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Abstract—This paper presents an algorithm for the offline
generation of lip-sync animation. It redefines visemes as sets of
constraints on the facial articulators such as lips, jaw, tongue.
The algorithm was comparatively evaluated with 30 healthy
participants by presenting a set of phrases delivered verbally by
a virtual character. Each phrase was presented in two versions:
once with the traditional lip-sync method, and once with our
method. Results confirm that the suggested solution produces
more natural animation than standard keyframe interpolation
techniques.

Index Terms—virtual reality, computer games, lip-sync anima-
tion, user-studies

I. INTRODUCTION

The purpose of lip synchronization (or lip-sync) is to rein-
force the illusion that the voice of an animated character is
coming out of the character’s mouth. This can help create
an emotional connection to the character, and improve the
immersion of the viewer in a virtual environment. There are
currently two leading techniques in lip synchronization. One
is capturing the performance of human actors via motion
capture techniques, the other is hiring professional animators
to produce the facial animations manually. Both methods
deliver high-quality results, but they are time-consuming and
expensive. As such, they are not suitable for applications
where a large quantity of speech animation is required (e.g.
role-playing games). In such applications, it is preferable to
generate the majority of speech animations automatically.

Lip animation can also be automatically generated from
audio input or a phonetic transcript. However, although signif-
icant advances have been made recently [1], [2], the resulting
quality is still not on par with the two aforementioned ap-
proaches. In practice, the automated approach tends to be used
only to generate low-quality baseline animations. Animators
then try to refine as many animations as possible, and for the
most important scenes, they often use motion capture.

When synthesizing speech animation, the speech audio we
want to synchronize to is usually segmented into atomic units
of sound, called phonemes. For example, the “m” sound in the
word “mother” is described by the phoneme /m/. A viseme,
then, is a group of phonemes, all of which are visually similar
to each other, but distinguishable from phonemes that belong
to another viseme [3]. Some phonemes are hard to distinguish

978-1-6654-3886-5/21/$31.00 ©2021 IEEE

visually from one another and multiple phonemes may map
to the same viseme.

This paper proposes a novel solution to improve the quality
of auto-generated lip-sync animation. Even despite the lower
quality of its results, the automated approach still has an
irreplaceable role due to its time- and cost-saving properties.
Traditionally, auto-generated lip-sync animation is achieved
via keyframe interpolation. First, the speech audio is seg-
mented into short units known as visemes. For each viseme,
the traditional approach defines a viseme shape: the shape of
the mouth that is required to produce the given sound.

These poses are used as animation keyframes placed at the
onset of each viseme, and the final animation is created by
interpolating between these keyframes. The visemic context or
co-articulation (i.e. how the appearance of the given viseme is
influenced by the visemes that come before and after it) is usu-
ally disregarded, although there are works that have suggested
solutions. Notable methods involve dominance functions [4]
or neural networks [5].

In this work, we suggest an alternative solution for modeling
co-articulation (“Fig. 1”). We propose to replace each viseme
shape with a set of constraints on certain parameters of the face
(e.g. mouth openness). Instead of specifying a single facial
pose for each viseme, the constraints define a wide range of
allowed poses. Since each viseme in our model has constraints
for only some of the facial parameters (e.g. mouth width, jaw
openness, etc), the parameters that are not constrained by the
given viseme are free to be driven by neighboring visemes.
Effectively, this models co-articulation and leads to more fluid
and natural motion.

Our method was evaluated in a study with 30 participants.
Participants were presented with a set of phrases delivered
verbally by a virtual character. Each phrase was presented in
two versions: once with the traditional lip-sync method, and
once with our method. Participants were asked to rate the lip
motion for each phrase in several aspects, such as naturalness
or perceived quality.

In all measured aspects, our method significantly outper-
formed the traditional method. On a scale from 0 to 100%,
the naturalness of our method was rated at 70% on average,
compared to 56% naturalness for the traditional method. In
terms of quality, our method was rated at 75%, while the
traditional method received a rating of 60%. Overall, the



Fig. 1. An example user interface for viseme tagging.

average score of our method was 73%, which is a significant
improvement over the 60% rating of the traditional method.

