
Improving Playtesting Coverage via Curiosity
Driven Reinforcement Learning Agents

Camilo Gordillo, Joakim Bergdahl, Konrad Tollmar, Linus Gisslén
SEED - Electronic Arts (EA), Stockholm, Sweden

cgordillo, jbergdahl, ktollmar, lgisslen@ea.com

Abstract—As modern games continue growing both in size
and complexity, it has become more challenging to ensure
that all the relevant content is tested and that any potential
issues are properly identified and fixed. Attempting to maximize
testing coverage using only human participants, however, results
in a tedious and hard to orchestrate process which normally
slows down the development cycle. Complementing playtesting
via autonomous agents has shown great promise accelerating
and simplifying this process. This paper addresses the problem
of automatically exploring and testing a given scenario using
reinforcement learning agents trained to maximize game state
coverage. Each of these agents is rewarded based on the novelty of
its actions, thus encouraging a curious and exploratory behaviour
on a complex 3D scenario where previously proposed exploration
techniques perform poorly. The curious agents are able to learn
the complex navigation mechanics required to reach the different
areas around the map, thus providing the necessary data to
identify potential issues. Moreover, the paper also investigates
different visualization strategies and evaluates how to make better
use of the collected data to drive design decisions and to recognize
possible problems and oversights.

Index Terms—automated game testing, computer games, rein-
forcement learning, curiosity

I. INTRODUCTION

Playtesting modern video games using human participants
alone has become unfeasible due to the sheer scale of the
projects. As games grow in size and complexity, maximiz-
ing coverage and ensuring sufficient exploration becomes
a tedious, repetitive, and labor-intensive task. By contrast,
automated approaches relying on AI-based agents have the
potential to be parallelized and accelerated to provide results
in a short period of time [1], thus complementing the regular
testing pipelines.

We tackle the problem of automatically exploring a given
scenario with the purpose of identifying any potential issues
which could, otherwise, be potentially overlooked by human
testers. Human participants, we argue, should focus on testing
and experiencing the key mechanics of the game without
the burden of identifying, documenting and reporting general
glitches.

Our approach focuses on the use of reinforcement learning
(RL) agents to maximize testing coverage. These types of
agents have shown very important and appealing advantages
over classical techniques when applied to game testing [2] and
may play an important role when working with complex 3D
scenarios like the one presented in this paper. We make use

of curiosity as the motivation factor encouraging a set of RL
agents to improve exploration and to seek novel interactions. It
is therefore important to note that our intent is not to optimize
a behaviour policy or any specific game score, but to make sure
that proper and sufficient data can be collected while training
such agents. Access to these kinds of data would enable a wide
variety of applications such as automatically mapping reach-
able/unreachable areas in the scenario, identifying unintended
mechanics, visualizing changes in response to design choices,
to name a few. With the proper tools and metrics, moreover,
other important issues like crash-inducing bugs and frame rate
drops could also be triggered and recognized while training.

Once the game has been sufficiently explored and data has
been collected, proper metrics and visualizations are required
to make sense of the events recorded while training. Previous
approaches have proposed different visualizations to derive
insights about level design from playtesting data [3] [4], and
we use some of these ideas as reference to introduce metrics
and analytics allowing us to validate our results and to identify
different problems around the environment.

II. RELATED WORK

To date, a couple of studies have investigated the use of
automatic exploration techniques to maximize game state cov-
erage. Walk Monster [5] is an automated reachability testing
tool implemented while developing The Witness (released in
2006 as a puzzle game). The purpose of this tool was to
validate the traversability of the map and to identify any
potential issues: players getting stranded by reaching areas
they were not supposed to get into, getting stuck inside
geometries, etc. The proposed algorithm managed to achieve
impressive results despite employing fairly simple exploration
heuristics. Nevertheless, it is important to note the simplicity
and low dimensionality of the game itself (a two-dimensional
space in practice). Similarly, several exploration strategies
have been evaluated with the aim of producing a semantic
map of reachable states in several commercial games (from
Atari 2600 to Nintendo 64) [6]. Even though their results are
comparable to human gameplay, their exploration strategies
rely heavily on random actions. This, we argue, would not be
applicable in more complex scenarios like the one presented in
this paper. The Wuji [7] framework, on the other hand, employs
a RL policy similar to ours together with evolutionary multi-
objective optimization to encourage exploration and high game
state coverage in two commercial combat games. Contrary to

978-1-6654-3886-5/21/$31.00 ©2021 IEEE

our approach, however, the authors do not evaluate the use of
data and visualizations to allow for the identification of bugs
and oversights.

