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Abstract—The traveler’s dilemma is a well studied situation in
the field of game theory in which the 2 players achieve very poor
payoffs by each adhering to the Nash equilibrium strategy. Para-
doxically, by deviating from the ”rational” strategy, a significantly
better payoff can be achieved, and it has been shown that humans
overwhelmingly choose these ”irrational” strategies. In this paper
we (1) show that a single large assumption underlies the rational
analysis which makes the Nash equilibrium rationally deducible
and that (2) relaxing this assumption causes the deduction of
the Nash equilibrium to fail. Therefore, we (3) introduce early
work proposing an extension to game theory called fuzzy weak
domination. Using fuzzy weak domination, we perform a rational
analysis in which the opponent rationality assumption is regarded
as uncertain and (4) show that the emergent equilibrium may
more closely capture human behaviour.

Index Terms—game theory, traveler’s dilemma, weak domina-
tion, fuzzy weak domination

I. INTRODUCTION

At the heart of game theory lies a pair of fundamental
assumptions. First, it is assumed that each player is rational.
That is, they will each make the best decision that they can.
The second assumption prescribes that a decision is considered
best if it maximizes the player’s payoff. The rules of a given
game and the rationale available to each player are considered
common knowledge. So, given a space of possible strategies,
a player will choose the strategy that is a best response to the
strategy that they believe their opponent will pick.

If each player believes that their opponent is perfectly
rational then an infinite sequence in which player A knows that
player B knows that player A knows ... that player B knows
some fact, is possible. However, a sequence of this type is so
obviously intractable that it exists as a comedic trope [1]. A
more recent sub-field called epistemic game theory attempts
to formally reason about games given some set of beliefs held
by the players. In this way, the players can be assumed to be
rational and have common knowledge without requiring that
they believe their opponent is rational.

In nature, groups of rational agents tend toward certain
strategies in a game. These strategies are referred to as
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equilibria. While it is guaranteed that every game possesses
at least one Nash equilibrium [2], a given game may have
various other equilibria as well. Mathematically studying the
rational analysis that underpins a given equilibria is important
as analysis methods often generalize to other games, leading
to the explanation or expectation of equilibria behaviour in
these games as well.

In this paper we present early work in which we look
at a set of results from an experiment involving a one-shot
traveler’s dilemma game. From an emergent equilibrium we
argue that the human participants hold some level of uncer-
tainty regarding their opponent’s rationality. We then show that
iterated elimination of weakly dominated strategies, which is
used to find the Nash equilibrium in the traveler’s dilemma,
does not converge to the Nash equilibrium if players have
non-zero uncertainty regarding opponent rationality. Finally,
we present the first formulation of an extension to the idea
of weak domination, referred to as fuzzy weak domination,
which facilitates equilibrium analysis in the face of uncertainty
regarding opponent rationality.

A. Traveler’s Dilemma Paradox

We provide a short introduction to the traveler’s dilemma
(TD). For a more thorough discussion, see [3].

Suppose there are two people traveling back from vacation.
Both of the travelers have purchased the same antique and
have checked the antiques as luggage on the flight home. The
airline breaks both antiques. The baggage claim team informs
the two people of the broken antique and informs them that
another passenger on the plane also had their identical antique
broken.

The travelers are each told to give a value for the antique on
the range [2, 100], but they are warned that quoting a higher
price than the other passenger will result in a penalty. Thus the
airline has engaged the passengers in a 2-player game. If the
two players provide the same quote, then they will each receive
the amount quoted. However, given the quote from player A
is QA and the quote from player B is QB , if QA > QB then
the payoff for player A will be QB − 2 and the payoff for
player B will be QB + 2. The reciprocal statement is true if
QA < QB .
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Definition 1. A strategy is a Nash equilibrium iff no change in
strategy can achieve a higher payoff assuming the opponent(s)
does not change strategy.

Partial and Total Ordering by Weak Domination
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Fig. 1. An edge directed from vertex a to vertex b signifies a relative
preference for vertex b. The solid edges are implied by σ99 >wd σ100
(Partial Ordering). While the dashed edges are implied by σ98 >wd σ99
etc. after weakly dominated strategies are eliminated due to zero uncertainty
regarding opponent rationality (Extending to Total Ordering).