II. RELATED WORK

There are three fundamental approaches to lip synchro-
nization: animation by hand, facial performance capture, and
automatic synthesis. Hand-made facial animation has the ad-
vantage of having full control over the performance. A skilled
artist can add more expressiveness, even beyond the limits of
what an actor could do. However, animating by hand is time-
consuming, and as such, it may not be suitable for large-scale
projects that require many hours of facial animation (such as
an expansive role-playing game), especially if their budget is
limited. This section will focus on the other two approaches
(facial performance capture and automatic synthesis).

A. Facial Performance Capture

Performance capture records motion data of a human actor
and transfers it onto a virtual character [6]. By recording the
performance of an actor, we can capture all the intricacies of
their facial movements in great detail. This approach currently
achieves the highest-quality results, but it is also the most
expensive method. The current industry standard in film is
to track markers on the face using a helmet-mounted camera
(HMC) rig [7]. Tracking precision can be an issue, requiring an
animator to clean up the recorded data manually, which can be
quite laborious. The resulting animations are difficult to edit
or refine [8]. The method also generally requires expensive
equipment and professional actors.

Since motion capture equipment is so expensive, there have
been multiple works that attempt to reduce the required cost.
Cao et al. [9] have presented a method that adds high-fidelity
facial detail to low-resolution face tracking data. However,

although the method produces plausible wrinkles, they are still
a mere approximation limited by the training data, and it may
deliver unexpected results when presented with a pose outside
of its training data set. Ma and Deng [10] suggest a geometry-
based method for capturing facial performance that includes
wrinkle information, while still retaining low-cost acquisition.
Their method can reconstruct high-resolution facial geometry
and appearance in real-time and with superior accuracy.

Laine et al. [11] utilized deep learning to reduce the amount
of manual clean-up and corrections required to maintain a
high-quality output. Their pipeline involves manually cleaning
up a small subset of the input video footage to train a deep
neural network, which is then used to automatically process
the remaining video footage at a very high speed. While the
training data must be recorded in stereo, the remaining footage
may be monocular. In comparison with previous methods, their
method delivers increased accuracy, especially in the mouth
and eye regions.

B. Automatic Synthesis

Existing methods of automatic synthesis can be grouped
into two categories: (1) data-driven methods and (2) procedural
methods based on key-frame interpolation.

1) Data-driven Methods: Data-driven methods of lip-sync
animation are generally based on either (a) concatenating
short speech animation units sampled from a large data set
of motion-captured speech, or (b) sampling from statistical
models extracted from motion-captured data [12]–[15].

Taylor et al. [5] proposed to replace viseme shapes with
animation units, called dynamic visemes. They are short
animation units extracted from a training data set, which can
then be rearranged in a different order and blended into each
other. This technique produces good results for phrases that are



similar to the training data, but to consistently provide good
results for any possible phrase, an exhaustive data set that
covers all possible sequences of phonemes would be required.

Deng et al. [16] proposed a method that builds co-
articulation models based on motion-capture data, using
weight decomposition. Again, as with most other data-driven
methods, their method would provide best results with a
complete training data set of all possible combinations of
phonemes. Deena et al. [17], [18] presented an approach based
on a switching state model. One disadvantage is that they
require the entire training data set to be manually phoneme-
tagged.

Asadiabadi et al. [19] used deep learning to train a speaker-
independent model that can reproduce the emotions of an
actor. In another approach, Long Short-Term Memory (LSTM)
networks were used to improve the mapping from phoneme
sequences to their dynamic visemes [20], [21]. Karras et al.
[2] presented a deep-learning-based method that generates lip-
sync animation in real time, based on real-time audio input.
Their method derives speech curves directly from audio, reduc-
ing the error that is otherwise accumulated over multiple steps.
Zhou et al. [8] contributed another solution for automatic real-
time lip-synchronization from audio, using LSTM networks.
Their method produces output that is more suitable for an
animator-centric workflow.

2) Procedural Methods: The traditional way of audio-based
procedural synthesis is to analyze input audio to identify
visemes, align keyframes (viseme shapes) to these visemes,
and then obtain the final animation by interpolating between
these keyframes [22]. Uz et al. [23] used physically-based
modeling of facial muscles to produce speech animations. The
muscles are modeled as forces deforming the polygonal mesh.
A specific mouth shape is assigned to each phoneme by setting
parameter values that represent the muscles.

