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Fig. 1. Initial State of Simple Clockwork Puzzle

Abstract—This study debuts the clockwork problem a novel
type of combinatorial puzzle; the rules and general variations
of the puzzle are explained in order to showcase the puzzle’s
interesting properties and motivate interest in the puzzle.
Following this, the “Do What’s Possible” representation for
an evolutionary algorithm is used to solve instances of the
clockwork puzzle. The results of the evolutionary algorithm
across many instances are analyzed to create a difficulty mea-
sure for said instances. This type of computational intelligence
is preferred as the evolutionary algorithm adequately mimics
the approach of a human player who lacks prior knowledge
about the puzzle.

I. INTRODUCTION

From a subjective viewpoint, the most interesting puzzles
can be presented to a player while providing minimal instruc-
tion. The player must make their initial moves and develop
their understanding of what is possible while contained
within the puzzle’s structure. Puzzles of this nature usually
start with simple instances, then pit the player against a
“difficulty curve” of successively more challenging puzzle
instances.

Early video games serve as a great example for this type
of puzzle; minimal, if not zero, instruction is given to the
player as they are left to beat the game on their own. The
clockwork puzzle introduced by this paper serves as another
example for this type of puzzle.

Example 1 serves as an introduction to the clockwork
puzzle’s premise.
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Fig. 2. Updated State of Simple Clockwork Puzzle

Example 1. You are presented with an object similar to an
analogue wall clock which has a clock hand pointing to the
number zero. The numbers of the clock are illuminated in
sequence by lights as shown in Fig. 1.

You are presented with two options: to rotate the hand
clock-wise by either three or four increments. When the
hand is moved, the number that the hand lands upon has
its light toggled between the settings “on” and “off”. Fig.
2 demonstrates the new clock state made after using the
“rotate by three increments” move. Using these two options
in some sequence, can one create a state where every light
is illuminated?

In general, a clockwork puzzle can be thought of as a
single-player combinatorial game where one uses a desig-
nated action set in order to transform an initial state into a
goal state. As inherent properties: any move made by the
player can be undone and if a puzzle instance is deemed
solvable, then it is impossible for the player to negate this
quality.

This “always solvable” quality is shared by puzzles like the
Rubiks Cube [1] and the Tower of Hanoi [2] where a player
can always reverse what they have done as they attempt to
construct a goal state. Reversal of clockwork puzzle moves
tends to be a fare more lengthy process for the player than
it is in those previous two examples. This puzzle quality is
contrasted by simple puzzles like the self-avoiding walk [3].
Puzzles of this variety can trap the player into unsolvable
situations should they make a poor choice of moves.

The specific clockwork puzzle described in Example 1 is
one of its simpler instances; many other instances can be
made through control of certain parameters specific to the978-1-6654-3886-5/21/$31.00 ©2021 IEEE



puzzle. To be able to categorize the various clockwork puzzle
instances by difficulty would be a useful feature for puzzle
designers who wish to incorporate the clockwork puzzle
in a game. In order to do this, computational intelligence
techniques can be applied on a curated sample of puzzle
instances. Solutions and run times provided by the algorithm
can then be analyzed in order to determine the difficulty
rating of an instance.

With this goal in mind, the layout of this paper is as
follows. Section II provides a thorough description of the
clockwork puzzle and outlines all the parameters required to
design a specific instance. Section III then discusses the “Do
What’s Possible” (DWP) representation [4]: an evolutionary
algorithm (EA) which creates solutions for clockwork puzzle
instances. Section IV explains interesting puzzle instances
and the parameters used by the algorithm. Section V lists off
the instances examined and summarizes the results obtained
on the various instances in tabular form. Section VI states
general conclusions about instance difficulty that can be
made based on the results; closing remarks then mention
future work intended for the clockwork puzzle.

II. CLOCKWORK PUZZLE STRUCTURE AND RULES

An instance of the clockwork puzzle can be described by
five parameters. The first relevant parameter is the number
of lights n. Starting from zero, the values of Zn are arranged
clock-wise in increasing order so that the lights 0 and n− 1
are adjacent

The second relevant parameter for a clockwork puzzle
instance is the number of lights settings c. Referring back
to example 1 again, each light was able to have one of
two settings: “on” or “off”. Every time that the hand of the
clock landed upon a number, its associated light would swap
settings. For clockwork instances with c light settings, the
light settings are arranged in a fixed cycle. The order of
settings in the cycle dictates which settings are “adjacent” to
one another. The best way to express this cycle is to have
each light of the clockwork puzzle be represented by a value
of Zc. Each possible light setting maps onto exactly one value
of this set.

