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Abstract—In Monte-Carlo based algorithms, we generate a lot
of playouts by successively playing moves. Building the current
list of possible moves for each turn of a game becomes a time-
consuming task and this last task can be even more costly if a too
large area of the gameboard is analyzed. We introduce the Range
Query technique which speeds up playouts’ generation by a factor
of about 10. This rather general technique can be reused with any
game where the possible moves are modified only locally around
the played move. This technique uses very little memory and all
the game data can remain in the L1 CPU cache which helps
to improve performance. We also propose SSE2 optimization to
improve the performance of list processing. The performance
gain can impact any algorithm based on playouts’ generation.
For the experiments, we test our technique with the NMCS and
NRPA algorithms on the 5D and 5T variants of the Morpion
Solitaire.

Index Terms—Range Query, Monte Carlo Search, Morpion
Solitaire

I. INTRODUCTION

Monte Carlo Tree Search (MCTS) has been successfully
applied to many games and problems [1]. Nested Monte Carlo
Search (NMCS) [2] is an algorithm that works well for puz-
zles. It biases its playouts using lower level playouts. At level
zero NMCS adopts a uniform random playout policy. Online
learning of playout strategies combined with NMCS has given
good results on optimization problems [3]. Other applications
of NMCS include Single Player General Game Playing [4],
Coding Theory [5], Cooperative Pathfinding [6], Software
testing [7], heuristic Model-Checking [8], the Pancake problem
[9], Games [10], Cryptography [11] and the RNA inverse
folding problem [12].

Online learning of a playout policy in the context of
nested searches has been further developed for puzzles and
optimization with Nested Rollout Policy Adaptation (NRPA)
[13]. NRPA has found new world records in Morpion Solitaire
and crosswords puzzles. Edelkamp, Cazenave and co-workers
have applied the NRPA algorithm to multiple problems. They
have optimized the algorithm for the Traveling Salesman with
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Time Windows (TSPTW) problem [14], [15]. Other appli-
cations deal with 3D Packing with Object Orientation [16],
the physical traveling salesman problem [17], the Multiple
Sequence Alignment problem [18], Logistics [19], [20], Graph
Coloring [21] and Inverse Folding [22]. The principle of NRPA
is to adapt the playout policy so as to learn the best sequence
of moves found so far at each level.

The performance of NRPA, NMCS and MCTS is closely
related to the speed of the playouts. Scalability studies of
MCTS [2], [13], [23] usually show a linear increase of the
scores with the logarithm of the number of playouts. It means
that decreasing 10 fold the time of a playout gives an increase
in score proportional to log(10) for the same search time. For
problems such as Morpion Solitaire a search at a higher level
usually gives much better result than the search at the lower
level. Reducing the playouts time enables to do more search
at a high levels thus increasing the probability of breaking
records. This is the main reason why we are interested in
optimizing playouts time.

The paper is organized as follows. In the next Section,
we introduce our new technique named Range Query. We
also present the Morpion Solitaire game that will be used to
benchmark our technique. In Section 3, we present different
implementation strategies, especially the management of the
list of possible moves using SSE2 instructions. Finally, in
Section 4, we analyze the speed of the NMCS and NRPA
algorithms based on massive playouts’ generation. We com-
pare their speed with and without the Range Query technique.
Finally, we run a broader series of simulations to obtain a
better estimation of the distribution of the scores.

II. UPDATING THE LIST OF POSSIBLE MOVES

A. Philosophy

The performance of NRPA and NMCS algorithms is linked
to the time spent on generating playouts. To generate a playout,
we play moves until the game is over. An iteration of the
playout main loop can be broken down into three steps: select
a move among the possible moves, play this move by updating
the game data and finally list all possible moves for this new
game state. To build the new list of possible moves after a
move has been played, we can analyze the entire game data978-1-6654-3886-5/21/$31.00 ©2021 European Union



to detect all the possible moves. This choice is costly and it
slows down the playouts’ generation.

