
Blending Output from Generative Adversarial
Networks to Texture High-Resolution 2D Town

Maps for Roleplaying Games
Gianfranco Siracusa

Department of Artificial Intelligence
University of Malta

Msida, Malta
gianfranco.siracusa.00@um.edu.mt

Dylan Seychell
Department of Artificial Intelligence

University of Malta
Msida, Malta

dylan.seychell@ieee.org

Mark Bugeja
Department of Artificial Intelligence

University of Malta
Msida, Malta

mark.bugeja@um.edu.mt

Abstract—The recent success of Generative Adversarial Net-
works (GANs) in image and video applications led to the
development of numerous variants specialised for particular
tasks, such as conditional GANs for image-to-image translation.
In spite of the research done in fine-tuning architectures and
applying them to different subjects, techniques still deal with
stand-alone images, such as nature scenes, city landmarks, faces
and others. The task of producing contiguous colour data −
namely adjacent parts of the same image, not textures − has not
been attempted before in literature related to generative machine
learning techniques. Achieving this feat would allow large images
to be processed in smaller parts, hence removing the architectural
maximum to the output resolution that can be achieved by the
network. Concurrent state-of-the-art architectures for conditional
image-to-image translation are in the range of 2k×1k pixels and
typically take several days to train on powerful hardware. The
proposed contiguous technique, in this case applied on fantasy
maps for roleplaying games, can achieve higher resolutions with
smaller networks that can be trained faster, within a single day.
The technique is capable of maintaining as much quality as
allowed by the detail of the semantic layouts provided, even at
4k and higher, but it suffers when detail in these is too sparse. A
sample of images produced by the system were shown to survey
participants who judged their appeal as 3.49 on a Likert scale
of 5, and segmentation analysis reported an average weighted
inter-class accuracy score of 0.689 (0.448 unweighted).

Index Terms—conditional generative adversarial networks,
image-to-image translation, map texturing, game content creation

Fig. 1. A full-width window from an 8k×8k map textured using a 512×512
image-to-image-translation network by blending contiguous runs. The result
typically retains the quality of a deeper, larger network that is more difficult
to train. A seam is visible on the upper right corner where detail is sparse
(large area of grass), but none are evident in other areas. Kindly zoom in
for more detail. The semantic layout that produced this image was generated
procedurally using [1].

978-1-6654-3886-5/21/$31.00 ©2021 IEEE

I. INTRODUCTION

Content creators for roleplaying games, particularly tabletop
games, are constantly on the lookout for good quality, custom
maps to use in their works. Maps put the player in the context
of the game world and significantly improve immersion [2] for
those who appreciate depth as opposed to casual gameplay.

Creators who cannot draw their own maps can look to some
alternatives. Finding maps online is easy and free, but these
are harder to adapt to custom requirements and may run into
copyright concerns when publishing. Professional artists may
be commissioned to overcome these limitations. Paid map-
making software exists (such as [3] and [4]) that assists in the
making high-quality custom maps using a sprite library. Some
of these may generate procedural layouts but still build the
resulting image by assigning pre-made object textures from the
artist-drawn library. In fact, generating new textures for map
objects is a current limitation in procedural map generation, as
demonstrated also by the fact that fully procedural generators
manage to create excellent-quality layouts with minimal user
effort, but result in either plain colour output (such as [1]) or
simplistic shape patterns (such as [5]).

The previously mentioned disadvantage of the otherwise
powerful procedural techniques served as a motivation to
develop a system to aid in creating good quality, original
maps, with minimum design and drawing effort, that does
not rely on a library of hand-drawn sprites, thus improving
variety and appeal. A system that draws from the procedural
benefits of speed towards map design, yet being a match with
human artists in terms of finishing, would be a desirable one
for content creators.

Generative Adversarial Networks (GANs) have been suc-
cessful in various domains related to image and video includ-
ing, for example, image generation (fashion items [6], portraits
[7], and so on), paired [8] [9] and unpaired [10] image-to-
image translation, inpainting [11] [12], super-resolution [13],
image extension [14], transient attribute manipulation [15],
video generation [16] and more.