Visually, clockwork puzzle instances with more than two
light settings is presented best by using a spectrum of colors
arranged in a specific order. Examples of this would be the
colors of a traffic light for c = 3 or a rainbow for c = 7.

The third parameter required in order to properly describe
a clockwork puzzle instance is its initial state, w0. Prior to
describing an initial state of a clockwork puzzle, the defining
of a clockwork puzzle state is warranted.

Definition 1. A state, w, of a clockwork puzzle instance with
n lights and c light settings is any combination of ordered
lights in conjunction with a specified hand position. The
name for the set of states of the clockwork puzzle is declared
to be Wn,c.

Lemma 1. For a clockwork puzzle, the set Wn,c contains
ncn unique states. Equivalently, the set Wn,c can be thought
of as Zn ⊗ (Zc)

n.

Proof. Each of the n lights must be set to one of c settings.
These n choices can be made independently from one another
thereby creating at least cn different possible states. The hand
position on the clock can be placed upon one of the n lights;
since this is another independent decision, the number of
states will equal ncn.

The other portion of the proof for this lemma comes from
computing the size of Zn⊗(Zc)

n while noting that each set in
the cross product is equivalent to one of the aforementioned
n+ 1 independent choices.

With this understanding of the set of states as described
in Lemma 1, a numerical representation can be used to
describe any state of the clockwork puzzle. This numerical
representation uses a sequence of n+1 numbers that list off
the position of the hand followed by the settings of the n
lights in sequence. For the sake of clarity, a comma should
separate the hand position value from the light setting values.
The entry before the comma is the k-component of the state,
while the string of values following it is the L-component
of the state. As an example, the clock state in Fig. 1 can be
written as (0, 010101101001) if one asserts that lights being
“white/on” or “grey/off” correspond to the numbers zero and
one respectively; similarly, the state in Fig. 2 is written as
(3, 010001101001).

Now that the states of the clockwork puzzle have been
properly defined: the initial state, w0. is simply a single state
from Wn,c that is presented at the start of a puzzle instance.

The fourth relevant parameter of a clockwork puzzle
instance is its goal states, WG ⊂ Wn,c. The goal states are
a collection of states that the player strives to construct. In
Example 1, the goal states were thought of as the states with
L-components of all zeroes (all lights turned on); this created
n different possible goal states. In a general puzzle instance,
the condition of similar L-components can be disregarded.
Any collection of states in Wn,c can be designated as the goal
states of the puzzle instance; this study avoids dealing with
such general goal state collections and focuses specifically
on goal state collections as seen in Example1.

The last parameter used to specify a clockwork puzzle
instance is the action set A. The action set describes the
available clock hand motions that the player may use to solve
the puzzle; the hand motions in Example 1 serve as a very
simple action set.

In general, action sets are made up of actions, a, that alter
states. The use of an action on a state of the clockwork puzzle
can be thought of as two states being combined together by a
special type of operator. Prior to introducing this operator, let
σ be the permutation which cycles through ordered elements
using the following bijective mapping:

σL = σ(l0, l1, . . . , ln−1) = (ln−1, l0, l1, . . . , ln−2).

Definition 2. Given two clockwork states w1 = (k1, L1) and
w2 = (k2, L2) ∈ Wn,c, define Modulo Rotary Addition of
these elements as:

w1+rw2 =
(
(k1+k2) (mod n), (σk2L1+L2) (mod c)

)
.



In other words,
• Treat L1 as a set of ordered objects and rotate it by the

permutation σk2 (indices shift by k2) to generate M .
• Perform the operations k1 + k2 (mod n) and M + L2

(mod c) to obtain the two components of w1 +r w2.

Applying an action a onto a state wi to create a new state
wi+1 is done by the equation: w′ = a +r w. Though any
action can be described by a state, it turns out that an action
can be described more intuitively in the encoded form of
a = (k, σkL).

The k-component of an action describes the number of
increments the current state’s clock hand ought be rotated
clock-wise. Meanwhile, The L-component of an action de-
scribes how lights ought to be toggled relative to the new
clock hand position; the value of l0 states what modification
ought to be made to the light that the hand lands upon
while l1 states what would happen to the next light in the
sequence and so on with l2. By using σk to describe a,
similar actions can be grouped together based on how they
alter lights relative to hand position.

