representations.

An obvious application for generalized pixel-based repre-
sentations is game playing agents. For example, the current
learned representation can be used with the Google Research
Football Environment [30] to initialize the visual encoder
of an imitation- or reinforcement-learning agent. With most
genre-specific information (such as pattern of football pitch,
goalposts) already present in these representations, fine-tuning
the task-specific visual information (such as position of play-
ers, ball) or learning the control-policy becomes much more
sample efficient compared to starting from scratch.

Procedural content generation (PCG) tends to use game-
specific representations (e.g. tilesets) to produce content (e.g.
levels). Therefore, pixel-based general representations are
more suited for evaluating the content rather than for explicitly
generating it. As an evaluation mechanism, general represen-
tations can be very beneficial to e.g. evaluating the typicality
[31] of a generated game compared to similar examples of
its genre. Moreover, the general representations can serve for
coherence evaluation when combining generators of multiple
facets (e.g. visuals, level structures, rules) in order to assess
whether the resulting game fits the patterns of a specific genre.
This would allow orchestration of game content [32] not only
to avoid nonsensical combinations but also to identify the
genre of the generated game and potentially create games of
different genres within one run.

General representations also seem ideally suited for PCG
via Machine Learning [33]. Guzdial et al. [34] investigate how
gameplay videos can be mined for level patterns. Contrastive
learning can augment this line of research by detecting general
level patterns across multiple games of the same genre and
thus generate content for any game of this genre. It should
be noted that the tested sports dataset has fairly uniform
levels per genre (e.g. the same football pitch in all football
games) and thus the level patterns are less critical in terms of
content detected. Future work should explore to which extent
contrastive learning can be used to detect level patterns in
more mechanically diverse games within e.g. the platformer
genre.

Another important application is player modeling [1], [35].
Work on identifying highlights in gameplay videos [36] could
benefit from concise, genre-specific representations for e.g.
classification purposes. Moreover, such general representations
can be used to model affective responses based on game
footage alone, extending current work [7], [8] that trains
custom ConvNets for each game. As larger and more mixed-



genre datasets for players’ affect become available [37], apply-
ing contrastive learning for pre-processing to remove stylistic
differences will be crucial.

Finally, the general representations can be utilized to learn
game dynamics with pixel-based forward models. GameGAN
[5] is a good example of learning a physics engine of Pac-Man
(Namco 1980) that predicts future game states at pixel-level
based on user inputs. Such forward models could be shared
across different games of the same genre if they are built
using generalized representations. This can massively reduce
the workload of creating new game state representations (as
well as gameplaying agents) for genres that already have a
neural engine.

VIII. CONCLUSION

In this study we introduced the use of contrastive learning
as a method for yielding general game representations with
the aim of improving their reusability across different games
without requiring re-training. We test our hypothesis that
contrastive learning is beneficial for pixel-based representation
learning on a new dataset, named Sports10, that contains 100k
labelled images from 175 games across 10 sports genres. Our
experimental results suggest that contastive learning outper-
forms conventional supervised learning in classifying game
genres. More importantly for the purposes of this paper, the
representations learned via contrastive learning yield more
compact clusters of game representations belonging to the
same genre which are, in turn, better separated from clusters
of other genres. It appears that learning through contrasting
game images leads to fewer domain gap issues compared
to the representations learned under conventional supervised
learning. The methods and results of the paper form a basis for
further research on areas of game AI [1]: from gameplaying
agents and game world models, all the way to pixel-based
procedural content generation and player modeling.
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