Definition 2. For two strategies, σα is said to weakly dominate
σβ , that is σα >

wd
σβ , iff for every opponent strategy, σα

provides a payoff no worse than σβ and there exists one or
more scenarios in which σα provides a better payoff [4].

The only Nash equilibrium strategy given in the format
(QA, QB) for the TD is (σ2, σ2). It is obvious from definition
1 that (σ2, σ2) is a Nash equilibrium. However, the analysis
that leads us to it is not obvious.

Consider that each player will likely begin to analyze
strategies at a focal point [5]. In this case, we would expect
the focal point to be either 2 or 100 with 100 being the most
likely as it can provide a higher payoff. Each player considers
σ100 and realizes that it is weakly dominated (definition 2) by
σ99, that is σ99 >

wd
σ100. In Fig.1, an edge directed from vertex

a to vertex b signifies a relative preference for vertex b. So,
there is an edge from σ100 to σ99 due to weak domination.

Each player then decides that it is impossible for their
opponent to choose σ100 because they are completely certain
their opponent is rational and in every situation, σ99 is as
good or better than σ100. So, the resulting set of available
quotes after eliminating σ100 is [2, 99]. Each player then
performs the same analysis and realizes that in the resulting
set of available quotes, σ98 >

wd
σ99. Thus, σ99 is eliminated.

This process is iterated until the only remaining option is σ2.
The preferences that are generated by iteratively eliminating
the weakly dominated strategies are shown in Fig.1 as dashed
lines.

II. EXPERIMENTAL EVIDENCE

In [6], the authors ran a one-shot TD competition in which
the competitors were drawn from the Game Theory Society.
Each of the competitors submitted a strategy and the com-
petitors were matched pairwise to every other competitor. The
most successful strategy was σ97. The mode of the strategies
was σ100 with N = 10. The second most common was σ98

with N = 9. There were a total of 25 participants that used a
strategy on the interval [94, 99], 10 used [100], 3 used [2], and
7 on the interval [4, 93]. The authors of that paper theorize
that there were 3 types of players involved. One type was an
irrational player that played σ100. The second was a rational
player that played a best strategy given a belief about what
others would play. The last was a type that either defaulted to
the Nash equilibrium or started from a focal point of 2.

A. Non-zero Uncertainty

We focus on the rational type which settled into an equilib-
rium at σ98. This study is interesting because the participants
are people who have knowledge of game theory. Assuming
that each player was attempting to maximize their payoff, it
must be true that the players of this type were not certain
that other players would not choose σ100 as their strategy.
If the players were certain that opponents would not choose
σ100, they would have eliminated this as a strategy. In turn,
this would have eliminated σ99. And, if no player will choose
σ99, then σ98 will not maximize the payoff. In general we
formalize this into proposition 1.

Proposition 1. Let p be some rational player in the traveler’s
dilemma attempting to maximize their payoff. If p does not
choose the Nash equilibrium strategy, σN , then it must be
true that their belief regarding whether other players will
choose σ100 has non-zero uncertainty. This is equivalent to
having non-zero uncertainty regarding opponent rationality in
general.

Proof. If a player believes that their opponent will not choose
σ100 with zero uncertainty due to weak domination, then it
may be eliminated as a possibility. In the resulting space
of possible strategies, [2, 99], σ99 possesses all the same
properties that led to the elimination of σ100. Thus it is proved
by induction.

B. Ramifications for Analysis

From proposition 1, in order to account for the evidence
in [6] we must consider that players may have a non-zero
uncertainty regarding the rationality of opponents. However,
if we allow uncertainty, the iterated elimination of weakly
dominated strategies that we used to rationally deduce the
Nash equilibrium fails. Consider, that if we can’t eliminate
σ100 then there is one possible opponent strategy on which
σ98 does not provide a payoff equal to or better than σ99.
Therefore, σ98 does not weakly dominate σ99. Visually, the
effect is only the solid edges in Fig.1 can be deduced if there
is any uncertainty regarding opponent rationality.