Several unique actions are what make up the action set A.
The action set is constructed by considering each possible
action (state) and deciding whether or not to include it in
the set; thus, there are 2nc

n

different possible action sets.
To relate actions back to Example 1: the action set in

this case held two elements; by using the aforementioned
notation, the actions can be expressed as (4, σ4e0) and
(3, σ3e0) where e0 is the first standard basis vector; for the
sake of neat notation, linear combinations of the standard
basis vectors ei will almost exclusively be used to describe
the L-components of actions hereafter.

Using these five parameters, one can create an instance of
the clockwork puzzle, but knowing how to set up the puzzle
by itself may not develop a deep enough understanding.
In order to aid with this possible issue: a second more
complicated clockwork puzzle ought to be presented so that
one can better grasp how the game functions.

Example 2. Consider a clockwork instance on six lights.
Each light can take on one of four possible settings arranged
in the following cycle: red, yellow, green, blue, then back
to red. The cycled colors are mapped respectively onto the
values of Z4 starting from zero. The initial state of the
instance is provided by the lop left state in Fig. 3.

The action set A for this instance is {(3, σ3(e1 + e5)),
(1, σ(3e0+e3), (5, σ5(3e0+2e1+e2))}. The implementations
of the three actions are shown in the top right, bottom left,
and bottom right pictures respectively.

With the concept of clockwork puzzle instances now
described in full, the idea of a difficult one becomes more
clear. The choice of Wn,c based on the parameters n and c,
the choice of initial state w0 ∈Wn,c as well as the collection
of goal states WG ⊂ Wn,c, and assignment of the action
set A ⊂ Wn,c at the player’s disposal; this combination of
factors can greatly alter a player’s perceived difficulty of the
puzzle. The choice of these parameters is important because
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Fig. 3. Clockwork Puzzle States After Various Actions

sloppily arranged instances can end up being impossible.
This impossibility lies in the action set being unable to create
any of the goal states when starting from the initial state
of the instance; further discussion on solvable instances is
reserved for Section IV.

III. THE DO WHAT’S POSSIBLE REPRESENTATION

As mentioned, instances of the clockwork puzzle can be
solved using the DWP representation. DWP is an EA that
uses a generative representation; generative representations
do not directly evolve solutions to a problem. Instead, gen-
erative representations evolve blueprints that can be decoded
into solutions to a problem.

The DWP representation does this by evolving an alter-
nator ring, which is read by a decoder in order to create
solutions to a problem. An alternator ring for the clockwork
puzzle can be encoded by placing one of R + |A| symbols
into one of R positions on the ring; these symbols are
then read off cyclically in order to create a solution to
the clockwork problem. The first R of these symbols are
known as the alternators [5]; Each of the R symbols are
written as some value between one and R. When read by
the DWP representation, an alternator will generate one of
two outcomes depending on the previous outcome of said
alternator.

1) If this is the first time that the alternator has been read
or if it previously followed the second instruction for
this operator: read the value of the alternator and jump
to that position in the ring.

2) If one previously followed the first instruction for
this operator: ignore the value of this alternator and
continue reading symbols in the sequence.

The remaining |A| symbols that can be encoded into the
alternator ring are meant to correspond to a move from the
action set of the clockwork puzzle. Upon reading one of
these symbols, the action corresponding to the symbol is



A B 1 B 9 A 4 3 2 AR :

A B A B B B B A B AS :

Fig. 4. Example of String Generated by Alternator Ring

implemented on the current state of the clockwork puzzle
instance. In order to avoid reading an alternator ring indefi-
nitely, a read limit of L symbols is imposed on the algorithm.

By continually reading from the alternator ring, a string of
actions that attempts to solve the clockwork puzzle is formed.
By its design, the alternator ring of the DWP representation
can create strings of actions which are highly patterned;
through a clever use of alternators this pattern becomes long
and convoluted.

Fig 4 gives an example of an alternator ring being read.
The first two entries copy their values onto the string; the
third entry moves the ring reader back to the first entry of the
ring where the same two entries are read again. As it moves
to the third entry a second time, the alternator is skipped and
the ring reader moves to the fourth entry which copies its
value onto the string. The remainder of the string is formed
by following similar logic.