The success of GANs led to the development of several

variant architectures. Of most benefit in this scenario are
conditional Generative Adversarial Networks [17], which can
be used to perform paired image-to-image translation between
town designs and the final textured map. While describing a
method for doing so, this paper will − moreover − present a
novel post-processing algorithm to combine contiguous output
towards increasing the final resolution, thus allowing high-
resolution output to be generated from smaller, easily trained
networks.

In line with the motivation stated earlier in this section,
such a system could be paired with procedural techniques to
increase the visual quality of their output, as shown in Fig. 1,
by deriving town layouts from procedural generators as well
as from user input. Early experiments on designing new town
layouts also using AI have been carried out but this is beyond
the scope of the current paper.

The rest of this paper is organised as follows. Section II
briefly covers the Generative Adversarial Network paradigm
and compares with some similar work. Section III cov-
ers dataset preparation, the training process and the post-
processing algorithm which is central to this research. Section
IV presents a sample of output from the algorithm, along with
subjective and segmentation analyses. Section V discusses
the impact of the algorithm parameters on the output and
comments on the maximum resolution achievable by the
algorithm.

II. LITERATURE REVIEW

A. Generative Adversarial Networks

A Generative Adversarial Network (GAN) is a paradigm
for an unsupervised neural model that was introduced in 2014
by Goodfellow et al. [18]. GANs consist of two components:
a Generator f (G), whose role is to learn the underlying
distribution of a dataset, and a Discriminator f (D), whose role
is to compare real samples from the dataset with fake examples
from the Generator’s output and attempt to distinguish between
them.

The two components are engaged in an adversarial game
where the Generator seeks to imitate the dataset samples well
enough that the Discriminator cannot tell apart the difference.
The Discriminator’s success in identifying generated samples
provides positive feedback for the Discriminator itself, and
negative feedback for the Generator, forcing the latter to learn
new patterns authentic to the dataset that the Discriminator
cannot yet distinguish. This encourages the combined system
to continuously improve itself until it reaches an equilibrium.
In an optimal setting, the Generator and Discriminator must
be balanced.

The original input to such a system is a random noise
vector that determines the variety generated in each run of
the network. Later, [8], based on the work described in [17],
introduced a GAN variant where the input to the network is
an image − known as a semantic layout − that conditions
the network on which of the supported classes should be
represented in the respective part of the image.

Fig. 2. A noise vector Z is passed through the Generator f (G) to produce
an image that could potentially belong to the real dataset. Credit: Cat image
taken from Cats and Dogs dataset [19]..

These networks, known as conditional GANs (cGANs),
allow the user to have more control over the generated output
when compared to the original architecture. Randomness in
cGANs is mostly obtained through the dropout of some nodes
in the early upscaling layers.

Fig. 3. A semantic layout specifies to the Generator which features compose
the image, in this case: green is cat, purple is background. The L1 error
(MAE) ensures that the system converges to the dataset colours as well as
the high-frequency patterns. Credit: Cat image and semantic layout adapted
from Cats and Dogs dataset [19].

B. Image-to-Image Translation

A major application of conditional GANs is in image-to-
image translation, which is the task of converting an image
from one domain to another. Examples of domains on which
this technique has been applied include greyscale vs coloured
images, sketches vs full colour output, real photo vs subject(s)
with background removed, semantic labels vs full colour
output, and so on. These examples are described in [8].

In order to train a cGAN to perform image-to-image trans-
lation, the dataset should consist of corresponding images
taken in both domains. This is specifically known as paired
image-to-image translation. (In contrast, unpaired image-to-
image translation is an approach introduced in [10]; it does
not require the images in either domain to be correlated, but
generally performs slower.) After training is complete, the
network would have learnt how to convert a previously unseen
image in the source domain to what it would look like if it
existed in the destination domain.

C. Similar Work

The concept of taking contiguous blocks of data as input
and combining the results is not new but hasn’t yet been
experimented with in the area of generative networks. Some

similar, but not identical, concepts will be mentioned briefly
here.