Traditional lip-sync methods assign a single specific mouth
pose to each viseme. In real speech, however, the appearance
of a viseme on the lips (and other articulators) may be
influenced by visemes coming before it or after it. For instance,
when pronouncing the syllable “moo”, the “oo” sound requires
the lips to pucker. In anticipation of this, the lips will pucker
already during the “m” sound (see “Fig. 2”). This phenomenon
is called visual speech co-articulation. The term co-articulation
“refers to changes in speech articulation (acoustic or visual)
of the current speech segment (phoneme or viseme) due to
neighboring speech” [24].

Löfqvist [25] suggested modeling co-articulation using
dominance functions. Cohen and Massaro [4] implemented
the model proposed by Löfqvist, using negative exponential
functions as the dominance functions. Cosi et al. [26] have
further improved upon this implementation by adding a resis-
tance coefficient for each dominance (i.e. for each phoneme-
articulator pair). King and Parent [27] criticize the choice of
negative exponential functions, which are continuous only at
the C0 level.

Xu et al. [28] modeled co-articulation by creating anima-
tions for transitioning between pairs of phonemes. In another

Fig. 2. The facial pose produced when pronouncing the phoneme /m/ in the
syllable “moo”.

approach, Edwards et al. [1] introduced two parameters: jaw
and lip. The values of these two parameters dynamically
change depending on the tone of speech detected in the audio.
Lazalde et al. [29] proposed a constraint-based approach: each
viseme shape is defined as a distribution around an ideal target.
An optimization function is used to produce a trajectory that
satisfies the constraints given by each distribution, as well
as other constraints such as an acceleration/deceleration limit.
Our method is based on a similar principle.

III. IMPLEMENTATION

When we speak, we produce various sounds by increasing
or decreasing air pressure and constricting the airflow at
certain points (throat, tongue, lips, teeth) [30]. To pronounce
a phoneme, the face must first satisfy certain conditions. For
example, to produce the sound associated with the phoneme
/m/, the lips must be closed. Note that this is the only condition
for /m/. As long as the lips are closed, the jaw could be
open, or the lips may be pursed in anticipation of the next
phoneme, and we can still clearly pronounce the /m/. This
happens during speech all the time, due to co-articulation.

This is why it is not sufficient to use a pre-defined shape as
the facial pose for each viseme. Instead, we suggest defining
this pose as a set of constraints on parameters of the speech
articulators (e.g. jaw openness, lip pursedness, etc). When lip-
syncing, these constraints must be satisfied at the onset of the
given viseme in the audio. Since visemes in our model do
not have constraints defined for all parameters, the parameters
that are not constrained by the given viseme can be driven by
nearby visemes. This allows neighboring visemes to mutually
influence their appearance, modeling co-articulation.

The facial rig provides controls for the following pa-
rameters: Mouth open/close; Mouth wide/narrow; Mouth
up/down; Mouth frown; Jaw forward/back; Jaw up/down;
Tongue up/down; Lower lip in/out; and Upper lip in/out.
Crucially, the facial rig must be constructed such that each
pair of opposing articulator parameters (i.e. mouth wide and
mouth narrow) must cancel each other out. Next, we define
five types of constraints:

• Absolute - e.g. “The mouth must be exactly 0% open”



• Minimum - e.g. “The mouth must be at least 20% open”
• Maximum - e.g. “The mouth cannot be more than 10%

open”
• Range - a combination of Minimum and Maximum, e.g.

“The mouth must be at least 10%, but not more than 30%,
open”

• Relative - e.g. “The mouth goes 5% wider compared to
its previous state”

Our viseme definitions are loosely based on viseme defi-
nitions suggested by [31]. The algorithm generates animation
curves synchronized to a given audio phrase. As input, the
algorithm takes a series of timestamps tagged with visemes.
These timestamps should be aligned to the phonemes in
a speech recording. First, the sequence is split into tracks
per articulator parameter. The result of this step is a set
of keyframe sequences, each of which corresponds to the
motion of one articulator parameter. Each keyframe contains
a timestamp and a constraint structure. This step is illustrated
in “Fig. 3”, which shows the waveform of the phrase “Nice
job!”, with viseme tags below it.

