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Abstract—This study proposes a framework to automatically
assess and bring balance in real-time strategy (RTS) games.
A three-layered framework comprising intelligent bots, deep
machine learning, explainable artificial intelligence (XAI), un-
certainty quantification (UQ), and optimal learning is presented.
For preliminary analysis, we conducted a study using the mi-
croRTS game built specifically for advancing AI research. Data
is generated through self play games between the intelligent
bots, and game balance is measured through the predicted
probability of each player winning a game. To demonstrate game
re-balancing using this approach, a sample unbalanced game is
shown along with proposed perturbations on important features
identified using a popular XAI technique called SHapley Additive
exPlanations (SHAP). Results indicate this framework enables
efficient identification of game parameters causing imbalance
and iterates over game parameters to restore balance. The three-
layered framework is designed to be generic and applicable to
more complicated RTS games, such as StarCraft II.

Index Terms—Game balance, Game breaking, microRTS,
Convolutional Neural Networks, SHAP, Explainable Artificial
Intelligence, Real-time strategy games

I. INTRODUCTION

Knowledge transfer from the gaming industry to engineering
and design has gained attention in recent years as ground-
breaking developments have been made with the advent of
superhuman AI players such as AlphaStar [1], Pluribus [2],
etc., that have beaten the best human players in the world.

*This research was developed with funding from the Defense Advanced
Research Projects Agency (DARPA) under the Gamebreaker program with
contract HR00112090069. The views, opinions and/or findings expressed are
those of the author and should not be interpreted as representing the official
views or policies of the Department of Defense or the U.S. Government.

DARPA recently launched the Gamebreaker [3] program,
looking specifically at real-time strategy (RTS) games and
how methodologies from game design can be brought over
to engineering design applications. This program has focused
on the notion of game balance and how it can be affected
through perturbations to game design.

One of the most important aspects of game design is to
balance the game. This has been an active area of research
in the gaming community for quite some time [4]–[7]. While
a game designer would like to detect and keep the balance
in a game to maintain the player’s interest in the game, the
implication of game balance is a bit abstract to directly apply
to real-world applications. A game is balanced if all players
have an equal chance of winning the game depending just
upon the game environment and without any knowledge of the
player skill levels. The game environment would include game
rules and available actions to each player. Skill, on the other
hand, accounts for a player’s ability to select and then execute
a particular sequence of actions out of all possible options.
There are several aspects of a game that can be balanced; for
this paper we chose win/loss for the players as a measure of
balance.

For a simulation of a complex real-world system of interest
to an engineer or mission designer (simulation is akin to
a game, albeit less interesting), it is important to identify
any inherent biases present in the simulation and strategies
to effectively shift the balance of the simulation in the de-
sired direction. Similar to the gaming industry, subject-matter
experts (or skilled players) run the simulation for various
conditions and are tasked with identifying such inherent biases
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(or meta strategies) that can lead to an unbalanced game. With
increasing complexity of the simulations, this design space
exploration requires extensive time and effort.

We propose leveraging this abstraction of engineering sim-
ulations as games to make use of innovative game-based
research tools and relevant quality metrics, such as game
balance. In this paper, we focus on the research question: How
do we automate game balancing while effectively exploring a
large and complex design space? We propose and demonstrate
a framework that can automate the process of balancing a
game by incorporating intelligent bots, advanced machine
learning (ML) techniques, explainable artificial intelligence
(XAI), uncertainty quantification (UQ), and optimal learning,
which is the main contribution of this paper.

Game balance exploration and automating game balance is
an active area of research, and is concerned with mitigating
issues revolving around game design-space exploration [8]–
[11]. A tool called the Sentient Sketchbook was developed (see
[12]) to allow a game designer create game levels through a
computer-aided sketching interface. This tool automates map
evaluations, visualizes them on-screen and proposes alternative
designs, thereby supporting the game designer immensely.
This tool, based on genetic algorithms, is built for designing
game maps catering to different game balance requirements.
However, the Sentient Sketchbook suggests changes to the
maps, but not to the properties of the player agents. The
framework devised in this study includes modifying properties
of both the map and players for achieving game balance.
XAI has also been recently studied in the game industry to
explain phenomena like game cheating [13], for visualization
of games played by AI players [14], and for mixed-initiative
co-creation [15]. SHapley Additive exPlanations (SHAP) [16]
is a popular XAI tool that has started finding application in
the game industry [13].