Stitching overlapping photos into a panorama view is per-
haps most similar to the idea, but SIFT [20] and AI-based tech-
niques (such as [21]) which are successful on real images are
unlikely to work reliably in this scenario, since the stochastic
nature of GANs − which is crucial to their generative potential
− allows no guarantee that the same object will be rendered
similarly enough in different outputs to be recognised as a
feature marker. Along the same lines, one can argue about the
similarity of this task to 3D scene reconstruction, as done in
[22] and similar works. With regards to Super Mario Bros,
[23] and related works used GANs to generate new levels,
but in this case the contiguous blocks given to the network
consisted of level data (not colour data) and were mostly self-
contained, allowing the authors to simply attach the output
without any processing. In fact, the cited paper does report
that the only feature which is two units wide (‘pipes’) was
visually inconsistent, possibly because it could span across
different input windows. Finally, texture generation by GANs
(such as [24]) is based on a similar concept and, being fully
convolutional, does manage to remove architectural limits to
resolution, but is designed to seamlessly preserve repeating
patterns, which is not desirable when working with images.

III. METHODOLOGY

The context of 2d aerial fantasy town maps was chosen
to test the proposed algorithm since maps are scaleable and
contiguous. Some form of mapping context is therefore best
suited for this algorithm. Nevertheless, it is expected that
similar results to those demonstrated here can be achieved in
other scenarios as well.

A. Features

Eight categories of features commonly occurring in aerial
fantasy maps were selected as shown in Table I.

TABLE I
THE EIGHT FEATURES SUPPORTED BY THE TEXTURING CGAN.

PIX% STANDS FOR PIXEL-WISE PROPORTION OF THE FEATURES IN DATASET.

Category Pix% Examples

Water 13.8% Rivers, Lakes, Sea, Waterborne vessels

Paths 17.9% Walkable surfaces, ex: Dirt, Cobblestone, Bridges, Tiers

Grass 42.1% Any type of grassland

Buildings 11.6% Thatch, Wood, Stone buildings

Vegetation 5.3% Trees, Bushes, Flowerbeds

Obstacles 0.9% Man-made barriers, ex: Walls, Fences, Palisades

Terrain 3.8% Sand, Soil, Farmland

Uninhabitable 4.6% Cliffs, Rocks

Some features are more commonly represented than others,
either because they naturally span large areas (such as grass
and water) or because they are central to town mapping (such
as paths and buildings). It is expected that the network will
not perform as well for the less frequently represented features.

For reference, the pixel-wise occurrence of each feature in the
dataset is shown in Table I.

B. Dataset

The originality of the chosen context required the develop-
ment of a new dataset. No other dataset is published for paired
image-to-image translation which has both map layouts and
textured output.

A small set of high-resolution maps were hand-labelled
according to the features listed in Table I. The dataset used
for training was derived by cutting overlapping 512×512-pixel
windows from these labelled originals.

Fig. 4. Dataset augmentation from a few high-resolution maps. Each image is
cut into contiguous and overlapping tiles. The image is scaled down and the
process is repeated, exposing the network to some drastic changes in scale.
For example, a single 2k×2k image can produce 88 tiles for the dataset. The
same operations are done in parallel for the corresponding semantic layout.
(Individual tiles for the higher resolutions are not shown in the diagram for
the sake of neatness.) Featured map: [33].

For example, a 2k×2k image could generate 7 overlapping
tiles of this size per dimension, four of which are contiguous
and three are at the intersections.

In addition, the same process was applied after the originals
were scaled to four smaller sizes, as shown in Fig. 4, to provide
the networks with resilience against large changes in scale of
features when drawing towns of different sizes.

The above preprocessing created a total of 2500 tiles, split
in a 80:20 ratio between training set (2000) and test set (500).

An example of the input format, consisting of the cut image
with the corresponding segmentation layout, is illustrated in
Fig. 5.

Fig. 5. The input to the system during training consists of the real tile
next to the corresponding semantic layout. The Discriminator compares the
Generator’s output on the semantic layouts with the ground truths of the batch.
Featured map: [34].

C. Architecture

The architecture utilised for this work was based on Tensor-
flow’s implementation [25] of the Pix2Pix algorithm described
in the original paper [8].

This implementation was intended for use in generating
building facades from semantic layouts, one of the example
datasets demonstrated in the paper. The authors of the paper
itself demonstrated more applications of their algorithm, al-
ready mentioned in II-B. This implementation is adequate for
the purposes of this work given that it deals with translating
between semantic layouts of towns and fully textured maps.