B. Range Query

Can we do better than analyzing all the game data to build
the list of possible moves after a move has been played ?
In some games, playing a move on a gameboard only adds
and removes moves that are close to the place where we have
played. So we can use this property to avoid throwing away
the whole list of possible moves but instead try to recycle it. In
such a game, we remove from the current list all the moves in
the neighborhood of the played move whether these moves are
preserved or not for the next turn. Then, it remains to analyze
a small area around the played move to detect the possible
moves we have to insert in the pruned list.

Let’s take as an example a board game where we associate
each move with a code (x, y, k) where (x, y) corresponds to
the location of the move and k to the action performed such
as ”move to the upper left square”. From a technical point
of view, we can store the code by allocating 5 bits for the x-
coordinate, 5 bits for the y-coordinate and 5 bits for the action
performed, thus the code of a move can fit in a 16 bits integer.

If we are able to determine a maximum distance d from
which no move is modified by playing the move (x, y, k), we
can define a regions R of the game board such that each square
(u, v) of R satisfies dist((x, y), (u, v)) ≤ d. Thus, any move
in the current list that belongs to the region R is removed. This
search is inexpensive and it can also be accelerated using SSE
vector instructions. Then, we only look for the possible moves
lying in the region R and add them to the current list.

In Database, a Range Query is a common operation that
retrieves all records where some value is between an upper and
a lower boundary. In Computational Geometry, a Rectangular
Range Query allows us to search for all the points located in a
rectangular region of the plane. We generalize these problems
to playouts’ generation by implementing an oracle function
capable of removing all possible moves from the current list
that are lying next to the move that has just been played.
Thus, we set up a two steps approach. First, we remove the
possible moves from the current list using a Range Query
request. Second, we update the game data and look for all the
possible moves lying in a small area to add them to the current
list. After these two steps, the list of possible moves has been
correctly updated.

C. Morpion Solitaire

Morpion-Solitaire is a pencil-and-paper single-player game
played on a square grid with an initial configuration of 36
dots depicted in Figure 1. At each move, the player puts one
dot on an empty grid position and draws a line traversing five
consecutive dots including the last drawn dot. The line can
be horizontal, vertical or diagonal. It can not overlap with
an existing line in the same direction. Two lines of different
directions can cross each other without constraint. The goal is
to find the longest sequence of moves. Two versions of this
puzzle exist, the touching version named 5T and the disjoint

1 2

Fig. 1. Initial configuration of the Morpion Solitaire with 36 gray dots.
Moves played in the upper-left corner are both valid for the 5T/5D variants.
Considering the two horizontal lines, we first create the line on the left creating
the dot denoted by 1. Then, a new line is created starting from dot 1 and
creating a new dot denoted 2. As these two lines are ”touching”, this second
move is only valid for the 5T variant.

version named 5D. In the 5D version, a dot can not belong to
two lines of same direction but in the 5T version two lines of
same direction can share a common ending dot.

The problem of finding the longest sequence of moves in
the Morpion Solitaire is notoriously hard for computers. In
2009, a record was set up for the 5D Morpion Solitaire by the
NMCS algorithm [2] achieving a score of 80 moves. For the
5T version, the record was set 30 years earlier with a human-
generated grid of 170 moves held by Bruneau [24]. Later in
2011, Rosin [13] using his NRPA algorithm set the two new
actual records of 82 moves for the 5D version and of 178
moves for the 5T version.