There are a number of reasons why the DWP representa-
tion is an excellent choice of algorithm for solving clockwork
puzzles. First of all, the required length for a string of actions
that solves an instance of the clockwork puzzle is not known,
or fixed, in general; if one were to use another type of EA,
many approaches force one to evolve solutions of a fixed
length. These solutions would either be so small in length
so that they don’t encode enough actions to make a goal
state or so long in length that evolving them ends up being a
computationally lengthy and wasteful process. Previous work
by Ashlock [6] has shown the DWP representation achieving
superior results to direct representation on problems such as
the gray codes and the self-avoiding walk when evolving
alternator rings of a length far shorter than that of a solution
evolved by the direct representation; this result supports the
notion that DWP may not only be effective at solving the
clockwork puzzle, but may also do so in a more efficient
fashion.

When using an EA with the DWP representation on the
clockwork puzzle: a population of P alternator rings are
initially generated at random; the random generation fills
each ring entry by placing one of the R + |A| values based
on a uniform distribution. Each ring is assigned a fitness
value based on the specific fitness function for the clockwork
puzzle.

This fitness function assigns a value to a ring by looking
at the set of states made from applying the action sequence
generated by the alternator ring’s instructions onto the initial
state. For each state that is created by reading off an action,

1 3 4 A 7 7 B 2 9 AP1 :

B 10 A 6 8 9 7 2 3 1P2 :

1 3 6 A 7 7 7 2 3 1C1 :

B 10 1 6 8 9 B 2 9 AC2 :

Fig. 5. Crossover Between Two Parents and Mutation of Children

the individual fitness of a state, w, is computed using the
following formula:

fitness(w) =

n−1∑
i=0

(c− li) (mod c)

After applying this fitness function to each state, the ring’s
fitness is the minimum fitness obtained by any single state
in the set it generated. The formula written for the fitness
function assumes that the goal states of the clockwork in-
stance are those with L-components of all zero. By plugging
in one of these goal states, the returned fitness is zero, thus
the goal for a ring is for it to create a state with the lowest
fitness possible.

Once each ring in the population is assigned a fitness
value, the algorithm evolves said population. Gradual im-
provements are made by performing one-point crossover [7]
on the population and mutating when appropriate. One-point
crossover is used specifically because alternator rings have a
fragile structure as each entry of the ring has its usefulness
supported by the ring’s other entries. To avoid wrecking
promising rings: gradual change is the preferred approach.

Crossover is done by performing tournament selection [8]
wherein a subset of the population of size T is selected
at random. The two most fit and least fit members of the
tournament are identified. The two most fit rings from the
tournament are temporarily labeled as parents; these parent
rings are then combined to create two new child rings
who will usurp the positions of the two least fit population
members from the tournament.

Crossover creates these children by choosing a specific
entry j along the ring length, R. Each child copies the
ring entries of one parent up to and including its jth entry
while copying the other parent for all remaining entries; the
difference between the two children comes from the initial
choice of parent to copy. In order to maintain a diverse
population, mutation is also applied by selecting random
entries of each newly created child ring and overwriting
them. The new children have their fitness evaluated, replace
the unfit tournament entrants in the population, and await fu-
ture tournament selections. Fig. 5 demonstrates this explicitly
with two parents who perform crossover at their sixth entry;
the children then have their third entry mutated.

The EA is expected to do N instances of tournament
selection. Should a ring with zero fitness be obtained by the



algorithm, then the run is halted and the number of crossover
events done prior to solving the clockwork puzzle instance is
recorded; such a run is viewed as a success. Along with the
number of crossover events, the algorithm also records the
length of the action string made by Fthe ring which solved
the puzzle instance. The specific choices for L, R, T , P ,
and N act as hyper-parameters for the EA. Reasons behind
specific selections for each parameter will be discussed more
in Section IV.

One may ponder why an EA is being used rather than
a best-first search algorithm [9]. The best-first search pre-
cisely finds the shortest possible string of actions to solve
a clockwork puzzle instance; however, instances with short
or long solutions don’t necessarily conflate easy or dif-
ficult clockwork puzzle instances. Furthermore, the best-
first search algorithm considers many states at once while
looking for a solution; once an approach proves fruitless, the
algorithm looks back to consider an earlier state from the
puzzle instance. Such an approach would not be valid under
the clockwork puzzle rules as each move is meant to carry
lingering consequences; thus, the EA is used instead.

The fashion in which the DWP representation attempts
to solve clockwork puzzle instances agrees with the rules
properly. Each move made cannot be reversed easily and
instances which can be solved through the use of simple
patterns are quickly identified due to DWP’s affinity to
such structures. For these reasons, is also believed that this
representation better impersonates the approach that a human
player may take when solving a clockwork puzzle instance.
Thus, instances which are identified as difficult by the EA
may be diagnosed similarly by a human player.