The generator is a U-Net that consists of one added layer
from the original implementation to increase the native ar-
chitecture output to 512×512 pixels. All downsampling and
upsampling layers consist of a filter with size 5 and stride
2. Batchnorm is applied to the first downsampling layer.
Dropout on the first three upsampling layers serve to introduce
randomness in the output and substitutes the noise vector for
traditional GANs in this purpose.

The discriminator consists of five downsampling convolu-
tional layers with stride 2 and two convolutional layers with
stride 1. This discriminator has an array of 8×8 neurons with
a receptive field of 381×381 pixels that output a score for how
realistic their field is with respect to the dataset distribution.

The exact architectures are illustrated in Fig. 6.

Fig. 6. The architecture used for this work is adapted from the Tensorflow
implementation [25]. Original map: [35].

D. Training

Images in the dataset were further augmented live during
training with jittering, rotation and flipping as per the original
implementation.

All processing mentioned in this paper was carried out on
a Windows device having an octacore processor, an Nvidia
GTX1070 graphics card with 6GB onboard memory, and
32GB of RAM. The algorithm runs on the Tensorflow deep
learning framework and uses Numpy, Numba and OpenCV

libraries for fast array processing, operation compiling, and
image manipulation respectively.

The GAN was trained for a total of approximately 6.5 hours
(550 epochs at 43 seconds per epoch).

E. Blending

The architecture described above takes as input and gener-
ates as output images at a resolution of 512×512 pixels. The
primary aim of this research is to allow the same network
to draw larger images at a comparable quality that what one
would expect from an image generated at the native resolution.

A possible first step in achieving this is to run the high-
resolution input image as 512×512 tiles run separately through
the network. Since the network does not have any information
about the position of the tiles with respect to each other,
it is not able to match colours at the edges properly. For
this reason, the reconstituted image inevitably exhibits evident
seams between the various tiles, as shown in Fig. 7 (third row
of images).

The proposed approach involves running the original input
multiple times through the network, each time dividing it into
a different number of tiles per dimension. The underlying idea
is that, if the seams occur at different places, one can compose
the colour of each pixel in the final result from whichever runs
do not have any seams close to that area. It is easy to ensure
that the seams do not occur in the same areas of an image by
tiling the input into a next larger prime number for each run,
as shown in Fig. 7 (first row of images).

The main parameters of the blending algorithm are the
number of runs through the network and the starting number
of divisions. These parameters will be hereby referred to
as number of layers (NoL) and base tiling factor (BTF)
respectively.

For example, with NoL=3 and BTF=2, an input image will
be submitted three times through the network, scaled and split
into 2×2, 3×3 and 5×5 tiles. In this case, a total of 38
runs through the network are required to generate the higher
resolution output.

The various layers are scaled back to the target resolution,
and a fitness value is given to each pixel in each layer based on
how close it is to the centre of its tile, measured as Euclidian
distance, as shown in (1).

φ(x,y,z) =
√
(Px − χx)2 + (Py − χy)2 (1)

where χx and χy are the coordinates for the centre of the
respective tile as determined with (2), and z is the layer index.

χ(x,y,z) = (b Px
TW
c+0.5)×TW , (b Py

TH
c+0.5)×TH (2)

where Px is the pixel’s x-coordinate, Py is the pixel’s y-
coordinate, TW is the tile width and TH is the tile height. An
offset (+0.5) is applied to the tile that the pixel belongs to
(b Px/y

TW/H
c) so that it marks the centre.

Fig. 7. This diagram demonstrates how the blending algorithm works. The
same image is rendered multiple times using a different amount of tiles, in
this example, 2×2 (left/red), 3×3 (centre/green) and 5×5 (right/blue). The
seams created by tiling are removed by blending the various layers (bottom
right). The fitness map in the bottom centre shows how the various layers are
contributing to the final image. The semantic layout that produced this image
was designed manually with the tool made for this research [26].

This fitness value is then normalised across all layers so
that the lowest value is equivalent to 0 and the sum of the
values in remaining layers amounts to 1, as shown in (3). In
this manner, the layer with the lowest fitness (closest to an
edge) does not contribute to the final image, improving the
quality of the blending but requiring an extra processing layer
(a minimum of 3).