D. Coordinate Transform

A move can be represented by its position (x, y) and its
direction. Each direction is coded as follows: 0 up-left, 1:
upwards, 2: up-right and 3: to the right. When we play a move
in Morpion Solitaire, only the horizontal / vertical / diagonals
squares centered on the new dot have to be considered. In this
star-shaped configuration, a Rectangular Range Query would
be awkward because the invalidated area would be too large
and there would be many more points to process in the end.
To perform an efficient Range Query, consecutive lines/moves
in the same direction must have an increasing code. For this
purpose, we can no more use the Cartesian coordinate system,
but we have to use a local coordinate system (ud, vd) where
vd identifies a strip of direction d containing all consecutive
lines and ud identifies a line in this strip. See Figures 2 and 3
for some examples. To clarify the transformations we use, we
present the associated formulas hereafter. For a gameboard of
size L× L, we have:
• u0 = y v0 = x+ y
• u1 = y v1 = x
• u2 = y v2 = x− y + L− 1
• u3 = x v3 = y
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Fig. 2. Coordinate system associated with each direction. For a grid of size
4x4, we present the different values taken by vi for each strip.
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Fig. 3. Local coordinate system for each direction 0: up-left, 1: upwards, 2:
up-right and 3: to the right. The parameter vd identifies a strip of direction
d. Consecutive lines in the same strip are associated with a parameter ud of
increasing value.

E. Coding Moves

For a gameboard of size L × L, the coordinate ud varies
from 0 to L−1 because the x and y coordinates vary from 0 to
L−1. According to our formulas, the coordinate vd varies from
0 to 2(L−1) in the worst case. Thus, with 4×L×2L = 8L2

codes, we can represent all the moves on the gameboard. For
a grid of size 64× 64, this represents 32 768 different codes.
So we can code each move using an unsigned 16 bits integer
value (u16). For this, we use: 2 bits to represent its direction d,
7 bits to represent its coordinate vd and the last 6 bits to store
its coordinate ud. Doing so, we guarantee that two consecutive
moves/lines in the same direction have two consecutive codes.
This property is the keystone of all our optimizations. We
summarize the encoding of a move as follows:

code(d, ud, vd) = d� 13 | vd � 6 | ud

F. Range Query Process

We present the Range Query technique for the 5D variant of
Morpion Solitaire, the 5T version being similar. When a move
is played, we decode its direction d and its local coordinates
ud and vd. Indeed, by reversing these coordinates, we can
determine the location (x, y) of the move. By analyzing the
five consecutive squares, we detect the hole where the new
dot lies and thus we know its coordinate (xh, yh). Then, we
process the four directions independently: when processing
direction d′, we transform the position of the new dot (xh, yh)
to obtain its local coordinates denoted by (uh, vh). This new
dot modifies the possible moves four squares away. The code
idmove of the move starting at the position (uh, vh) in the
direction d′ is given by idmove = code(d′, uh, vh). The
code of the move whose line ends at the position (uh, vh)
is given by idmove − 4 because we carefully numbered the
consecutive moves by increasing order. The codes of all the
other moves that have to be removed are in the interval
[idmove− 4, idmove], see Figure 4 for an example. Now, we
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Fig. 4. When a move of code idmove is played, we check the squares,
depicted in white, lying four pixels away from the new dot or four pixels
away from the new line. For each direction di, we determine the move of
highest code ci lying on the white pixels and we perform a Range Query
on the interval [ci − 4, ci] to remove all possible moves in conflict with the
new dot. One last Range Query on the interval [idmove − 4, idmove + 4]
removes any move that overlaps with the new line.

can perform a Range Query to remove all these codes from
the list of possible moves.

We now focus on the moves located next to the newly
created line. The line forbids any move at a distance of
four squares from its both ends. When a move is played,
its code idmove is known. The code of the move whose
rightmost position corresponds to the left extremity of the line
is idmove−4. The code of the move whose leftmost position
corresponds to right extremity of line is idmove + 4. The
codes of all the other moves that have to be removed are in
the interval [idmove−4, idmove+4]. For the same direction,
if we consider the range query interval associated with the
new dot and the range query interval associated with the new
line, the first interval is always included in the second. So, we
perform only one Range Query corresponding to the largest
interval. All the process is presented in Algorithm 1.