IV. EXPERIMENTAL DESIGN

Now that the clockwork puzzle and the EA have both been
introduced, the experiment of this paper can be presented
more clearly: several instances of the clockwork puzzle are
solved the EA in order to discern a measure of difficulty for
said instances. These instances are also presented to a panel
of human players who qualitatively assign difficulty to them
as well.

Prior to describing the format for the analysis of difficulty,
reasoning in regards to the choice of clockwork puzzle
instances provided to the EA requires mention. Consider that
many clockwork puzzle instances are unsolvable; it is trivial
to discern why some instances are unsolvable, but others
cleverly disguise their unsolvability.

Example 3. For the clockwork puzzle instance shown in
Fig. 6, The initial state belongs to W6,2, any state whose
L-component entries all share the same value is a goal state
and the action set permitted is A = {(1, σ(e0)), (4, σ4(e0))}.

No matter what string of actions one uses, it is impossible
to create a goal state.

Adjacent to the conduct of this study, rigorous mathemat-
ical work has developed a set of properties that guarantee a
clockwork puzzle instance is solvable, thus avoiding the an-
noyance of unsolvable instances. This is done by examining
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Fig. 6. An Unsolvable Clockwork Puzzle Instance

the action set and initial state of an instance with states in
Wn,c while presuming the goal states are a collection which
all share the same L-component.

At this time, the properties that assert solvability require
the constraint that the L-components of the action set are
either all zeroes or the first standard basis vector e0. These
types of actions correspond to moves that don’t alter lights
and moves that alter the light which the clock hand lands
upon respectively. To avoid “redundant” or “boring” in-
stances, it is assumed that the k-components of actions do
not collectively share a greatest common divisor – other than
one – with n; it is also assumed that |A| > 1.

Using only these two constraints the instance of a clock-
work puzzle, one constructs the set D. The elements of
this set are n, the k-components of the actions with L-
components of zero, and the differences between the k
components of all the actions that have L-components of e0.
Calculate the greatest common divisor among all elements
in D and label it as Q. If Q = 1 then regardless of the value
of c, any initial state can become any goal state; as Q > 2
or c > 2, unsolvable instances become possible, but one can
ensure a solvable instance by carefully selecting w0 relative
to WG.

The detailed explanation on how Q guarantees solvability
requires a generous amount of devoted space alongside
supplemental definitions and can be provided on request.
To help develop a quick understanding: Q acts as a value
that specifies what subset of the ncn states are reachable
from an initial state w0. The value of Q implies that there
exist n

Q reachable states with the same L-component as an
arbitrary reachable state w; from these states, only n

Q states
with unique L-components can be made using the action set.
The result follows after additional elaboration.

Once an instance is solvable, it is sensible to assume that
supplementing its action set with additional moves would not
compromise solvability and only introduce greater versatility
to the player as they solve the clockwork puzzle instance.
With solvability in mind, the instances which will be ex-
perimented upon by the EA will attempt to diversify across
different settings while still ensuring solvability. To alter each
setting individually allows for insight to be obtained on what
factors contribute towards the making of a difficult puzzle.

These settings include the alteration of four of the five
parameters for a clockwork puzzle instance. The number of
lights on the puzzle, the number of settings available to a
light, the initial state of the puzzle, and most importantly of



all: the action set made available to the puzzle.
The goal states of the experimented instances are to be

fixed as the collection of states with L-components of all
zeroes; this has been done in order to streamline the EA’s
fitness function. Putting aside efficiency, a computer would
not appreciate the difficulty of having to create an irregular
goal instance since the visualization of a state means nothing
to it. Two instances can have identical action string solutions
while only differing in their choice of w0 and WG. Previous
work done by Kotovsky [10] on the Tower of Hanoi puzzle
has shown that two puzzle instances can be harder for
intelligent human players even when they have identical
action string solutions. Such visual confusion is lost on an
EA and so is eschewed for this study.

Along with the parameters of the clockwork puzzle, the
EA parameters have also been calibrated for testing clock-
work puzzle instances. The length of entries for the alternator
rings and the ring reading limit were set to R = 15 and
L = 200 respectively. The population of rings being evolved
was set to P = 28 and the number of crossover iterations
permitted prior to abandoning a run was set at twenty-
thousand.