More recent approaches have been designed to take ad-
vantage of human demonstrations. When data from human
participants is available, the Reveal-More algorithm [8] can
be used to amplify coverage by focusing on exploring around
those trajectories. This idea is indeed very interesting and
orthogonal to our current approach. We could, for example,
make use of imitation learning techniques to encourage and
bias exploration around those human generated trajectories.

Another similar research direction focuses on the use of
procedural personas to mimic how different player archetypes
would interact with a given scenario. The PathOS framework
[4], for example, is a very comprehensive tool for simulating
testing sessions with artificial agents. Each of these agents
is modeled to represent one particular player archetype by
using classical scripted AI. Scripting each of these behaviours,
however, can prove to be quite challenging as the complexity
of the game increases. Other approaches, in contrast, have tried
to automate the generation of such behaviours. The authors
of [9], for example, propose the use of Monte Carlo tree
search and evolutionary algorithms to generate utility functions
leading to different behaviours in 2D dungeon levels. How this
approach would scale to games of higher complexity, however,
remains an open question.

Regardless of what kinds of automated strategies are em-
ployed proper visualizations and metrics are key to make
sense of the collected data. In [3] the authors propose a set
of visualizations to analyze level design in 2D side-scrolling
games. In a similar fashion, the authors of [10] introduce Dif-
ferentia, a set of visualizations to evaluate incremental game
design changes. Although our approach draws inspiration from
all of these techniques, it is important to remark that 2D
visualizations are unlikely to be enough when testing complex
3D scenarios. The PathOS framework [4], on the other hand,
is perhaps one of the most similar approaches in terms of
visualizations and metrics allowing the user to visualize the
outcome of the simulation directly in the game engine.

Meanwhile, intrinsic motivation is a highly studied topic
within the reinforcement learning community aiming to en-
courage agents to explore and to play in the absence of
an extrinsic reward. One of such motivations, curiosity, was
originally proposed by [11] as a way of rewarding the agents
for exploring previously unseen game states and for improving
their knowledge about the world. In [12], curiosity is used
as a mechanism for pushing the agents to explore complex
environments more efficiently while learning skills which may
become useful later in their lifetime. A detailed survey about
the use of intrinsic motivation in reinforcement learning is
presented in [13].

III. IMPLEMENTATION

Our approach relies on a set of RL agents continuously
interacting with the game and encouraged to maximize cover-
age. In contrast to the PathOS framework [4] (see above), we

Fig. 1: Evaluation map: 500m x 500m x 50m. The envi-
ronment contains complex navigation challenges composed of
multiple sequential jumps, climbable objects and elevators.

employ curiosity as the sole motivation profile driving each
of the agents. The following sections describe the scenario
developed for our experiments, the RL setup and training
algorithm, and the tools which were developed to collect
relevant data and generate visualizations directly in the game
engine.

A. Environment

We evaluate our approach on a relatively large (500m x
500m x 50m) map designed for the purpose of creating
an elaborate navigation landscape. We created a scenario
with complex navigation mechanics (e.g. jumps, climbable
walls and elevators) in a 3D space as shown in Fig. 1.
Moreover, and similar to what it is normally seen in modern
video games, we have designed the scenario so that complex
navigation strategies are required to fully explore the different
areas around the map. More details about the environment,
navigation mechanics and final results can be found in the
accompanying video1.

The character in our environment (see Fig. 2) is 1.7m
tall and has a total of 3 continuous navigation actions: for-
ward/backward, left/right turn, left/right strafe, plus a discrete
action for jumping. The character also has the ability to climb
on special surfaces located around the map.

Because the purpose of our approach is to test the game
and identify any potential issues, we introduced a set of known
bugs into the map. These bugs include missing collision boxes,
design oversights, places where players may get stuck, etc.