Algorithm 1: Range Query Process
Input: idmove: code of the played move

1 d, ud, vd = decode(idmove)
2 // start position of the new line
3 x, y = ConvertCoord(d, ud, vd)
4 // find the position of the new dot
5 xh, yh = DetectHole(d, x, y)
6 // removing moves around the new dot
7 for d′ = 0 to 3 with d′ 6= d do
8 uh, vh = ConvertCoord(d′, xh, yh)
9 c = code(d′, uh, vh)

10 ListPossMoves.RangeQueryRemove([c− 4, c])
11 end
12 // removing moves around the new line
13 ileft = idmove− 4
14 iright = idmove+ 4
15 ListPossMoves.RangeQueryRemove(ileft, iright)

G. Detecting Possible Moves

After removing all possible moves associated with the
neighborhood of the line, we analyze each group of 9 squares



around the new dot to determine the possible moves. It is
useless to analyze the squares where the line lies because no
move is possible in this direction. Indeed, there is no room to
insert a new line, see Figure 4 for an example.

To describe the state of each square, we use 2 bits: one bit
to tell if a line is present and one bit to tell if a dot is present.
To process a group of five consecutive squares, we analyze 10
bits. For example the value 0b0101010001 indicates that no
line is lying on these five squares, that four dots are present
plus one hole. This configuration allows us to play one move
at this position. We can use five if statements to detect the
five configurations associated with a possible move, but if
statements are expensive for a processor and risky. If a CPU
mispredicts a condition, this results in a pipeline stall in the
execution unit, implying a penalty cost of many CPU clocks.
To remove all these if statements, which is always a good idea
for CPU as for GPU, we prefer to use a precomputed array
of size 210. Each entry in this array is equal to 0 and 1, the
value 1 indicates that a move can be played at this position.
Its size of 1024 bytes is not expensive and may remain L1
cache (CPU as for GPU) allowing an access of 1 clock cycle
which is extremely fast.

It remains to determine the code of the corresponding
move. When we analyze the group of nine consecutive squares
centered on the new dot, we describe their state using 18 bits.
The last ten bits, corresponds to the group of five squares
where the new dot lies in the leftmost square. The rule of
insertion of the Morpion Solitaire are the same regardless
of the direction, they can be seen as isotropic. Thus, when
we extract of group of squares, we always arrange them
horizontally as in Figure 4 regardless of their orientation. So,
we can use the terms: leftmost or rightmost even if we are
processing a vertical group of squares. We compute the code
c of the move starting at the new dot. Then, all the codes in the
group of squares will be c − 1, c − 2 . . .. Finally, we present
Algorithm 2 used to detect the possible moves present in a
group of 9 squares:

H. Another approach

To describe the state of nine consecutive squares, 18 bits are
required. Thus, using a large array of 218 = 262 144 entries,
we can easily store the information needed to update the set
of possible moves. Thus, we can speed up the Range Query
approach by storing for each entry a list of codes describing
the incoming and outgoing moves. For example, let us suppose
that we process a group of squares whose smallest code is 0.
If the list of possible moves goes from {5, 7} to {7, 8}, we
note that the move coded by 5 has been removed, and that
the move coded by 8 has been inserted. So, the incoming and
outgoing moves are 5 and 8 giving the list {5, 8}. If we choose
to work with sorted lists, updating the list of possible moves
consists in merging two sorted lists. To do this, we add a
slight modification during the merging process: if two values
are identical, both have to be removed. Thus, merging the
list {5, 7} with the list {5, 8} produces the following results:
{7, 8}. Merging two sorted lists can be done efficiently in

Algorithm 2: Detecting Moves in a group of 9 squares
Input: B18: 18 bits describing the state of 9 squares

ListPossMove: Possible moves array
nb: size of the array
x, y: position of the new dot
d: direction of the 9 squares