Using these hyper-parameters, twenty runs of each puzzle
instance were attempted. As mentioned briefly at the end
of Section III, the EA recorded two pieces of information
from each run of a clockwork puzzle instance: the number
of crossover events required to create a ring that generates a
goal state and the length of the string of actions required by
said ring to make a goal state.

These two values have been recorded for every run in each
instance. The two results are averaged across all twenty runs
for each clockwork puzzle instance and a ninety-five percent
confidence interval has been constructed as well. Using these
values it is reasoned that the more iterations that it takes the
EA to solve a clockwork puzzle instance: the more difficult
this instance must be for a human player.

To help support this view, the action string lengths con-
structed by the EA can be used as supporting evidence to
this claim; puzzle instances whose solutions have longer
action strings can be thought of as more difficult. This is
due to the DWP representation relying upon trial and error
as it gradually hones in on a goal state. It does so by
gradually sculpting elaborate action strings. In general, a long
action string does not imply a puzzle instance is difficult
as the string may be highly patterned and obtained almost
immediately by DWP.

Meanwhile, the panel of human players are presented
the suite of clockwork puzzle instances and prompted to
solve said instances. The players are encouraged to rank the
puzzles in terms of difficulty to the best of their ability.
Comparisons will then be drawn between the qualitative
difficulty experienced by the players and the quantitative
difficulty found by the EA.

V. RESULTS

The first set of clockwork puzzle instances focused demon-
strating the variable difficulty that comes from altering

Iter. Iter. 95% CI Length Length 95% CI
A1 0.5 ±0.6 17.7 ±7.1
A2 24.3 ±9.6 45.6 ±13.5
A3 42.1 ±17.1 48.8 13.3
A4 203.2 ±124.0 33.3 ±11.1
A5 47.1 ±21.6 37.4 ±10.5

TABLE I
VARIOUS INITIAL STATES FOR PUZZLE INSTANCES

Iter. Iter. 95% CI Length Length 95% CI
B1 0 ±0 12 ±0
B2 52.1 ±18.2 55.8 ±10.4
B3 69.3 ±22.3 ± 55.4 ±9.6
B4 722.5 ±334.4 48.4 ±8.1
B5 103.4 ±36.0 39 ±9.3

TABLE II
VARIOUS INITIAL STATES WITH LIMITED ACTION SET

the initial state of the instance. In order to do so, each
instance uses the set of states W12,2 and the action set
A = {(7, σ7e0), (5, σ

5e0), (3, 0)}. The clockwork puzzle
instances in this first set were made distinct by using five
distinct initial states. The k-components were all set to
zero while each individual instance had the following L-
components:
• (A1) All lights turned off.
• (A2) Every even-numbered lights begin turned on.
• (A3) Every numbered light that can be evenly divided

by three begin turned on.
• (A4) Light at sixth position begins turned on.
• (A5) “Noisy” mix of light settings.

The term “noisy” used for instance (A5) is meant to suggest
that light settings were done at random with the hope of
creating a sequence of lights entirely lacking in pattern. Table
I shows the results for each instance; preliminary observation
of the results suggests that while the EA favored certain
instances, it found solutions to all of them quite quickly. The
human panel of players found that they experienced a similar
hierarchy of difficulty as the noisy and single toggled light
instances proved to be more difficult then the other three;
players also felt that all instances in this first set were easy.

The second set of five clockwork instances (B1-B5) were
designed to be remarkably similar to the first five. The
number of lights and the number of lights settings are still
set to twelve and two respectively. The initial states for
each instance are also the same as their (A ) counterparts.
What makes this set of instances different is the removal of
(3, 0) from the action set. The purpose of these instances is
to demonstrate that the inclusion of inconsequential actions
that don’t alter the L-component of a state ultimately make
for easier puzzle instances. The results for these instances
are shown in Table II. Comparison between each numbered
instance supports the suggestion that (3, 0) simplified the
puzzle for the EA. This result was also found by the panel
of human players who found puzzles more frustrating when
(3, 0) was removed from the action set.