Fig. 3. Visualization of the first step of the algorithm.

Arrows point from each viseme tag to the definition of the
corresponding viseme. Below the large arrow, we see the same
data transformed into the form of separate keyframe sequences
for each parameter. Next, each track is processed separately.
The first step when processing one of the tracks is to split
the keyframes by their constraint types as shown in “Fig. 4”.
At this point, we only have keyframes for the apex of each
viseme. We also need keyframes for when the motion starts,
i.e. when the mouth starts opening. Wherever there is a long
enough pause between keyframes, we insert a keyframe with
the value of 0 (i.e. neutral pose). These zero keyframes are
added to the list of keyframes with absolute constraints.

For each keyframe with a min/max constraint, we first
evaluate the curve in its current state at the given time. If the

Fig. 4. Visualization of splitting track keyframes by constraint type.

curve already satisfies the constraint, no keyframe is added;
otherwise, we add a keyframe with the value of the min/max
constraint. Finally, we add relative keyframes by adding their
value to the value evaluated from the curve at the given
timestamp. The curves obtained by processing all parameter
tracks are joined to make up the final animation clip. Due
to the physical limitations of the face, there is a limit to the
acceleration and deceleration rate of the speech articulators
[32]. Our algorithm is capable of generating animations that
exceed these limits, in case two visemes occur in quick
succession. This gives an appearance of over-articulation. A
post-processing pass is applied to correct this.

The user can input the maximum articulator velocity al-
lowed for the given phrase. Note that low values will result in
the appearance of mumbling, whereas higher values will result
in over-articulation—this may be desirable, depending on the
intended style of speech. To enforce the maximum articulator
velocity, we process each animation curve separately. In each
curve, we examine each pair of successive keyframes. If the
slope between the values of these successive keyframes ex-
ceeds the maximum velocity, then both keyframes are adjusted
to satisfy the velocity constraints. The pseudo-code for this is
detailed in “Fig. 5”.

Fig. 5. Pseudo-code for post processing the animation curves.



IV. METHODOLOGY

A user study was conducted to compare our method to
the standard method of blending between static key poses.
30 participants were asked to rate example lip-synchronized
phrases in seven aspects:

• Natural (“The lip motion seemed natural.”)
• Robotic (“The lip motion seemed robotic.”)
• Artificial (“The lip motion seemed artificial.”)
• Immersion-Breaking (“The lip motion breaks my immer-

sion.”)
• Quality (“I was satisfied with the quality of the lip-sync

animation.”)
• Temporally synchronized (“The lip animation was syn-

chronized well with the speech audio.”)
• Visually correct (“The lip animation matched the speech

audio well.”)
The phrases used were: “Can you keep a secret?”, “Oh

yeah, everything’s fine.” and “I can’t believe I let you talk me
into this!”. Each phrase was presented once with the baseline
method and once with our method. The order was randomized
for each participant. To aid with immersion, the main part of
the experiment was conducted in an immersive virtual reality
(VR) environment (“Fig. 6”).

Fig. 6. VR Environment.

A. Participants and Procedure

The sample was made up of 30 test subjects, consisting
of 16 male and 14 female participants (“Fig. 7”). Before
the start of the experiment, each participant first received an
explanation of the task. They proceeded to sign a consent form
and fill out their personal information. The users were then
instructed on the use of the HTC Vive Pro head-mounted
display (HMD). Once they put on the helmet, they were
presented with a virtual testing environment in VR. The testing
environment contained a virtual character, a button to trigger
the playback of the current phrase, and a world-space GUI
panel. The GUI panel was used to present questions regarding
the current phrase, and to input answers to these questions.

In this environment, participants were allowed to replay any
given phrase an unlimited number of times, and to closely
examine the lip motion from any angle or distance, taking

Fig. 7. User participating at the user study.

full advantage of the free movement provided by the VR
technology. The questions were presented inside the virtual
environment. This was done to avoid having to interrupt the
flow by having the user take off the headset repeatedly. Finally,
participants were given space to ask questions, express their
opinion, and give feedback both on the experiment and on
the lipsync animations. Optionally, they could provide written
comments on a sheet of paper.