Data: PossMov[]: 1 if you can play, 0 otherwise

1 uh, vh = ConvertCoord(d, x, y)
2 // code of the rightmost move
3 idmove = code(d, uh, vh)
4 // Processing the 5 possible moves
5 for p = 0 to 4 do
6 // Analyzing the last 5 squares
7 B10 = B18 & 0b1111111111
8 // Bypassing an if statement
9 // Insertion is valid when nb += 1

10 ListPossMoves[nb] = idmove
11 nb += PossMov[B10]
12 // Moving to the next group
13 B18 = B18� 2
14 idmove = idmove− 1
15 end

linear time in the number of values. But, as each entry in the
array has at most five elements, the array size is in the order
of megabytes exceeding the size of the L1 cache causing a
slowdown of memory accesses. During our tests, this approach
proved to be as fast as the Range Query technique. If one
should maintain a sorted list of possible moves, this approach
should be considered.

III. IMPLEMENTATION STRATEGIES

A. Sequence of moves

To facilitate the readability of the program, we create a class
to specifically manage the list of played moves. We choose
to model this list using a constant size array. This choice
is motivated by a search for efficiency. Indeed, we bypass
any resize operation. For the Morpion Solitaire, for the 5D
variant as well as the 5T variant, a realistic maximum size
of about 200 moves can be chosen. The codes of the moves
are stored using 16 bits integer, so the size of the array is
about 400 bytes. This size can be perceived as important and
it can be thought that any copy of this list will slow down the
processing. Nevertheless, modern processors have a memory
bus of 256 bits allowing the reading and the writing of a
block of 32 bytes in one clock cycle, see [25] for further
explanations. So, with such a bandwidth, copying a sequence
of moves takes about 15 clock cycles which is a negligible
amount compared to the whole process of creating a playout.

B. Random Number Generator

We use the Intel Fast Random Number Generator based on
SSE2 instructions [26]. As SSE2 is available on all machines
nowadays, we decided to use this algorithm whose benchmarks



have revealed an ability to generate a random number in 10
clock cycles on average.

For seed generation, we use the recent C++ RdRand intrin-
sic based on an on-chip hardware random number generator
using an entropy source like thermal noise. This function
remains slow with about 1000 clock cycles per call but as
it is only used at program startup, this has no impact on the
performance. The seeds we use are generated from run to run
to ensure that there are no repeats in our experiments.

C. List of Possible Moves

We create a specific class to manage this list. For the Range
Query technique, the central task consists in removing values
belonging to an interval. We run performance benchmarks us-
ing different implementations and strategies and it appears that
SSE2 instructions have made it possible to gain in performance
by a factor 2 for playouts’ generation. Indeed, SSE2 allows
to load 8 codes at once and checks whether each of these
values is belonging to an interval in few operations. The result
is a vector of 8 Boolean masks corresponding to the values
0x0000 or 0xFFFF. It remains to perform a logical AND+NOT
operation between the input values and these masks, thus each
value to be removed is replaced by 0. We present the SSE2
source code using C++ intrinsics in Algorithm 3. When all
Range Queries have been performed, the list contains some
0 values that have to be removed: they can be seen as empty
cells. So, we finally pack the non-zero values to conclude. This
pack operation is a native AVX512 operation not available on
all platforms. So we had no choice but to write this last step
in standard C.

D. Data Structure for the GameBoard

When we process a move near the border, we have to
use some if statements to detect when we are outside the
gameboard. This implies an extra cost in the processing and
this extra cost seems to be a waste of time because it does
not impact the quality of the solution. We prefer to avoid
this extra cost by expanding the size of the gameboard. For
example, in the Morpion Solitaire, it is sufficient to add 4
squares around the gameboard to guarantee that no moves will
cross the border.