Even in the face of uncertainty, it seems intuitive that σ98
should be preferred over σ99 since the only possible scenario
in which σ99 provides a better payoff is weakly dominated and
therefore unlikely. To address this shortcoming, we will define
a more general notion of weak domination, called fuzzy weak
domination, that doesn’t require certainty.



III. FUZZY LOGIC

Here we will briefly introduce the core concepts of fuzzy
logic.

Fuzzy logic was originally formulated in [7] to provide a
method of reasoning in non-boolean contexts. As an example,
consider a situation in which a recipe prescribes 2 minutes of
boiling for large eggs and 1 minute for small eggs. By boolean
logic, if an egg belongs to the set of small eggs it should be
boiled for precisely 1 minute and 2 if an egg belongs to the
set of large eggs. But what is the precise definition of large
and small? Any value given to precisely identify the weight of
a small egg and large egg will fail to cook the eggs properly
unless the egg is the precisely prescribed weight.

In reality an egg may be somewhat large and somewhat
small. That is, an egg can be considered to belong to both
the set of large eggs and the set of small eggs with varying
degrees of membership or certainty. Therefore, we can define
a function with range [0, 1] that fuzzifies the weight of the egg
into the eggs membership in the fuzzy set of large eggs. We
can likewise define a function that fuzzifies the weight of the
egg into the eggs membership in the fuzzy set of small eggs.
Then based on the certainty that an egg is in the fuzzy set
of large eggs and the fuzzy set of small eggs an appropriate
combination of the associated boiling times can be found.

Fuzzy logic necessarily redefines the logical operators com-
mon in boolean logic to work in an infinitely valued logic
context. The result is that the boolean operator exists as a
special case of the fuzzy operator. We quickly give the fuzzy
operator definition for the NOT, AND, and OR operations.

The logical boolean NOT operator converts 1 to 0 and 0
to 1. The fuzzy NOT operation is defined as 1− µ. Boolean
AND operations return 1 if every operand in the operation is
equal to 1. Fuzzy AND is equivalent to the min of the list of
operands. Finally, boolean OR returns 1 if any of the operands
are 1. The fuzzy OR operation returns the max of the list of
operands.

IV. FUZZY WEAK DOMINATION

In definition 3 we give a formal definition for fuzzy weak
domination (FWD). To develop an intuitive understanding we
will demonstrate how FWD allows us to reason about the
ordering of strategies in the TD in the face of uncertainty.

Definition 3. For two strategies, σα is said to fuzzy weak
dominate σβ with certainty ζ = µ(sβ), that is σα >

fwd
σβ , iff

there exists one or more opponent strategies s.t. σα provides a
better payoff than σβ and the set of opponent strategies which
provide a better payoff to σβ must be a subset of the fuzzy set
of all weakly dominated strategies with certainty ζ ′ > 0. That
is sβ ∈ Sfwd with certainty ζ ′ > 0.

Let µ(sβ) be a membership function that transfers the
membership in Sfwd from sβ to σβ , where sβ ∈ Sfwd with
certainty ζ ′. Further, if sβ contains more than one strategy,
then the fuzzy membership of each element in the set is
combined through an AND operation with a result equal to the
minimum membership of any element in sβ ∈ SFWD. Finally,

for y = µ(x) it must be true that (1) y ∈ [0, 1] ∀x ∈ [0, 1],
(2) ∃x > 0 s.t. µ(x) = 0, and (3) if x = 0 then y = 0.

Transfer of fuzzy membership in Sfwd from sβ

1

1

sβ ∈ Sfwd

µ
(s
β
)

Fig. 2. A simple piecewise membership function for transference of fuzzy
weak domination that satisfies the requirements in definition 3.