For this study, we chose microRTS [17] as our gaming
platform since it is primarily designed to perform AI research.
microRTS functions as a testbed to conceptualize and test
learning algorithms. The simplicity of microRTS enables quick
testing of theoretical ideas as compared to other high fidelity
games like StarCraft II. Playing microRTS under uncertainty
and with stochastic bots have been of recent interest to some
game designers [18], [19]. Researchers have used microRTS
successfully for testing their hypotheses and ideas. The topics,
are not only limited to AI algorithmic development, ranges
from hierarchical task planning in networks to learning ac-
tion probability models [20], [21]. Further, researchers have
used Monte Carlo Tree Searches (MCTS) and Reinforcement
Learning (RL) methods to evaluate game states [22], [23].

The three-layered framework is presented in the next sec-
tion. An example of a highly unbalanced game is then shown
in the results section, where certain perturbations (patches)
are introduced to bring back balance in the game. The final
sections of this study discuss future work and conclusions.

II. METHODOLOGY

Our technical approach for detecting, maintaining, and
bringing back balance is illustrated in Fig. 1. This systematic,
three-layered, artificial intelligence (AI)-infused framework,
which we call Learn to Gamebreak (L2G), comprises the
Game Balance Layer, Tournament Layer, and Player Layer. In
this framework, each layer has a distinct role that separates the
primary tasks of deriving inferences regarding game balance,
managing the extensive design space, and identifying players
to compete in multiple games.

A. Player Layer

This layer consists of the different player bots that compete
against each other and generate the required game plays to
train our model. microRTS [17], a simple implementation of
an RTS game, was built for testing and conceptualizing AI
for gameplay through experiments. This implementation has
fostered a large research community that provide open-source
algorithms for bots. The player bots for RTS games, like
microRTS, range widely in their skill levels and strategy space,
from simple rule-based bots to sophisticated Reinforcement
Learning (RL) bots. In addition, each player, depending upon
its type, can be subject to a varying set of resources and
unit attributes (e.g., availability of weapons with varying per-
formance, health, survivability, etc.). In the L2G framework,
all players are AI-bots that execute a programmed strategy
(stochastic, deterministic, or learned) and are subject to player
parametric attributes that dictate their abilities. The results in
this paper are from the games played using the Monte Carlo
AI bot that explores future action spaces and game states, and
then takes the best action.

B. Tournament Layer

This layer conducts multiple parallel games between the
player AI agents and manages the individual game environ-
ment by varying game design features and player attributes.
The features of game design and player attributes are based on
an experimental design that provides a structured approach to
manage an extensive design space. Initial sets of games (tour-
naments) are conducted in parallel to obtain initial data sets
using experimental design techniques, like Latin Hypercube
sampling. The tournament, along with information about the
uncertainty in both model outcomes (supervised learning for
prediction and XAI for post-hoc feature importance analysis),
can then be used to sequentially determine the next set of
tournaments to execute. This approach helps manage the
extensive design space and generates targeted data sets that
maximize learning of the game balance and identification of
feature sets. In addition to generating game data sets for
learning game balance, another primary role of the Tournament
Layer is to validate the game balance predictions derived from
the AI models in the Game Balance Layer and the response
of these models to any perturbations and unforeseen inputs.

The game parameters varied in this study are specified
in Table I, and include i) player unit health, 2) player unit
damage, 3) player initial base location, and 4) placement of
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Fig. 1. Proposed three-layered L2G framework to assess, maintain or restore balance in a game.

TABLE I
DOE WITH MODIFIED GAME PARAMETERS AND RANGES

Attribute Values Range
Players Monte Carlo AI
Base Starting Location 5 × 5 starting area
Worker Unit Health 1-4 (int)
Worker Unit Damage Output 1-3 (int)
Light and Heavy Unit Resource Cost 1-4 (int)
Base Production Time 70-130 (Game Frames)
Terrain Center, kcenter 0-1 (float)
Terrain Density, kdensity 0-1 (float)

terrain features. Note that we only consider games played
between identical bots in this analysis to control for differences
in player skill; we refer to these games as self play games.