For the Range Query technique, we need to quickly extract
the information concerning nine consecutive squares. For each
square, we use one bit to signify the presence a dot and another
bit to tell that a line is present. We represent the game area as
a two-dimensional array where each entry represents a square
of the game. Each entry indicates with one bit denoted D if a
dot is present and with four bits L0, L1, L2 and L3 if a line
is crossing in the associated direction. When we process the
direction d, we need to determine the value of the bit D and
of the bit Ld. To avoid time consuming bits’ manipulation, we
choose to repeat the bit D four times in order to place this bit
near to each bit L0, L1, L2 and L3. Thus, each byte of the
array Game[x,y] is structured like this:

Game[x, y] = L0 D L1 D L2 D L3 D

Algorithm 3: Range Query Remove() using SSE2
Input: BaseAdr: array address of the list of possible

moves
nb: number of moves in the list
min,max: two unsigned 16 bits int used to
describe the interval I = [min,max]

Result: All values in the array belonging to the
interval I are replaced by 0

1 // Import C++ SSE intrinsics
2 #include <emmintrin.h>
3 // Fill a 8xu16 register with u16 min
4 m128i Mins = mm set1 epi16(min-1)
5 // Fill a 8xu16 register with u16 max
6 m128i Maxs = mm set1 epi16(max+1)
7 // Process the list per block of 8
8 nb blocks = 1 + (nb-1) / 8
9 for i = 0 to nb blocks do

10 // Load 8 values from the array
11 m128i values = *BaseAdr
12 // Check > min-1, ≥ not avaliable
13 m128i t1 = mm cmpgt epi16(values, Mins)
14 // Check < max+1, ≤ not avaliable
15 m128i t2 = mm cmpgt epi16(Maxs, values)
16 // Packed logical AND →
17 // Eight masks: 0x0000 or 0xFFFF
18 masks = mm and si128(t1, t2)
19 // Values in the interval I → 0
20 newvalues = mm andnot si128(masks, values)
21 // Store 8 packed codes in memory
22 *BaseAdr = newvalues
23 // Move to the next block
24 BaseAdr += 1
25 end

When we want to read the information associated with
direction number 1, we only need to perform a bit shift and
a mask operation: DL1 = (Game[x, y] � 4) & 0b11. When
we put a dot at position (x, y), we only have to perform the
following logical OR operation: Game[x, y] | = 0b01010101.

E. Why optimizing playouts is difficult ?

When we optimize the performance of an algorithm, we
generally enter different loops and finally find some lines of
code that are executed lots of time. We carefully optimize
these lines to achieve better performance. When we work
with playouts, we use a main loop to play each turn. Inside
this loop, we find all the logic of the game. If the logic is
not optimized, we may find a double loops to analyze the
gameboard. Inside this double loops, we find some tests to
detect if a move is possible. In this case, we are in the standard
case where we have to optimize some lines of code inside
large loops. With the Range Query technique, only one loop
exists. This implies that the remaining code inside the last loop
has no longer 10 lines of code but rather 200. To optimize



performance, each of the 200 lines containing the game logic
must be optimized. If only one part remains slow, it will reduce
overall performance.

Analyzing performance on modern CPU is a tricky task.
We must recall that the measured performances are the result
of three things: the code/algorithm, the compiler and the
strategies used by your CPU to optimize performance during
execution. The compiler makes some optimizations. Small
variations in the code style may lead to a different choice
with different performances. On their side, CPUs use many
tricks to perform operations in advance or in parallel. When a
CPU senses an optimization, the execution can speed up by a
factor 2.5. When the CPU processes some instructions whose
dependency chain is intricate, performance can slow down by
half. We can control the code of the program, but the compiler
and the CPU act as two black-boxes. To find the suitable
version of a function, we need to write many versions of the
same function to detect the one which is well understood by
the compiler and well optimized by the CPU. Fortunately, once
the right version has been found, performance is stable across
the different configurations we have tested: AMD Ryzen9,
AMD Epyc with compilers: MSVC++ 14 and G++ 9.