It is important to remark that, contrary to similar approaches
like the one presented in [4], we make no use of naviga-
tion meshes within our environment. As discussed in [2],
navigation meshes are often not designed to resemble the
freedom of movement that human players will have. Any agent
constrained by these meshes will, most likely, fail at exploring
the environment to the same degree a human would, and will
therefore miss those bugs frequently found by human players.
In the next section we discuss how an RL agent can be used
to control navigation and improve exploration.

1https://vimeo.com/528464956/fc58684c1b

Global Hyperparameters
Name Value
Learning rate (α) 1e-4
Discount (γ) 0.98
PPO-Clip 0.2
Entropy coefficient 1e-2
GAE coefficient (λ) 0.95
Fully connected layers [1024, 512, 256]
LSTM layer 256

Visual Encoder
Image size [84,84,3]
Kernel size [5,3,3,3]
Padding [1,1,1,1]
Strides [2,2,2,1]
Channels [32,32,64,64]

TABLE I: Algorithm’s training hyperparameters and model
architecture.

B. Reinforcement learning setup

We make use of proximal policy optimization (PPO) [14]
as our RL training algorithm. PPO is a robust and well
established baseline within the RL community when working
with continuous action spaces. We evaluate and compare
the performance of the agents when providing two different
types of observations. The first one consists of an aggregate
vector of 37 values: agent position (R3), agent velocity (R3),
agent world rotation (R4), is climbing (B), is in contact with
ground (B), jump cool-down time (R), and a vision array
(R24). The vision array consists of 12 ray casts projected in
various directions around the agent (see Fig. 2). Each of these
rays provides two values: a collision distance and a semantic
meaning depending on the type of object it collides with. All
values are normalized to be kept between [−1, 1]. We also
explore a second configuration by providing the agents with
an additional first person view of the environment and we
compare both models in Section IV-A.

The reward given to the agents is a function of novelty and
it is described, together with the reset logic, in the following
sections. The algorithm’s hyperparameters and the model’s
architecture are presented in Table I.

Fig. 2: A representation of our character and the ray casts
composing the vision array.

C. Optimizing coverage through count-based exploration

One of the great advantages of automated testing is the
ability to parallelize and scale to a degree which is unfeasible
to reach with human participants alone. The results described
in this paper were collected while simulating and training 320
agents distributed across multiple machines. Our distributed
setup allows us to train a single and centralized model using
data collected from multiple environment instances. Instanti-
ating a single training server also allows us to easily process,
analyze, and store all the data collected by the agents in a
single place.

The reward given to the agents is computed following the
idea of count-based exploration [15] and becomes, therefore,
inversely proportional to how frequent a given game state has
been visited. We define these states as the 3D position of the
agent at a given point in time. Keeping track of these visit
counters on a continuous space, however, quickly becomes
intractable. To solve this problem, we discretize the space by
means of a threshold τ. An agent is only considered to have
entered a new state once its distance to any previously visited
state is larger than τ.

Using a small value for τ increases the number of points
we will need to keep track of and may therefore hinder
performance when working with large maps. A high value,
on the contrary, results in a very sparse reward signal for our
agents which significantly increases the difficulty of the task.
The value of τ = 5m was empirically found after a couple
of experiments and has proven to be a sensible choice not
only on the scenario presented here, but also in other maps
not shown in this paper.

When a new observation is received, the first step to
compute a reward is to extract the position p of the agent and
compare it to all the previously visited states. This buffer is
initially empty and gets populated as exploration takes place.
We also keep track of a visit counter Ni for each point i in the
current buffer. If the minimum distance between the current
position p and the points in the buffer is larger than τ, then
point p is added to the buffer and its visit counter is set to
1. If, on the contrary, the minimum distance is smaller than
τ, we identify the point i within the buffer closest to p and
increment Ni by 1. Having done this, the reward for reaching
point i is computed using Equation 1, where Rmax is set to
0.5 and defines the reward for exploring a new point, and
max counter is set to 500, thus annealing the reward down
to zero as a given point gets more frequent visits.

Rt = Rmax ∗
[
1− Ni

max counter

]
(1)

D. Reset logic

Each training episode is simulated for 3000 steps (equivalent
to 1 minute of game play) and the agents are respawned
once time is up. An initial spawning location was defined
for this scenario and is located near the middle of the map
at ground level. As training goes on spawning locations are
sampled from the current buffer using the inverse of the

corresponding visit counters as sample weights. This logic
prevents biasing the exploration by respawning the agents in
previously unexplored positions while giving priority to less
frequently visited locations.