Data is gathered at each frame of a gameplay, so that a
game designer can examine the inherent balance of game
states at the start of the game, or during the early-, mid-, or
late-game of example matches. Both spatial and non-spatial
data are gathered. Spatial features like relative unit position,
health, and available resources for each player are tracked as
shown in the Tournament Layer of Fig. 1 (center). This data is
captured in 15 image channels tracking unit locations and the
corresponding feature value. 15 additional non-spatial features,

capturing information regarding total unit counts, total health
of all assets for each player, and damage rates for each player
(specified in Table II) are also tracked. These data are then
used as input to the game balance prediction model that makes
up the Game Balance Layer, discussed next.

TABLE II
NON-SPATIAL FEATURES EXTRACTED FROM EACH GAME FRAME

Feature Count
Minimum Distance Between Units and Bases 4
Total Health 2
Total Units 2
Unit Location Centroids 4
Damage Rate (rd) 2
Terrain Count 1

C. Game Balance Layer

This layer provides the overall solution for the balancing
task by collecting, processing, and fusing information to
determine the map between game design features and the prob-
ability of win for each player. The two primary constituents
of this layer are (i) supervised AI techniques that direct
the learning of the game balance based on available game
data, and (ii) post-hoc analysis XAI techniques to examine
the trained supervised learning model and identify feature
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sets within the input space (i.e., game design, environment
characteristics, player attributes, etc.) that impact the winning
or losing outcome of a player. By identifying these feature sets,
the Game-balance Layer can yield the combination of factors
within the input space that will maintain and/or shift the game
balance to one player’s advantage/disadvantage. This learning
of the game balance and identification of significant feature
sets is an iterative process subject to the available game data
provided by the Tournament Layer. Figure 2 summarizes the
interactions between the Tournament Layer and Game-balance
Layer, and also within the Game-balance Layer.

In this study, we have implemented a neural network model
as the supervised learning technique and paired these with
SHAP [16] to implement the post-hoc analysis methods for
XAI. The network architecture consists of two input heads:
one takes in image-like data of shape (16, 16, 15) repre-
senting the fifteen 16x16-pixel image channels extracted at
each game frame, while the other takes in the fifteen scalar
features capturing the non-image data. The input image data
is propagated through three convolutional layers with leaky
ReLU activations. This image data branch architecture was
motivated by the architecture successfully employed by [22],
who implement a CNN model that takes microRTS-generated
image data as input. The non-image input data is propagated
through three dense layers with ReLU activations. The outputs
of both these branches are then flattened and concatenated,
and then passed through an additional two dense layers with
leaky ReLU activations until finally passed to the model
output layer. The output layer is fully connected with three
units representing the three possible outcomes: Player 0 wins,
Player 1 wins, or a draw occurs. To obtain outputs that may
be interpreted as probabilities of players winning or a draw
occurring, a softmax function is also applied to the output
layer.

Categorical crossentropy loss was used to train the model,
and the model was trained over 62 epochs with decreasing
learning rate LR given by

LR(E) = 0.001 exp (1− 0.1 E), (1)

where E is the epoch number.
We have also made use of Monte Carlo Dropout Networks

(MCDNs) [24] for model output uncertainty estimation to
supplement this post-hoc analysis. These dropout networks are
implemented by adding dropout layers with dropout probabil-
ity p = 0.5 in front of all trainable, weighted layers in the
network, and keeping these dropouts even at predict time. By
evaluating the model k = 20 times for each prediction, each
time with a different seed generating the dropout parameters,
we generate 20 samples of the output and SHAP results, from
which we can estimate uncertainty. For details of the network
architecture and MCDN used in this study, please refer [25].

Finally, we make use of SHAP analysis to provide post-hoc
explainability of model outputs. Briefly, SHAP is a model ex-
planation technique that provides local, additive explanations
of a model’s output with respect to the input features. Given a
model, training data set, and a point in the model’s input space,

for each input feature a SHAP value may be computed that
captures its additive contribution to the corresponding model
output under the Shapley requirements of local accuracy,
missingness, and consistency (for full details, please see [16]).
For this study, we employed the SHAP toolbox developed
by Lundberg [26] for all SHAP analysis. To estimate SHAP
values, we use an implementation of the expected gradients
method, described in detail by Erion et al. [27].