The third set of clockwork puzzle instances kept the num-
ber of lights at twelve. The action set {(7, σ7e0), (5, σ

5e0)}



Iter. Iter. 95% CI Length Length 95% CI
C1 1.0 ±0.6 24 ±0
C2 186 ±84.4 29.3 ± 8.6
C3 778.5 ±2315.3 41.7 ±8.6
C4 3398.1 ±1551.6 49.9 ±10.9
C5 14536.5 ±3454.4 27.3 ± 18.1
C6 13899.9 ±3839.9 15.3 ±10.9

TABLE III
VARIOUS INITIAL STATES WITH THREE LIGHT SETTINGS

Iter. Iter. 95% CI Length Length 95% CI
D1 0.9 ±0.6 30.3 ±9.9
A5 47.1 ±21.6 37.4 ±10.5
D2 6138.4 ±3450 46.8 ± 13.5
D3 15801 ±3038.3 22.3 ±16.0

TABLE IV
“NOISY” INITIAL STATES WITH VARIABLE NO. OF LIGHTS

also remains. The newly introduced difference is that the set
of states used by the instance is now W12,3. The initial states
have also been altered to reflect the more complex states that
one may start with as the number of light settings increases.
• (C1) All lights begin at the setting furthest from that of

the light setting which identifies the goal.
• (C2) Starting from the arrangement (C1), the even-

numbered lights have their setting incremented by one.
• (C3) Starting from the arrangement (C2), the numbered

lights that can be divided evenly by three have their
setting incremented by one.

• (C4) Starting from arrangement (C1), a single light at
the seventh position was set to the goal position.

• (C5) “Noisy” mix of light settings.
• (C6) “Noisy” mix of light settings, but with five light

settings instead of three.
By referring to Table III, one can see that the EA took much
longer to solve this set of instances than the first two sets
of instances; this was also the first set of instances where
failure was recorded as an outcome for a run. The human
panel found these instances very difficult compared to the
first two sets; almost every member abandoned their attempts
for instances (C4-C6).

In a similar fashion of expansion, the fourth set of in-
stances altered the number of lights on the clock while fixing
the number of light settings at two and using the same action
set as the second and third instances; the initial states for
these instances were all designed to be “noisy”. For each
instance (D1,D2,D3) in this set, the number of lights were
six, eighteen, and twenty-four respectively; instance (A5) can
also be a member of this set due to its similar arrangement.
The results gathered in Table IV gave the predictable result
that more lights for an instance equated to the EA requiring
more time to create a solution. The panel of players also
found that increasing the number of lights made for a more
difficult puzzle; however, instances with c > 2 proved to be
far more frustrating.

This leads to the fifth set of instances. These instances used
the states W12,2. The initial state for each instance was some
noisy arrangement of lights settings. Each instance altered

Iter. Iter. 95% CI Length Length 95% CI
E1 46.2 ±18.5 53 ±9.8
E2 43.1 ±16.8 52.8 ±11.4
E3 22.1 ±7.6 36.7 ±11.1
E4 33.3 ±18.3 49.6 ±12.3
E5 12.1 ±4.4 43.6 ±13.3

TABLE V
“NOISY” INITIAL STATES WITH VARYING ACTION SETS BASED ON Q

Iter. Iter. 95% CI Length Length 95% CI
F1 4215.6 ±3014.2 50.9 ± 14.2
F2 5026.9 ±3127.7 35.8 ±11.9
F3 6705.25 ±3888.6 39.6 ±16.1
F4 1680.25 ± 1941.9 49.35 ± 15.8

TABLE VI
RESULTS FROM ACTION SETS WITH IRREGULAR MOVES

the value of Q computed from their action sets as discussed
in Section IV; these action sets contained two moves: both
with an L-component of σke0. What differed was the two
distinct k-values of the actions.
• (E1) k-components of two and one for the actions; Q

value of one. Instance contains 49152 reachable states.
• (E2) k-components of three and one for the actions; Q

value of two. Instance contains 24576 reachable states.
• (E3) k-components of four and one for the actions; Q

value of three. Instance contains 12288 reachable states.
• (E4) k-components of five and one for the actions; Q

value of four. Instance contains 6144 reachable states.
• (E5) k-components of seven and one for the actions; Q

value of six. Instance contains 3072 reachable states.
The results from Table V appear to suggest that as the
number of reachable states decreases: the easier the instance
is for EA; however, the differences between these instances
are close to negligible compared to earlier results. The panel
of human players reached a similar conclusion as they barely
noted any difference in puzzle difficulty between the five
instances.