To prevent agents from spawning in mid-air, we take advan-
tage of one of the values available in the observation vector:
is in contact with ground. When storing a new point in
the buffer we keep track of whether or not the character was
stepping on something when at that location. Then, when
sampling a new spawn position, we can just consider the points
in the buffer for which this condition is true.

This way of respawning the agents at previously vis-
ited states strongly resembles algorithms such as Rapidly-
Exploring Random Trees (RRT) [16]. In contrast to the explo-
ration strategies proposed in [6], however, we take advantage
of the complex navigation strategies developed by our agents
to explore around those spawning locations. In Section IV we
compare the performance of our approach to the one of a
random policy very similar to the chaos monkey strategy pro-
posed in [6]. This random policy employs the same respawning
logic presented above which allows us to fairly compare both
techniques.

E. Collecting and visualizing data

Different kinds of data are continuously processed and
stored while the agents interact with the environment. Most of
this data is handled by the centralized training process which
receives all episodic information (i.e. observations, actions,
rewards). Some of the data, however, is recorded directly
by the environments based on possible events triggered by
the agents which are harder to identify outside the engine.
The nature of this data, and how it is used to identify and
correct problems, is described together with the corresponding
experiments in the next section.

Other relevant metrics such as the number of visited states
and values relevant to the RL algorithm are also continuously
logged and visualized as training goes on. These logs are very
useful to quickly judge and/or compare the performance of
a set of experiments without the need of waiting until their
completion.

IV. RESULTS

In this section we present results on the exploration per-
formance of our agents and give a few examples on the type
of analyses which can be conducted using the collected data.
As described in the previous section, our simulation pipeline
generates a set of files which can be loaded directly into the
game engine allowing us to identify potential problems in the
game.

A. Exploration performance and map coverage

The first thing we would like to evaluate is the ability of
our RL agents to navigate and explore the whole map. To do
this, we make use of the buffer of visited states introduced
in Section III-C. This set of visited 3D coordinates is stored
and updated as training goes on and can be used as a metric

Fig. 3: Map coverage as a function of simulation time. The
maximum number of points which could be reached (equiva-
lent to 100%) was estimated to be 25K. The plot shows the
mean and variance of the performance of different policies
over 5 different runs.

for exploration and coverage. Fig. 3 shows the percentage of
the map covered by our agents when compared to a random
policy. As expected, the random based exploration technique
did not cover the whole map due to its complexity and
was only able to reach easily accessible areas. Moreover,
complementing the observation space of our RL agents with
a camera image (first person view) improves the results by
allowing the model to better understand its surroundings and
by decreasing the uncertainty introduced by the discrete set of
ray casts. It currently takes around 24 hours to explore 90%
of the map but, as discussed in Section V, we believe that
coming up with better and more efficient ways for encoding
the environment may boost the performance of the agents and
speed up exploration.

As shown in Figs. 4 and 5, all the data collected by the
agents (e.g. the buffer of visited states) can also be loaded
and displayed on top of the map. These visualizations allow
the designers to verify whether or not different areas across the
map are reachable and also allow us to compare the exploration
performance of different navigation strategies. Both figures
showcase a couple of relatively complex navigation challenges
spread across the map and the extend of the exploration
coverage achieved by our RL agents when compared to a
simple random exploration strategy.

Another set of interesting findings relates to the agents
reaching areas which should have been inaccessible for the
player. These areas could be identified either by visually
inspecting the distribution of the collected points or, as shown
in the next section, by defining exploration boundaries.

B. Exploration boundaries and regions of interest

Our method allows the designer to specify both an explo-
ration boundary (EB) and regions of interest (ROIs) across the
map prior to training. The EB defines the section of the map

(a) Challenge A: The agents were able to reach the top at the
right of the figure by jumping and climbing over a series of
obstacles.

(b) Challenge B: The only way of reaching the top of the block
to the left is by sequentially jumping over the rocks.