III. RESULTS

In this paper, our goal is to help a game designer in
developing a game that is maximally balanced for both players.
Here, as a motivating example, we will consider a game
designer responsible for balancing an RTS game that has ap-
plied our framework to study causes of balance or imbalance.
For the bots (players) specified in the Player Layer, a set
of 25,000 example games have been run by the Tournament
Layer, varying the game parameters under the game designer’s
control. Finally, data from these games is passed to the Game
Balance Layer, from which balance predictions, along with
uncertainty estimates, can be made for example games.

A. Game Balance Prediction

Given the trained model, a game designer can take an
example game replay and run each frame of the game through
the model. This produces game balance predictions, along with
uncertainty and SHAP results, at each time step. Example
game balance prediction outputs for balanced and imbalanced
game plays are provided in Fig. 3. Note the model is more
uncertain at the initial frames of the game, and becomes more
confident in the result as the game progresses. This provides
some confidence that the model is behaving correctly, as we
anticipate games are harder to call early in the game.

A game designer can use these results to draw multiple
conclusions. Looking at the first frame of a game (game time
= 0), the designer can estimate how balanced the starting
conditions are. For instance, for the game that generated Fig.
3(A), the game appears initially quite balanced; 3(B) indicates
a game that heavily favors Player 1. Alternatively, a game
designer may look at interesting points in a game, such as
around game time 3000 in the balanced game, to determine
what player choices or game events drive swings in the balance
prediction, or around game time 300 in the imbalanced game
to determine what game states seem to collapse the prediction
to near-certain that Player 1 will win. These studies can then
be paired with SHAP results to help determine the drivers of
(im)balance more concretely, as discussed next.

B. Utility of SHAP and Uncertainty Quantification

For the rest of this section, we will consider the imbalanced
game scenario used to generate Fig. 3(B). In this game, Player
1 had increased health (4 vs. 2), while Player 0 had increased
unit maximum damage (2 vs. 1), and Player 0’s base was
located closer to the center of the map. No terrain features
were spawned for this example game scenario. We have
already observed that the model predicts a heavily imbalanced
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Fig. 2. Interactions between and operations in the tournament and game balance layers.

Fig. 3. Player win and draw predictions for each frame of two example
games, one balanced game (A) and another imbalanced (B).

game in favor of Player 1. In practice, for 60 trial games run
using this game scenario, Player 1 won all but 2 of the trials
(Player 0 won the remaining 2 games, and no draws occurred).
As we are interested in balancing this game, let us consider
SHAP results that relate input spatial and non-spatial features
to the prediction that the underdog Player 0 will win.

SHAP results for the spatial features extracted at the first
game frame, corresponding to the prediction that Player 0 will
win, are plotted in Fig. 4, while results for the non-spatial
features for the same prediction are plotted in Fig. 5. Note
that results in these figures correspond to the contribution of
the feature to the prediction that player 0 will win, given inputs

from the first game frame. Each box in Fig. 4 corresponds to
an input channel. For both SHAP plots, features (represented
as pixels in Fig. 4 and as bars in Fig. 5) contribute positively
to the prediction that Player 0 will win if they are colored red,
and negatively if they are colored blue, with the intensity of
the color or height of the bar, respectively, corresponding to
the magnitude of the effect. From these plots, it can be seen
that there is a strong negative SHAP value corresponding to the
location of Player 1’s base, and smaller but still negative values
corresponding to the health of Player 1’s units and damage
output of Player 1. Especially in Fig. 5, it can be seen that
the current health of Player 0’s units contributes very strongly
against Player 0’s win prediction.

Fig. 4. SHAP results for spatial features for the imbalanced game.

A game designer may look at these results and reasonably
determine that, assuming the model is correct, key factors
unbalancing the game in favor of Player 1 include the location
of Player 1’s base, the unit health difference between the
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Fig. 5. SHAP results for non-spatial features for the imbalanced game.

players, and perhaps the relative damage rate of each player.
We can then vary these factors first to see if we can indeed
make the game more balanced. If we are successful, we have
efficiently increased game balance by identifying the most
important game parameters, while if we are unsuccessful, we
have efficiently identified a region of the game design space
where our model is incorrect and needs additional training
data.

C. Imbalanced to Balanced Games

Given these results, the game designer decides to run three
perturbation experiments. These experiments are: (a) vary base
position to make positions symmetric, (b) increase Player 0
units’ health, and (c) increase Player 0 maximum unit damage.