The last set of problem instances attempted to consider
how puzzle difficulty may be affected when one includes
actions in their set different from those used in the previous
five instances. These instances all used the same initial state,
number of lights, and number of light settings as that of (C3);
their action sets were also like that of instance (C3), but each
separate instance made an addition.
• (F1) Added the action (3, σ3(2e0)).
• (F2) Added the action (3, σ3(e2 + e11)).
• (F3) For this instance, both of the actions in (F1) and

(F2) are added to the set.
• (F4) Two identical actions which both did nothing were

added to the action set.
Table VI shows the results of these irregular action sets;
the observations appear to suggest that the EA gets easily
confused when presented with an abundance of unusual
choices.

The last instance (F4) was included in order to showcase
this particular failing of the EA. The two added moves did



nothing but occupy space in the ring and the EA wound up
taking more iterations on average than it did for the similar
instance (C3) to find a solution. The human players found
these instances easier as they took advantage of irregular
moves when possible and disregarded them otherwise.

VI. CONCLUSIONS

From the results gathered by Section V, there are some
general results about clockwork puzzle instance difficulty
which can be summarized. It appeared that each of the
parameters that contributed towards a clockwork puzzle
instance contribute to the measured difficulty of an instance.

The most plainly obvious result is demonstrated by the
third, fourth, and fifth set of instances: as one increases the
number of reachable states that exist within a clockwork
puzzle instance, the harder that the puzzle instance is for both
humans and the EA. This increase in the number of states can
either be done by increasing n, increasing c, or by carefully
selecting an action set and controlling the value of Q; the
last of these options seemed to produces no difference to
humans, but it is speculated that further investigation with Q
on larger values of c may yield more pronounced differences
in perceived difficulty. It makes intuitive sense that instances
with a larger absolute number of reachable states would be
more difficult to a human player as navigating through a
large space of clock states would prove to be challenging; the
player would on average require a longer string of actions to
create a solution which introduces more chances for making
an error on their part.

This leads to the conclusion about the impact initial states
have on instance difficulty as shown by the first three sets. It
does not come as much surprise that initial states which are
highly patterned can be more easily solved than instances
whose initial states are comprised of a noisy mix of light
settings; the EA which favors generating highly patterned
strings has a more difficult time solving these instances and
needs to gradually develop a very specific string in order to
solve them properly. The actual length of solution required
to solve the puzzle can be deemed inconsequential so long
as the actual actions which make up the string don’t seem
obvious to the player at their current state in the puzzle;
manipulating the initial state and the goal states accordingly
can confuse a player as they attempt to make a solution.
This notion links back to Kotovosky’s results on Tower of
Hanoi which showed other discrepancies between human and
computer reasoning on a puzzle

Putting aside initial states: the action set of an instance also
has an impact on difficulty. The first two sets of instances
in Section V show that the inclusion of actions which allow
one to move the clock hand while not affecting any light
settings creates an easier puzzle instance. The panel of human
players felt that the inclusion of this action almost acted as
“training wheels” for the puzzle as they were afforded far
more leniency in their solution.

On the other side of difficulties relating to the action set: it
appears that the inclusion of additional unusual actions to the
set create an instances which are more difficult. This result

was not shared by the panel of human players; when they
have an unusual move at their disposal, the player only used
it when it would be a clear benefit to them and avoided it
otherwise.

Briefly looking at the length of solutions made by DWP, it
appears that a wide variety of solution lengths were obtained
by the algorithm. This neat feature showcases the myriad of
ways one may attempt to approach the puzzle. The panel of
human players had similar results as each presented slightly
different solutions to the same instance. Difficulty could be
added to a puzzle by enforcing a limit on the number of
moves made by the player.

Future work will hope to look at even more clockwork
puzzle instances: as both mathematical objects and as puz-
zles. In the case of the former, there is still much work to be
done in succinctly proving which clockwork puzzle instances
are solvable. At this time, it is still not known whether an
instance is solvable when its action set is solely comprised
of unusual actions that don’t have L-components of either
σke0 or all zeroes. In practice, a separate algorithm could just
generate all possible states that are obtainable when starting
from each goal state and using the action set of an instance;
an initial state could then be picked from this set of states and
said instance would be guaranteed as solvable. This approach
may be adopted for future use, but whether there exists a
sound mathematical proof behind what properties permit an
instance to be solvable is still of acute interest. It is hoped
that as more results are uncovered for the clockwork puzzle,
they may hold applications in other areas of math as well.

For now, the novel clockwork puzzle is simply meant to
be used as a fun puzzle that could be included as a possible
problem in a testing suite for general algorithms which are
being applied towards combinatorial problems. The puzzle
would also be suitable as a feature within video games in
order to test a player’s spatial reasoning ability.
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