B. Questionnaires

Two different questionnaires were used together with demo-
graphics and qualitative comments. The first one is the VR UX
questionnaire [33] which focused on the user experience, and
the second one is the NASA Task Load Index (TLX) [34] that
focused on cognitive demands. The VR UX questionnaire is
a compilation of several well-known questionnaires including:
presence, engagement, immersion, flow, emotion, judgment,
experience consequence, and the technology adoption.

V. RESULTS

A. Questionnaire Results

In the VR portion of the experiment, each participant was
presented with 6 lip-synchronized phrases (3 phrases made
with the baseline method, 3 with our method). They were
asked to rate each phrase in seven aspects. The mean measured
values of each aspect for each of the two methods can be seen
in “Fig. 8”.

The first three aspects (Natural, Robotic, Artificial) were
focused on the naturalness of the lip-sync animation. It was
presented in three different phrasings to minimize the effects
of confusion and misinterpretation. The baseline method was
rated as approximately 56% natural on average, whereas our
method was rated as 70% natural. As expected, the Robotic



Fig. 8. Comparative results.

Fig. 9. VR questionnaire results.

and Artificial ratings closely mirrored the Natural rating for
both methods.

The next rated aspect was Immersion-Breaking. The base-
line method was rated as approximately 40% immersion-
breaking. This could mean that the participants were used
to seeing lip animation of poor quality (in comparison with
performance-capture animation) and that they can tolerate it.
However, our method has significantly improved upon this
with an Immersion-Breaking rating of only 24%.

“Fig. 9” shows the mean values of VR experience aspects
measured by the questionnaire. the experiment received a low
task load rating: 4.96 out of 20. To obtain the overall score, we
first multiply each rating by its corresponding weight. Then,
we divide the sum of these adjusted ratings by the sum of the

Fig. 10. NASA TLX questionnaire results.

weights (which adds up to 15). “Fig. 10” shows the measured
individual ratings, their weights, and the overall rating. It is
worth mentioning that the ratings are measured in the 0-20
range and the weights are in the 0-5 range.

B. Correlations

All gathered data were analyzed for correlations by exam-
ining their Pearson correlation coefficients. Only correlations
significant at the 0.05 level (2-tailed) were considered. A
statistically significant correlation was found between the
Overall ratings of both methods (r = .541, p = 0.004). Our
interpretation is that participants have various standards and
they rated the lip animations relative to these standards. They
also consistently rated our method higher relative to the
baseline method.

All ratings of our method (Natural, Robotic, Arti-
ficial, Immersion-Breaking, Quality, Temporally Synchro-
nized,Visually Matching) were pairwise correlated at least
at the 0.005 level, showing that participants were consis-
tent in their answers. Similarly, all of these ratings for the
baseline method were mutually correlated at the 0.01 level,
except for the pair Robotic and Temporally Synchronized.
This exception makes sense, given that both methods used
identical timestamps, and thus the temporal synchronization
was the same. Users correctly identified that despite good
temporal synchronization, the lips moved unnaturally fast with
the baseline method—which could be perceived as robotic.
Multiple users also pointed this out in their written feedback.

Correlations were also present between the two methods,
especially in the Temporal Synchronization rating (r = .768,
p = 0.000001) as is explained in the previous paragraph.
The ratings of the last three aspects (Quality, Temporally
Synchronized, Visually Matching) were all correlated across
the two methods at the 0.01 level. Exceptions were the
Immersion-Breaking rating and the Robotic rating, which were
not correlated with any of the ratings of the other method.
Participants who achieved a higher Presence rating based
on their questionnaire answers were more likely to rate our
method favorably, as evidenced by the strong correlation found
between the Presence rating and the Overall rating of our
method (r = .571, p = 0.001).



Presence correlated with each of the aspects that make
up the Overall rating at the 0.05 significance level. Such
correlation was not found between Presence and the Overall
rating of the baseline method (r = .246, p = 0.191) or any of
its sub-ratings. This could suggest that our method holds up
better under closer inspection. The same could be said about
participants with a high Emotion rating from the questionnaire,
given the correlation found between the Emotion rating and
the Overall rating of our method (r = .467, p = 0.009). Again,
no such correlation was found with the rating of the baseline
method (r = .256, p = 0.172).