ω(x,y,z) =

φ(x,y,z) − min
φ(x,y,0...n−1)∑n−1

z=0 (φ(x, y, z)− min
φ(x,y,0...n−1)

)
(3)

where φx,y,z is the fitness of the pixel at column x, row y
and layer z, determined according to (1) and n is the number
of layers (NoL) specified as a parameter.

The fitness map for the example given here is shown in
Fig. 7 for the three layers separately (second row of images)
and for the layers combined (bottom centre image).

Finally, for each pixel, the colour in the resulting image is
given by the sum of the colours in all layers after they are
multiplied by the respective fitness value, as shown in (4).

RGB(x,y) =

n−1∑
z=0

(ωx,y,z ×RGB(x,y,z)) (4)

where RGB(x,y,z) is the colour of a pixel at a specific position
in a particular layer z and ωx,y,z is its contribution towards
the colour of the same pixel in the final image, determined
according to (3).

The result of this algorithm for the example in question is
shown in Fig. 7 (bottom right image).

IV. RESULTS

A. Examples

Fig. 8 shows the output of the algorithm on one of the maps
used in the dataset.

Fig. 8. One of the maps included in the dataset is shown on the left. The
manually labelled semantic layout is shown at the centre. The algorithm’s
output on the semantic layout is shown on the right. Original map: [36].

The proposed algorithm was run on several samples from
a number of unseen sources of map designs, including ones
manually labelled through the tool specifically designed for
this work [26], real-world town layouts from Google Maps
[27], and a number of third-party procedural plain-colour
town generators [1] [5] [28]. An example from each of these
categories is shown in Fig. 9.

Fig. 9. Output from the network on (a) a manually designed map using [26],
procedural map designs generated with (b) [1], (c) [28] and (d) [5], and a map
derived from Google Maps [27]. The top row shows the semantic layout, the
middle row shows the whole output, and the bottom row shows detail with a
x4 zoom on the full image’s centre.

B. Subjective analysis

45 participants were invited to a survey through groups
dedicated to roleplaying games and cartography on social
media, and all were shown the same set of images on the
Google platform. For each image, the participants had to judge
the perceived appeal of the shown map.

Four samples from this algorithm were included among a
small but representative set of maps of different qualities and
from diverse sources (procedural, made with mapping software
and hand-drawn). The reason for a small overall sample was
to maintain participant retention, while the choice to include
only four samples from this algorithm was made to avoid

bias resulting from participants starting to recognise the maps
generated by the GAN (equivalent to recognising style from
the same artist). These four samples were selected arbitrarily
and not on any criterion of quality; two were generated from
manual designs, while the other two were generated from
procedural layouts.

Fig. 10. The demographics of the survey population.

The vast majority of participants were 20-40 years old and
had previous experience in at least some kind of roleplaying
games (see Fig. 10). The average appeal score given by
respondents was 3.49 on a Likert scale from 1 to 5. The most
frequent score given by participants was 4 (Fig. 11, top).

After the source of the images was revealed, participants
were shown the same layout rendered with different algorithm
parameters to assess how these affect their perception of appeal
in the resulting map. Results (see Fig. 11, bottom left) show
that human observers prefer a low value for the number of
layers (as illustrated by the spike on the ‘3’ axis). However,
one should point out that a lot of participants couldn’t perceive
a difference, or any differences didn’t particularly add or
detract from the appeal (similar spike on the ‘N/A’ axis).

On the other hand, participants significantly seem to prefer
images processed with a base tiling factor of 3 (see Fig. 11,
bottom right). This value has to be interpreted against the
dimension of the images processed for the survey, which was
2048×2048 pixels. Higher resolutions would understandably
require higher BTF values.

C. Segmentation analysis

Besides through subjective analysis, the output of the al-
gorithm was also analysed by means of a separate U-Net
trained on the dataset samples. Depending on how close
the segmentation result is to the original layout, one can
conclude to what extent the combined generative model and
blending algorithm were successful at reproducing the original
appearance of the features in the dataset.

Segmentation analysis removes the issues related with us-
ing humans for analysis, namely subjectivity and previous
experience. However, it should be noted that the segmentation
network had difficulty in recognising some poorly represented
classes in the dataset.