IV. PERFORMANCE TESTING

A. Playouts’ Generation Benchmark

The following benchmarks are done on a Ryzen9 3900X
processor @4.1GHz. The Range Query technique is efficient
because it processes a very small area of the gameboard. To
illustrate the gain achieved by narrowing the work area, we
perform some tests by expanding the search area. We present
the results for the 5D Morpion Solitaire with a gameboard of
32×32 in Table I.

To analyze the performance of playout’s generation, we
create playouts using a uniform random selection of the moves.
We count the CPU clock cycles spent and we divide this
quantity by the total number of turns in all the playouts. Thus,
we obtain an average number of CPU clock cycles used to play
one move. This quantity does not represent the time spent for a
specific move. Indeed, in the first half of the game, the number
of children in the game tree oscillates between 28 and 10. In
the second half of the game, this quantity oscillates between
9 and 2. The playouts generated by advanced algorithms like
NMCS and NRPA have longer sequences. But, the decreasing
of the number of children during the game is similar, so the
average number of CPU clock cycles of playouts with shorter
sequences also corresponds to the average performance of
longer sequences. In Table II, we present the average clock
cycles required to play a move for the 5D and 5T variants.
Next using CPU profiling, we present the time spent for each
activity in Table III.

B. NMCS algorithm

We compare the performance of two different implemen-
tations of the NMCS algorithm: the one used in [2] and our
NMCS version based on the Range Query technique. Both
versions are written in C++ and benchmarks are performed

TABLE I
AVERAGE TIME TO PLAY ONE MOVE RELATIVE TO THE SIZE OF THE AREA.

Size of the region analyzed CPU cycles Speed gain

Whole gameboard ∼150 000 ×1
All squares in the four directions ∼15 000 ×10
The surrounding rectangular area ∼6 000 ×25
Range Query technique ∼300 ×500

TABLE II
AVERAGE PERFORMANCE FOR THE RANGE QUERY TECHNIQUE.

Average performance to play one move Number of CPU clock cycles

5D Variant - Gameboard of 32×32 288
5T Variant - Gameboard of 64×64 298

TABLE III
AVERAGE TIME SPENT ON EACH ACTIVITY TO PLAY ONE MOVE.

Different types of activity Percentage

Random selection 9%
Coordinates transform 6%
Gameboard data structure management 31%
Phase I of Range Query (removals) 34%
Phase II of Range Query (detecting moves) 20%

on a Ryzen9 3900X processor @4.1GHz for the 5D variant
of the Morpion Solitaire. Results are presented in Table IV.
The speed gain obtained with the Range Query technique is
almost a factor of ten. The ratio between the time spent to
produce a Level 3 sequence and a Level 2 sequence is close
for the two implementations, which proves that both versions
are similar from an algorithmic point of view: both versions
use the same algorithm and also a two-dimensional array to
represent the gameboard. So the speed gain is only attributable
to the Range Query technique and to the SSE2 implementation
of the list of possible moves.

TABLE IV
TIME SPENT TO GENERATE A NMCS SEQUENCE FOR THE 5D VARIANT.

Using [2] Using Range Query Gain
Level 2 3.2 s 0.33 s × 9.7
Level 3 582 s 66.1 s × 8.8
Ratio L3/L2 182 200

In [2], the author was able to present the results obtained
by the NMCS algorithm up to level 3 for the 5D version of
Morpion Solitaire. Using a dual AMD EPYC 7702 64-Core
machine, we are now able to present scores’ distribution for
level 4 of the NMCS algorithm in Figure 5. This computation
uses 7 hours on average for 100 simulations running one
simulation per core.
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Fig. 5. Scores of the 5D Morpion Solitaire using NMCS algorithm.