Correlations were found between some of the aspects mea-
sured by the questionnaire – namely Presence, Immersion and
Flow – showing that they are closely related. The strongest
correlation was between Immersion and Flow (r = .580, p =
0.001), followed by Presence and Flow (r = .436, p = 0.016),
and finally Presence and Immersion (r = .413, p = 0.023).
Finally, no significant correlations were found between the
daily computer use rating and other measured quantities.

C. Qualitative Comments

At the end of the evaluation, each participant was asked to
give optional feedback, both on the lip-sync animation and
on the experiment itself. While most participants praised the
animations both verbally and in the feedback sheet, there have
also been some valid points of criticism.

A number of participants suggested that the experiment
should have included a practice stage, where they could
familiarize themselves with the virtual environment and get
a feel for the baseline lip-sync quality, arguing that they had
nothing to compare the first phrase to. Another interesting
point that was mentioned is that the lip motion seemed too
isolated from the rest of the face, mostly because of the lack
of emotion—they reported that some of the phrases sounded
like they carry emotion, while the facial expression remained
neutral.

After they correctly identified that they were comparing be-
tween only two lip-sync methods, some participants expressed
that they wished the number of methods had been mentioned
in advance. However, this information had been intentionally
withheld until the end of the experiment, with the intention
of minimizing bias. Finally, some participants reported that
there was too much paperwork involved in the experiment,
and several other participants have expressed mild displeasure
with the amount of paperwork verbally. However, none of the
participants were discouraged enough to withdraw from the
experiment.

VI. DISCUSSION

Our approach has multiple advantages over other ap-
proaches. First of all, co-articulation is not limited to neigh-
boring visemes. Some solutions only allow co-articulation
between pairs or triads of phonemes/visemes, even though in
real speech, co-articulation can affect phonemes that are up
to 5 units apart [32]. In our solution, important poses (such
as bilabial stops) do not get broken due to co-articulation of

neighboring visemes. This can be a problem with the approach
based on dominance functions [4].

The output is in the form of animation curves. Animation
curves can easily be edited by an animator, allowing for further
refinement. Some other approaches control the facial rig at
run-time, which also means that there are no animations to
be manually adjusted by an animator. Moreover, our approach
only requires an animator to set up 15 viseme poses with
constraints. Some other techniques require an animator to
prepare several hundred animations for transitioning between
visemes [28].

Our algorithm can generate speech animations quickly
enough to allow for real-time editing with a live preview.
Some other approaches are based on iterative algorithms [29],
which take longer to evaluate. The generated motion curves
are at least C1 continuous. The motion produced by some
other approaches (such as negative exponential dominance
functions [4]) is only C0 continuous, and its discontinuities at
the C1 level could be perceived as unnatural [27]. Furthermore,
no training data set is needed. Our approach simulates co-
articulation based on a set of pre-defined constraints. With
data-driven approaches that learn explicit transitions between
pairs—or longer sequences—of visemes from recorded data
[5], the output quality tends to be limited by the size of the
training data set.

In terms of limitations, our approach currently only supports
neutral speech. It could be extended to analyze speech audio
for tone of speech and adjust the animation accordingly. The
jaw and lip parameters produced by the lip-sync solution [1]
could be applied onto jaw-related and lip related parameters
in our model. There is a lot more to facial animation than
just lip motion. Moreover, a simulation of gaze could be used
to add credibility to the lip-sync. To be truly convincing,
the lip-sync solution should also be paired with a simulation
of head motion that adds emphasis where necessary. Facial
expressions, including eyebrow and cheek motion, can add
emotional depth to the speech animations. Body language and
gestures play an important role as well.

VII. CONCLUSION

In this paper, we have explored an alternative solution
for simulating co-articulation. Our constraint-based model has
accomplished the goal of producing more natural lip-sync
animations than standard keyframe interpolation techniques.
In the evaluation, our model significantly outperformed the
baseline method. While the quality of our output animations
is already satisfactory (it was rated as 70% natural by the
participants in the user study), it is still not on par with
the performance capture or professional hand-made anima-
tion. However, our method produces animation curves that
are easily editable by an animator, which allows for further
refinement. Using animations generated by our approach as a
starting point saves a significant amount of time compared to
creating lip-sync animations manually from scratch, and can
lead to high-quality results more quickly.
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