Fig. 4: Two of the navigation challenges spread across the
map and the solution found by our training RL agents. The
red cubes represent the points in our buffer of visited states.
The blue trajectories showcase the paths that a player would
have to follow to fully explore these areas.

which should be explored and the episode terminates whenever
the agent exits that boundary. The ROIs, on the other hand,
are optional regions inside the EB and serve as a reference for
data collection.

Although we would like to record and store the specific
trajectories followed by the agents, doing so would quickly
become too expensive and intractable during long simulations.
The definition of the EB and the ROIs, however, allows us to
focus on those trajectories which are likely to be useful for
testing the game. Our technique keeps track of the episodic
trajectory for each agent but only records them if a couple of
conditions are met: first, the trajectory needs to cross over the
boundary defining either the EB or a ROI; second, the point at
which the agent crosses that boundary needs to be significantly
different to the one of any previously recorded trajectories.

Fig. 6 shows examples of trajectories leaving the EB when
that boundary is defined at the walls surrounding the scenario
in Fig. 1. Our technique allows the user to display these
trajectories directly in the game engine and, in this case, would
reveal design oversights around the map allowing the player to
leave the game area. Figs. 7 and 8 show additional examples

(a) Challenge A: A random policy was, as expected, unable to
solve complex navigation tasks even when simulated for longer
periods of time.

(b) Challenge B: The only entry point to the top right area
in this challenge is via the bridge coming from the lower-left.
Random agents were unable to find this path.

Fig. 5: Exploration performance of a random exploration
strategy when faced with complex navigation challenges.

of the kinds of issues which could be identified using these
visualizations. Fig. 7 shows a trajectory leaving the scenario
due to a collision box missing in one of the wall segments.
This particular oversight was intentionally introduced in the
map to validate the usefulness of the collected data. Inter-
estingly, not all of the problems we were able to identify
were intentionally added to the game. Fig. 8, for example,
shows a trajectory recorded during some of our first design
iterations. In this case, the agent was getting stuck in between
two objects and the physics engine would eventually throw it
upwards forcing the character to leave the EB. This shows the
use these visualizations could have for identifying problems
early on in the design process.

The ROIs, on the other hand, allow the user to validate the
reachability and access to particular areas in the map. Fig. 9
shows two such regions which were intended to be unreachable
for the player. The agents were indeed unable to reach the
first region and therefore no trajectories were recorded. The
second region, however, ended up having one access point
which could be identified using the collected data.

C. Connectivity graph

We can do more than just storing a point cloud of visited
states. We can, for instance, configure our training server to

Fig. 6: Visualization of trajectories leaving the exploration
boundary. The agents have found multiple ways of exploiting
design oversights to reach into areas which should be inac-
cessible. These trajectories were recorded during training and
could be used to redesign the map and fix these issues.

Fig. 7: A trajectory leaving the game area due to a missing
collision box. The collision box of a small segment in the
wall (red arrow) was intentionally removed to validate the
use and application of the collected data and the proposed
visualizations.

Fig. 8: The agents were getting stuck in the gap between
these objects (left) which was causing the physics engine
to eventually throw them upwards into the sky. A trajectory
leaving the exploration boundary (right) was recorded by our
system and allowed us to fix the problem by closing up the
gap.

build and store a graph structure representing the connectivity
between those points. For this reason, the episodic trajectories
collected to train our agents are also used to generate a directed

Fig. 9: Two regions of interest defined at areas which should
have been unreachable for the player. The buffer of visited
states (red cubes) allows us to see that the region to the
left remained unexplored while the region to the right was
reachable somehow. The trajectories recorded while training,
however, allow us to easily visualize how the agents did
manage to break into that region and could help the designers
to correct any oversight.

Fig. 10: Visualizing the connectivity between a small subset
of collected points. Bidirectional edges are represented in
white while red edges point towards the target node. This
connectivity graph broadly behaves like a classical navigation
mesh and represents the exploration space that the players are
able to traverse.

graph as the one shown in Fig. 10. Even though the accuracy of
such a graph strongly depends on our discretization threshold
τ (see Section III-C), we believe it has a couple of very
promising applications as presented next.

1) Navigating to custom points of interest: We can make
use of the connectivity graph and path planning algorithms
to estimate navigation trajectories between any given two
points. Our tool allows the user to define an initial and a
target position in the map and it then generates a navigation
trajectory between those two points based on the data collected
from the agents. Fig. 11 shows an example of such a trajectory.