A. Example Execution of Partial Ordering by Iterated FWD

Initially the set of all FWD strategies contains only an
empty set, Sfwd = {({}, 1)}. Notice that Sfwd is a fuzzy set,
so an entry in the set constitutes the value and membership
pair. First, we find the set of opponent strategies for which
σ99 provides a better payoff than σ100. The resulting set is
{σ100, σ99}. So, the first requirement in the definition evaluates
to true. Next, we find the set of opponent strategies for which
σ99 provides a worse payoff, sβ .

By the definition of FWD, we need to compute µ(sβ) and in
this case sβ = {}. We can easily retrieve the membership as-
sociated with each element in sβ from the Sfwd and then apply
the membership transference function, µ, to the minimum. A
convenient µ is a simple piecewise linear function as shown
in Fig.2 that satisfies the requirements in definition 3. The
minimum membership of any element in sβ = {} in Sfwd is
1 and µ(1) = 0.89. We now update the set of FWD strategies
to be Sfwd = {({}, 1), (σ100, 0.89)}. Now, rather than having
absolute certainty that an opponent will not choose σ100 we
say that σ100 is a member of the fuzzy weak dominated fuzzy
set by with membership certainty equal to 0.89.

We iteratively apply this process and find the set of opponent
strategies for which σ98 provides a better payoff than σ99.
This set is {σ99, σ98}. Next, we find the set of opponent
strategies for which σ99 provides a worse payoff. This set
is sβ = {σ100}. The minimum membership of any element in
the resulting sβ in Sfwd is 0.89 and µ(0.89) = 0.77.

Continuing to apply iterative FWD yields a partial ordering
of strategies that tends to uncertainty. After a small number of
iterative steps the certainty goes completely to zero. In Fig.3
we show that µ in Fig.2 allows the strategies from σ100 to σ94
to be ordered based solely on fuzzy weak domination.
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Fig. 3. An edge directed from vertex a to vertex b signifies a relative
preference for vertex b.

B. Finding the Equilibrium in FWD

It is not initially obvious that the ordering in Fig.3 provides
a specific prediction regarding the game’s equilibrium. To
see how the equilibrium emerges we consider the logical
complement of each of the propositions.

For each member in the fuzzy set of fuzzy weak dominated
strategies we can calculate our certainty that the member is
not in the set. As an example, we can say that if σ99 >

fwd
σ100

with certainty 0.89 then it is also true that σ99 does not fuzzy
weak dominate σ100 with certainty 0.11.

So, for a fuzzy partial ordering like that shown in Fig.3 there
exists a natural equilibrium at the point of certainty inflexion.
Notice that with certainty 0.63 σ97 >

fwd
σ98. However, we can

say that σ96 ≯
fwd

σ97 with certainty 0.52. So, we are more

certain that σ97 is not weakly dominated by σ96 than we
are certain that it is weakly dominated. Therefore, a player
attempting to maximize their payoff would not prefer σ96.

It is not obvious if every partial ordering which results from
iterated fuzzy weak domination possesses an inflexion point
equilibrium.

C. Intuitive Understanding

The intuitive rationale that results from this analysis would
be as follows. It is highly unlikely that the opponent will
choose σ100 since σ99 is always as good or better. Since, σ100
is highly unlikely and σ98 is always as good or better than
σ99 on every other strategy, it is unlikely that an opponent will
choose σ99. It still seems likely that σ97 is preferred because it
provides a better payoff than σ98 on every strategy that is not
highly unlikely or unlikely. At this point, certainty has fallen
low enough that the player’s belief has shifted such that the
player has a higher certainty that σ96 does not fuzzy weak
dominate σ97. Thus the player chooses σ97.

D. Comparing FWD to the Experimental Results

The results reported in [6] provided inspiration. Specifically,
their work led us to consider that players may hold their
opponents rationality as uncertain. That being said, it is notable
that the equilibrium predicted by FWD with µ in Fig.2 is very
close to the experimental result equilibrium (σ98) as this was

not engineered. We consider this to be affirmation (though not
quite evidence) that FWD may accurately capture the rationale
involved when humans engage in the TD.