After training, the segmentation model was run on two
categories of samples: images generated from the seen whole-
image semantic layouts labelled from the original artist draw-
ings before being tiled for the dataset (which the network was

Fig. 11. Survey results: appeal scores (top), impact of NoL (left) and BTF
(right) on the output.

exposed to albeit as tiles) and images generated from unseen
semantic layouts from manual and procedural sources which
were never presented to the network either in part or as a
whole. Analysis on the seen samples (the former category) was
included to provide a baseline estimate for the segmentation
model’s accuracy.

The confusion matrix on the segmentation results (Fig. 12)
shows that the features which were most accurately rep-
resented by the system are environmental features which
cover large areas, such as grass and water. Paths, houses and
vegetation are also reproduced well by the proposed algorithm.
These conclusions can be drawn from high values (darker
colours) along the diagonals which show that the segmentation
models correctly identified the feature for what it truly is.
The system performs worst on the category of ‘uninhabitable’
(performance on unseen samples being significantly lower than
on seen samples). On the other hand, segmentation analysis
is inconclusive for the remaining two features (obstacles
and terrain). In this case the segmentation model performed
poorly on both seen and unseen categories and therefore this
represents a failure in the segmentation model, not necessarily
in the proposed technique.

Fig. 12. Confusion matrix derived from segmentation results on seen (left)
and unseen (right) images.

The average accuracy of all classes on the unseen samples
is 0.448, if these are given the same importance toward this
measure. If weighted by the occurrence of each class in the
dataset, according to Table I, to compensate for typical class
contribution, the accuracy of the texturing network is 0.689.
Note that these calculations are made on the raw accuracies
on the unseen category shown in small text in Fig. 12, without
considering segmentation performance on the seen category.

V. EXPERIMENTS

A. Resolution Limitations

The main aim of this research is to remove architectural
limitations on the output of a Generative Adversarial Network.
For this reason, to check whether the proposed algorithm is
successful, an 8k×8k image (sixteen times the network size in
either dimension) was run through it. The image was processed
with 4 layers and a base tiling factor of 17 (the prime number
closest to the magnitude of the image compared to network
resolution).

With these settings, the inference stage requires a total of
172+192+232+292 = 2, 020 runs through the network and
completes in around 40 seconds. The blending stage requires
roughly 1 minute 15 seconds to blend the four layers with
67.1 million pixels each. It is important to note that, due to
technical restrictions, the blending stage runs on CPU only
(although the Numba package compiles the algorithm which
somewhat improves performance), whereas Tensorflow allows
graphics card acceleration for the inference stage.

The output is shown at various zoom levels in Fig. 13. This
image is the same one featured at the beginning of this paper
in Fig. 1.

Fig. 13. An 8k image processed with the algorithm described in this paper.
Each image shows a x2 zoom on the centre of the previous, starting from the
full 8k×8k image in (a) to a 256×256 window in (f). The images show that
quality is maintained even when zoomed in to this extent. The segmentation
map used to produce this image was generated using [1].

B. Algorithm parameters

The algorithm’s two main parameters impact the quality and
characteristics of the output, as shown in Fig. 14.

Typically, a low number of layers (3 is the minimum)
is characterised by sharper textures but may exhibit evident

Fig. 14. This image shows how the output changes with different parameter
values. The semantic layout that produced this image was designed manually
with the tool made for this research [26].

colour changes that reveal where the tiles have been joined
together. A higher number of layers removes these artefacts
but smooths out the detail as a result of more layers to blend
together. The survey population seemed to prefer a low number
of layers.

Low base tiling factors result in coarser detail while higher
values result in finer or subtle detail. Both extremes detract
from appeal, as confirmed by the survey population. Generally,
a base tiling factor equal to or around the ratio of the input
image size with respect to the network size works best, as was
done above (BTF around 16 for an 8k×8k image processed
with an 512×512 network).

Both parameters lead to longer processing times if in-
creased. The inference stage is affected by both NoL and
BTF. The blending stage is affected by the NoL and the target
resolution, although not by the BTF. The effect on parameters
on processing times is shown below:

TABLE II
TIMES TO PROCESS A 1024×1024 IMAGE WITH VARYING PARAMETERS.