We argue that a tool like this could be very useful for
designers to comprehend how the agents are navigating the
map and whether or not they have found potential exploits.
Fig. 12, for example, shows one particular exploit which
wasn’t intentionally introduced into the game and which was
identified thanks to the connectivity graph. In Fig. 12a the

Fig. 11: The connectivity graph presented in Fig. 10 allows
us to generate trajectories between any given two points in
the map. In this case, the red block to the left was set as
the origin while the green block to the right was declared as
the navigation target. The path which an agent could have
followed is shown in white.

agents are able to climb over the wall without the need of
the elevator. This seems to be happening due to the slope of
the walls at that particular corner (you can see more details
in the accompanying video). Fig. 12b, in contrast, shows the
trajectory followed by the agent once the previous issue was
fixed.

2) Semantic connectivity maps: The connectivity graph can
also be used to identify how different areas in the map are
connected to each other. The specific regions in the map could
be either manually defined by the user or, as in our next
experiment, automatically extracted from the point cloud of
visited states. Fig. 13 shows an example of such a mapping
where the regions in the map were automatically extracted and
color-coded using unsupervised clustering algorithms. Once
the regions are identified, we can make use of the connectivity
graph to analyze what kinds of connections exist between
them. This semantic mapping could then be used to drive
design decisions, to validate the mechanics and traversability
of the map, and to recognize potential exploits (unexpected
paths).

D. Termination states

It is common for players to find themselves stuck in some
particular part of the map due to issues in the environment
or the location of the game assets which render the playing
character immovable. Maximizing exploration coverage gives
us the opportunity to automatically identify such locations
during training. One approach is to keep track of a termination
counter for each point in our buffer of visited states (i.e. how
many times an episode ended with an agent in that location).
Once training is over, we can proceed and analyze the distri-
bution of terminal states. Any outlier in this distribution can
be easily identified and it is likely to be caused by the agents
getting stuck in that position.

We conducted experiments by introducing areas across the
map where the agents could get stuck. Fig. 14 shows some
examples of such locations together with the outlier positions
identified from the collected data. Due to the high coverage

(a) There seems to be a path leading to the top of this platform
without the need of using the elevator. The problem is caused by the
slope of the walls at that particular corner.

(b) This is how the same path looks like once the slopes are adjusted
to prevent the agents from climbing. Taking the elevator is now the
only option to reach the top.

Fig. 12: The connectivity graph and the visualization of custom
trajectories allowed us to identify a minor oversight resulting
in agents being able to climb over this particular segment
(more details in the accompanying video).

Fig. 13: Semantic map generated automatically using the data
collected from the agents. Regions in the map are identified
and color-coded using unsupervised clustering algorithms and
the connectivity graph is then used to visualize traversability
between regions. Blue and red lines represent upwards and
downwards trajectories respectively.

achieved by our agents, all the intentionally introduced issues
could be identified, as well as one unintentional design over-
sights causing a similar problem (see Fig. 14a).

(a) (b) (c)

Fig. 14: Visualizing areas where players could get stuck. The purple areas are intentionally introduced surfaces which freeze
the player in place if they come in contact. The green blocks represent the outliers encountered in the distribution of terminal
states and highlight the locations around the map which could be problematic. Figure (a) shows two additional blocks between
two platforms which were caused by the agents falling in the gap and getting stuck. This was a design oversight which was
not intentionally introduced into the game and which was identified thanks to these visualizations. Figure (c), on the contrary,
shows a region in the map which was designed for the agents to get trapped if they fell into it.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have shown a potential use case for RL
agents trained to maximize testing coverage in complex 3D
scenarios. We have reported on the use of curiosity to encour-
age exploratory behaviour in our agents, thus allowing them to
fully traverse the environment. We have shown that curiosity
driven agents can be used for automating the collection of
playtest data and performance metrics.

The aim of our approach was to maximize testing coverage
and to keep time consumption to a minimum by means of
scaling and parallelizing data collection. We have provided
examples on the type of data which can be collected, the kind
of analysis which can be conducted, and the different sets of
visualizations and metrics which can be used to facilitate the
identification of frequent oversights, glitches and exploits.