It is more noteworthy that σ98 is the equilibrium in Fig.4
that corresponds to the largest interval when the x intercept of
the general piecewise linear µ is swept on the domain [0, 0.5].
Therefore, if we assume that µ for an individual player may
have an x intercept drawn randomly from the possibility space,
then in general the most probable equilibrium is predicted to
be σ98 by FWD. We consider this to be compelling evidence
that FWD may accurately capture a specific type of rationale
employed by the highest performing humans when engaged in
the TD.
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Fig. 4. Effect on the equilibrium predicted by FWD as a function of x intercept

V. RELATED WORK

In [3] the author and original creator of the TD posits that
it may be necessary to relax the rationality assumption in
order to resolve the paradox. In this paper we do not relax
the assumption that each player is rational. We instead relax
the players’ beliefs regarding the other’s rationality.

The same author previously pointed out in [8] that fuzzy
logic could be used to arrive at a better equilibrium in the TD.
However, that discussion centered around treating the quote as
a fuzzy value. Here we use fuzzy logic to deal with uncertainty
regarding opponent rationality.

The experimental analysis in [6] cast the TD into a Bayesian
game. They showed that if P (σ100) ≥ 2% then the Nash
equilibrium of the Bayesian game is no longer located at
σ2. They continue to calculate the probability required to
explain the results in the experiment given the Bayesian
formulation. Probability and uncertainty are related but distinct
ideas. Further, the intention of their analysis was to fit the
data whereas FWD is formulated as a general analysis tool to
find an expected equilibrium and natural extension of weak
domination.



This is far from the first work to address the TD paradox.
Neither is this the first paper to apply fuzzy logic to game the-
ory. However, from our literature review this does seem to be
the first paper to use fuzzy logic to address the inapplicability
of iterated elimination of weakly dominated strategies when
opponent rationality is not held certain in the TD.

VI. DISCUSSION AND FUTURE WORK

As already stated, the goal in defining FWD was not to
fit the data in the experimental results of previous work.
Rather, FWD was formulated as a fuzzy logic extension of
weak domination to enable strategy ordering in the face of
uncertainty regarding opponent rationality. Weak domination
then exists as a special case of FWD in which µ is a unit step
function written as u(x − τ) with τ > 0. So, the fact that
the experimental equilibrium from [6] emerges as the most
probable FWD equilibrium suggests that FWD captures an
important facet of rational thinking in the TD.

With that said, more testing in other games is needed to
be able to evaluate if this rationale is applicable in a more
general sense. It may also be found that FWD in the current
formulation is incomplete. We intend to test this by changing
the penalty involved in the TD game and comparing the effect
on the predicted equilibrium against experimental results.

Another important point is that the choice of µ is non-
trivial. More work is needed to evaluate the effect of other
membership functions. An interesting and potentially promis-
ing extension would be the application of type 2 fuzzy logic
so that one could formally reason when both the rationality
of the opponent and the transference membership function are
considered uncertain.

A. Application to Computational Sustainability

A method like FWD could potentially be applied to a wide
range of games to identify likely equilibria. However, we
specificially consider that FWD may prove useful in predicting
the behaviour of opponents with uncertain rationality in games
similar to the green security games defined in [9]. These green
security games are important to the field of computational
sustainability as they help to anticipate the actions of poachers
and direct conservation efforts. FWD may be potentially
well suited to this as green security games are derivative
of Stackelberg security games, which possess open problems
regarding scalability when faced with uncertainty [10].

VII. CONCLUSION

We have shown that by allowing a player to consider
the opponent’s rationality to be less than certain, iterated
elimination of weakly dominated strategies does not provide
a total ordering. In this scenario weak domination does not
facilitate the deduction of a Nash equilibrium in the TD. We
formulated an infinitely valued logic (fuzzy logic) extension
of weak domination referred to as fuzzy weak domination.
By iterated application of fuzzy weak domination we can
generate a partial ordering. In the case of the TD, this partial
ordering possesses an uncertainty inflexion point at which the

complement of some partially ordered strategy’s membership
in the fuzzy set of fuzzy weak dominated strategies is greater
than the membership itself. This inflexion point seems to be
an equilibrium in the TD based on similarity to experimental
results in [6].
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