C. NRPA algorithm

The NRPA algorithm [13] can be considered as the state
of the art for solving the Morpion Solitaire problem. Indeed,
this algorithm holds the double record for the 5D and for the
5T Morpion Solitaire. We set up two different optimizations
presented hereafter. During our benchmarks, to generate a level
3 NRPA with the 5D variant, our optimizations saved 36% of
computation time compared to a vanilla NRPA version. For
the 5T variant, we saved 32% of computation time.
• Avoiding the copy of the policy: in the vanilla version,

the current policy is copied and then used as a buffer
value to compute the gradient and to update the current
policy. We prefer to copy the policy values of the current
sequence which limits the amount of data to be copied.

• Limiting the number of times an exponential is calcu-
lated: the NRPA algorithm associates a weight to each
move. Then, when a move has to be chosen among the list
of possible moves, a softmax function is used to compute
the probability for each possible move of being selected.
Nevertheless, computing this function at each node of the
game tree during each playout generation is costly. So,
instead of storing the weight of each move, we prefer to
store the exponential value of the weights.

To benchmark the NRPA algorithm, we use α = 1 and
N = 100 for the number of iterations. We present the time
required to run a simulation using one core per simulation in
Table V using a Ryzen9 3900X processor @4.1GHz. For the
5T variant, we find the scaling factor of ×100 between two
levels of simulation, because a simulation of level n requires
100 simulations of level n − 1. In fact, this factor is a little
higher because the more the simulation level increases, the
longer the sequences are. For example, from level 3 to level 4
of the 5T variant, the average length of the sequences increases
from 150 to 160.

Using a dual AMD EPYC 7702 64-Core machine, we were

TABLE V
TIME SPENT TO GENERATE A NRPA SEQUENCE.

NRPA Level 1 Level 2 Level 3 Level 4 Level 5
5D Version < 1 s < 1 s 14 s 24 min 41 h
5T version < 1 s < 1 s 17 s 33 min 57 h
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Fig. 6. Scores of the 5D Morpion Solitaire

able to run 1000 runs of level 5 in 4 weeks for the 5T variant.
As a rough comparison, the author in [13] set up 28 runs in
28 weeks. The time gain of ×250 is explained by the gain
factor of the machine and the gain factor of the Range Query
technique. For the 5D variant, the sequences of level 5 reached
the actual record of 82 in only 10 iterations. The 90 remaining
iterations we used to try to improve these best sequences, but
no better solutions were found. For the 5T variant, only 2% of
our simulations reach the record of 178. To try to exceed this
score, we perform multiple ”warm starts” initializing the start
policy with an already known best sequence. Nevertheless, all
our warm tests were only able to reach the scores of 176, 177,
and 178. No simulation was able to exceed the known record.
The scores’ distribution of the 5D and 5T runs are presented
in Figure 6 and 7.

D. Source code

To facilitate the reuse of the Range Query method, all
source code for the 5D and 5T versions can be downloaded at
the following address1. We use encapsulation to separate the
different elements of the algorithm: the list of possible moves
created using SSE2 has been put in a class to be reused as is.
Other parts have been encapsulated like the gameboard and
the different algorithms.

V. CONCLUSION

We have presented the Range Query technique as well
as other optimizations that speed up Monte Carlo Search

1https://github.com/liliancode/RangeQuery



70 80 90 100 110 120 130 140 150 160 170 180
0

0.1

0.2

0.3

Score

Pr
ob

ab
ili

ty
of

sc
or

e
Level 1
Level 2
Level 3
Level 4
Level 5

Fig. 7. Scores of the 5T Morpion Solitaire

by a factor close to 10 for Morpion Solitaire. Using these
optimizations we were able to generate 1000 NRPA searches
at level 5 for the 5T version, reaching many times the current
world record. For the 5D version a level 5 search almost
always reaches the current world record, indicating that it is
extremely difficult or even impossible to break.

The techniques we use are optimized for Morpion Solitaire
but the same ideas can be used for other games or problems.
As it is important for Monte Carlo Search to generate playouts
as fast as possible in most of its applications, we expect our
techniques to improve Monte Carlo Search for other games
and problems.
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