Inference BTF1 BTF2 BTF4 Blend BTF1 BTF2 BTF4

NoL3 0.6s 1.1s 2.2s NoL3 1.0s 1.0s 1.0s

NoL5 2.0s 4.1s 6.8s NoL5 1.4s 1.4s 1.4s

VI. CONCLUSION AND FUTURE WORK

This paper has presented a technique for using small, easily
trained generative adversarial networks to create an image at
much higher resolution than the native architecture can support
by blending contiguous runs. The system parameters give the
user control over smoothness of the blending and sharpness of
detail. It was demonstrated that the technique manages to scale
well, even to exaggerated resolutions such as 8k, provided that
the input image has enough semantic detail for the desired
size (that is, no large areas consist exclusively of the same
feature). If this is allowed to happen, the system tends to retain
seams, exhibit repeating patterns, or produce other artefacts
detrimental to quality.

Given suitable input, however, reactions from human eval-
uators show that the texturing generated by the network is of
sufficient quality to make it an improvement over town layouts
created fully procedurally. This system can therefore be easily
integrated with procedural algorithms to increase the appeal
of the output while keeping the system fully autonomous.

One should point out that the current model suffers on
texturing some categories which are poorly represented in
the novel dataset. Future work in this regard would be a
more comprehensive dataset that includes more examples from
classes that either occur rarely or consist of fine details that are
overwhelmed (space-wise) by more expansive features. The
augmentation by tiling employed in this work helped avoid
transformation issues, but not in providing sufficient distinct
examples for training. Apart from this, one could also improve
the visual appeal by incorporating saliency ranking [29] into
the algorithm to identify more relevant features and process
them differently than the rest of the image, such as by using
a higher base tiling factor for increased detail on features that
demand it.

In general, the base algorithm could be upgraded to incor-
porate recent advancements in GAN research, such as better
normalisation techniques [30], pyramidal generator architec-
tures to train the network in progressively larger sizes [7] [9]
and differentiable augmentations [31]. Finally, a tile-blending
technique based on inpainting methods may be attempted to
check whether this improves performance and quality over the
algorithmic method presented in this paper. Some experiments
along this line for natural images are presented in [32].

Interested readers are invited to interact with the system
presented here by means of the tool on [26].

REFERENCES

[1] Drachenzahn, “Roleplaying City Map Generator”. Original link no
longer available.

[2] Z. O. Toups, N. Lalone, S. A. Alharthi, H. N. Sharma, and A. M.
Webb, “Making maps available for play: Analyzing the design of game
cartography interfaces” in ACM Transactions on Computer-Human
Interaction (TOCHI), vol. 26, no. 5, pp. 1–43, 2019.

[3] “Inkarnate”. Retrieved on 09.03.2021 from https://inkarnate.com/.
[4] “Cityographer”. Retrieved on 09.03.2021 from https://cityographer.com/.
[5] O. Dolya (Watabou), “Village generator”. Retrieved on 09.03.2021 from

https://watabou.itch.io/village-generator/.
[6] N. Pandey and A. Savakis, “Poly-gan: Multi-conditioned gan for fashion

synthesis”, arXiv preprint arXiv:1909.02165, 2019.
[7] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila,

“Analyzing and improving the image quality of stylegan”, arXiv preprint
arXiv:1912.04958, 2019.

[8] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation
with conditional adversarial networks” in Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 1125–1134,
2017.

[9] T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz, and B. Catanzaro,
“High-resolution image synthesis and semantic manipulation with condi-
tional gans” in Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 8798–8807, 2018.

[10] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image
translation using cycle-consistent adversarial networks” in Proceedings
of the IEEE international conference on computer vision, pp. 2223–2232,
2017.

[11] W. Xiong, J. Yu, Z. Lin, J. Yang, X. Lu, C. Barnes, and J. Luo,
“Foreground-aware image inpainting” in Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pp. 5840–5848,
2019.

[12] D. Seychell, C.J. Debono, “An Approach for Objective Quality Assess-
ment of Image Inpainting Results” in 2020 IEEE 20th Mediterranean
Electrotechnical Conference (MELECON), pp. 226-231, 2020.