A natural progression of this work is to further increase the
complexity of the environment by introducing new mechanics,
objectives and environmental hazards. This line of research is
also strongly dependent on finding better and more efficient
ways of encoding the environment. As discussed in Section
IV-A, the way the agents perceive the map both influences the
complexity of the task and the cost of training.

Another promising research vector relates to the use of hu-
man demonstrations. One could, on one hand, explore a similar
idea to the one presented in [10] and focus on exploring around
predefined human-generated trajectories. This approach will
provide designers with more control over the exploration
space and will therefore speed up coverage over regions of
high interest. On the other hand, human demonstrations could
also be used, together with imitation learning, to provide the
agents with some prior understanding about the mechanics of
the game and with some basic navigation skills. This prior
knowledge is then likely to speed up exploration and decrease
the time it takes to collect relevant data.

REFERENCES

[1] M. Sy, C. Guo, and J. Greco, “Unity game simulation: Find the perfect
balance with Unity and GCP,” in Google for Games Developer Summit,
2020. [Online]. Available: https://events.withgoogle.com/gdc2020/

[2] J. Bergdahl, C. Gordillo, K. Tollmar, and L. Gisslén, “Augmenting
automated game testing with deep reinforcement learning,” in 2020 IEEE
Conference on Games (CoG), 2020, pp. 600–603.

[3] S. Agarwal, C. Herrmann, G. Wallner, and F. Beck, “Visualizing ai
playtesting data of 2d side-scrolling games,” in Proceedings of IEEE
Conference on Games, aug 2020.

[4] S. Stahlke, A. Nova, and P. Mirza-Babaei, “Artificial players in the
design process: Developing an automated testing tool for game level and
world design,” in Proceedings of the Annual Symposium on Computer-
Human Interaction in Play (CHI PLAY ’20). New York, NY, USA:
Association for Computing Machinery, 2020, p. 267–280.

[5] C. Muratori, “Killing the walk monster [Conference presentation],”
in BIC Festival, 2018. [Online]. Available: https://caseymuratori.com/
blog 0032

[6] Z. Zhan, B. Aytemiz, and A. M. Smith, “Taking the scenic route:
Automatic exploration for videogames,” in KEG@AAAI, ser. CEUR
Workshop Proceedings, vol. 2313. CEUR-WS.org, 2019, pp. 26–34.

[7] Y. Zheng, X. Xie, T. Su, L. Ma, J. Hao, Z. Meng, Y. Liu, R. Shen,
Y. Chen, and C. Fan, “Wuji: Automatic online combat game testing
using evolutionary deep reinforcement learning,” in Proceedings of
the 34th IEEE/ACM International Conference on Automated Software
Engineering. IEEE Press, 2019, p. 772–784.

[8] K. Chang, B. Aytemiz, and A. M. Smith, “Reveal-more: Amplifying
human effort in quality assurance testing using automated exploration,”
in 2019 IEEE Conference on Games (CoG), 2019, pp. 1–8.

[9] C. Holmgård, M. C. Green, A. Liapis, and J. Togelius, “Automated
playtesting with procedural personas through mcts with evolved heuris-
tics,” IEEE Transactions on Games, vol. 11, no. 4, pp. 352–362, 2018.

[10] K. Chang and A. Smith, “Differentia: Visualizing incremental game
design changes,” Proceedings of the AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment, vol. 16, no. 1, pp.
175–181, Oct. 2020.

[11] J. Schmidhuber, “A possibility for implementing curiosity and boredom
in model-building neural controllers,” in Proc. of the international con-
ference on simulation of adaptive behavior: From animals to animats,
1991, pp. 222–227.

[12] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell, “Curiosity-driven
exploration by self-supervised prediction,” in 2017 IEEE Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW), 2017.

[13] A. Aubret, L. Matignon, and S. Hassas, “A survey on intrinsic motivation
in reinforcement learning,” CoRR, vol. abs/1908.06976, 2019.

[14] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[15] M. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and
R. Munos, “Unifying count-based exploration and intrinsic motivation,”
in Advances in Neural Information Processing Systems, vol. 29. Curran
Associates, Inc., 2016, pp. 1471–1479.

[16] S. LaValle, “Rapidly-exploring random trees : a new tool for path
planning,” Technical Report TR 98-11, Computer Science Department,
Iowa State University, 1998.