Consider Fig. 6, which reports model predictions for an
example game play of the original unbalanced game (top) and
predictions for example game plays for each of the varied
game parameter settings (bottom). For the original unbalanced
game, at time 0 the model predicts Player 0 and Player 1
have 6% and 93% chance of winning, respectively. Thus,
the observed win-loss ratio for Player 0 was 3% / 97%. For
experiment (a), we observe the model predicts a slightly more
balanced game (predicted win ratios of 18% / 79%), and we
also observe a slightly more balanced win ratio over 60 trial
games (observed win ratios of 15% / 85%). Similarly for
experiment (b), we observe a predicted win ratios 10% / 88%,
and observed win ratios of 20% / 80%. Finally, for experiment
(c) we observe a predicted win probability identical to the
original case, while we do see a more balanced observed win
ratio.

There are several interesting conclusions to be drawn from
this analysis. First, while none of the games are completely
balanced, we do see an increase in both predicted and observed
game balance as measured by win ratio over the first two
experiments. To bring the game into further balance, this same
analysis could be run over these perturbed game settings to
further identify causes of imbalance and propose additional
perturbation experiments.

Second, note the disagreement between the observed win
ratios for experiment (c) and the predicted. This perhaps
indicates the model has not been exposed to the necessary

data in this region of the game design space to make correct
predictions. This is especially worrying, since the model
makes these predictions with very low uncertainty relative to
experiments (a) and (b). The designer may then choose to run
additional experiments with game parameters similar to those
in experiment (c) to get more training data to improve the
model. Given enough time to generate data, it may also be
worth gathering additional data similar to experiments (a) and
(b) to bring the predictions for those games at time 0 closer
to empirically observed win rates.

Third, note that for experiment (a), where the model pre-
diction is the most balanced, the uncertainty at early stages
of the game is higher than that of the original games or the
other experiments. This agrees with the observation from Fig.
3 that the more balanced game has higher uncertainty earlier in
the game. This suggests uncertainty in these first set of game
frames may indeed be a secondary measure of game balance:
more uncertain predictions indicate the game winner is harder
to determine and thus the game is more likely to be balanced.

IV. FUTURE WORK

Apart from self play games, data from games played be-
tween different bots, or cross play games, should be incorpo-
rated to more fully explore the space of likely game plays. A
novel aspect of the Tournament Layer in the L2G framework
is the potential to use the theory of optimal learning [28]
to conduct games between agents for efficient learning of
game balance. Future study should also involve more advanced
optimal learning techniques to fully automate iterations over
game parameters, as well as incorporate other metrics of game
balance, such as game time, resource or health attrition, or
winner prediction model uncertainty. More complex game
environments such as StarCraft II will be used to test and
improve the generic three-layered framework proposed in this
study.

V. CONCLUSIONS

In this paper, we presented a unique three-layered frame-
work to assess and manage balance in real-time strategy (RTS)
games. The L2G framework involves intelligent bots, self play
tournaments, machine learning (ML) model, explainable AI
(XAI), and uncertainty quantification (UQ). We conclude that
L2G framework enables prediction of game balance. It also
identifies the key features that impact the game balance using
SHapley Additive exPlanations (SHAP). This study utilizes
an example self play game in microRTS between Monte
Carlo AI bots to demonstrate the utility, effectiveness, and
systematic design support provided by this framework. The
game features, when perturbed properly, can restore balance
in the game. Analysis of uncertainty through Monte Carlo
Dropout Networks (MCDNs) in the game balance predictions
and corresponding SHAP results drive the data requirements
needed to improve the ML models. SHAP in conjunction with
UQ, as used in this study, can support further optimal learning
tools to evolve the tournament layer of the L2G framework to
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Fig. 6. An imbalanced game where player 1 had increased health, player 0 had increased unit damage, and player 0’s base was located closer to the center
of the map. The model correctly predicts the game is imbalanced in favor of player 1, who won 97% of 60 trial games. Three perturbations to the game
parameters are proposed. For each, features were selected to be changed based on insights from SHAP. Changes (a) and (b) improve the balance as expected,
but do not bring the game into complete balance.

more efficiently assess and automatically restore game balance
for a given RTS scenario.
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