[13] W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken, R. Bishop,
D. Rueckert, and Z. Wang, “Real-time single image and video super-
resolution using an efficient sub-pixel convolutional neural network” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 1874–1883, 2016.

[14] P. Teterwak, A. Sarna, D. Krishnan, A. Maschinot, D. Belanger, C. Liu,
and W. T. Freeman, “Boundless: Generative adversarial networks for
image extension” in Proceedings of the IEEE International Conference
on Computer Vision, pp. 10521–10530, 2019.

[15] L. Karacan, Z. Akata, A. Erdem, and E. Erdem, “Manipulating attributes
of natural scenes via hallucination” in ACM Transactions on Graphics
(TOG), vol. 39, pp. 1–7, ACM, 2019.

[16] Y. Wang, P. Bilinski, F. Bremond, and A. Dantcheva, “Imaginator:
Conditional spatiotemporal gan for video generation” in The IEEE
Winter Conference on Applications of Computer Vision, pp. 1160–1169,
2020.

[17] M. Mirza and S. Osindero, “Conditional generative adversarial nets”,
arXiv preprint arXiv:1411.1784, 2014.

[18] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets”
in Advances in neural information processing systems, pp. 2672–2680,
2014.

[19] Microsoft/Kaggle, Cats vs Dogs Dataset. Retrieved on 09.03.2021 from
https://www.kaggle.com/c/dogs-vs-cats

[20] D.G. Lowe, “Object recognition from local scale-invariant features” in
Proceedings of the seventh IEEE international conference on computer
vision, vol. 2, pp. 1150-1157, 1999.

[21] J.S. Sumantri, I.K. Park, “360 panorama synthesis from a sparse set of
images with unknown field of view”, arXiv preprint arXiv:1904.03326,
2019.

[22] C. Yu, Y. Wang, “3D-Scene-Gan: three dimensional scene reconstruction
with generative adversarial networks” in International Conference on
Learning Representations (ICLR), 2018.

[23] V. Volz, J. Schrum, J. Liu, S.M. Lucas, A. Smith, S. Risi, “Evolving
Mario Levels in the Latent Space of a Deep Convolutional Generative
Adversarial Network” in GECCO ’18: Genetic and Evolutionary Com-
putation Conference (Kyoto, Japan), 2018.

[24] N. Jetchev, U. Bergmann, R. Vollgraf, “Texture synthesis with spa-
tial generative adversarial networks”, arXiv preprint arXiv:1611.08207,
2016.

[25] Tensorflow, “Pix2pix implementation”. Retrieved on 11.08.2020 from
https://www.tensorflow.org/tutorials/generative/pix2pix/.

[26] G. Siracusa, “Gantographer”. Retrieved on 09.03.2021 from
https://gstw20.eu.pythonanywhere.com/.

[27] Google, “Google Maps”. Retrieved on 09.03.2021 from
https://maps.google.com/.

[28] O. Dolya (Watabou), “Medieval fantasy city generator”. Re-
trieved on 09.03.2021 from https://watabou.itch.io/medieval-fantasy-
city-generator/.

[29] D. Seychell, C.J. Debono, “Ranking regions of visual saliency in rgb-
d content” in 2018 IEEE International Conference on 3D Immersion
(IC3D), pp. 1-8, 2018.

[30] T. Park, M.Y. Liu, T.C. Wang, J.Y. Zhu, “Semantic image synthesis with
spatially-adaptive normalization” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 2337-2346, 2019.

[31] T. Karras, M. Aittala, J. Hellsten, S. Laine, J. Lehtinen, T. Aila,
“Training generative adversarial networks with limited data”, arXiv
preprint arXiv:2006.06676, 2020.

[32] D. Seychell, C.J. Debono, M. Bugeja, J. Borg, M. Sacco, “COTS:
A multipurpose rgb-d dataset for saliency and image manipulation
applications” in IEEE Access 9, pp. 21481-21497, 2021.

Miscellaneous:
[33] Triboar village from Storm King’s Thunder (Wizards of the Coast).
[34] Bourmout village (SirInkman).
[35] Biirumura village (Ashlerb).
[36] Pinepass village (David Barrentine).

