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Abstract—Cooperation between AI agents and humans is of
ever greater importance. In this paper we present an AI agent
for the game Pandemic that was specifically designed to play
cooperatively with a human player. Our agent utilizes planning
to determine which actions to perform, and plan recognition to
determine the current goal of its cooperator in order to assist
them. We also present an experiment we performed with human
participants, and how our agent performs at a level that is
comparable to other AI agents playing with themselves, when
playing with a human player, as well as the impact of plan
recognition on how the participants perceive the AI agent.

Index Terms—cooperative games, planning, plan recognition,
human-AI cooperation

I. INTRODUCTION

AI agents that cooperate with humans have become of
increasing interest in recent years, from virtual assistants to
agents that cooperate in games with human players. Perhaps
the most thoroughly researched cooperative game is Hanabi,
which combines partial information with limited communica-
tion to provide a challenge for AI agents and humans alike,
and even more so for a combination of the two [1]. However,
Hanabi is far from the only game in which collaboration
between players is required. Another classical cooperative
game is Pandemic, which - at its core - does not revolve
around communication, but instead only defines actions the
players can take, and which goals they have to work together
to achieve.

In a social setting, players will, of course, communicate
freely, which may often result in one player dominating
the decision making process (also called “quarterbacking”).
However, by simply observing the game actions themselves,
a sophisticated player can discern what their team mates are
likely up to, and how to aid them with their goals. While free-
form communication is an interesting problem to consider, our
work instead focuses on this latter approach, by developing an
AI agent that plays the game in a way that is understandable
for a human collaborator, and also deduces that collaborator’s
intermediate goals and reacts to them appropriately.

In this paper, we present our planning and plan-recognition
based agent for the game Pandemic, which was designed

to play with a human player. In order to determine how
successful our agent is in its collaboration, and which effect
recognizing the human player’s likely course of action has on
the agent’s performance, we performed an experiment with
human participants, which is also described in this paper.
Our agent is based on work we have previously published,
but the use of plan recognition, as well as the evaluation
with human subjects are novel contributions in this paper.
Before we describe our own agent design, though, we will first
provide a short summary of the rules of Pandemic, followed
by a brief review of the relevant literature.

A. Pandemic

Pandemic [2] is a cooperative board game for two to four
players. In this game, players are members of a task-force
in charge of discovering the cures for four deadly diseases.
The players win the game once the cure for each of the
four diseases has been discovered, and lose if they either run
out of cards in one of the decks when they need to draw
(representing “running out of time”), the diseases spread too
much, or more than seven outbreaks occur (representing “a
worldwide panic”).

The game is played on a board with a world map which
highlights forty-eight major cities. Each city has one of four
colors (red, yellow, black or blue), which specifies which of
the four diseases is endemic to it. The players, represented
by meeples on the board, must travel to the cities to treat
the diseases in order to prevent them from spreading. At the
beginning of the game, each player is assigned a specific
role, which grants them special actions and effects, which,
in turn, affect their play style. The game also contains two
decks: The Player deck and the Infection deck, both of which
contain one card corresponding to each city, with the Player
deck additionally containing a number (4-6, depending on the
desired difficulty of the game) of special Epidemic cards.

Each turn a player can perform up to four actions with
different options to choose from: travel to another city, treat
a disease in the current city, build a research station, transfer
cards to/from another player in the same city or discover a
cure for a disease. Afterwards, the player draws two player
cards from the Player deck. The player cards are kept by the
player (up to a maximum of seven) and are used to discover978-1-6654-3886-5/21/$31.00 ©2021 IEEE



the cure for diseases and required to perform certain actions.
However if a player draws an Epidemic card as one of their
player cards, that card is discarded and an epidemic occurs
in a city: The bottom card from the Infection deck is taken,
and infected with its disease. Then, the cards in the discard
pile of the Infection deck are shuffled and put on top of that
deck. Regardless of whether an epidemic occurred or not, a
player then proceeds to draw a given number of cards from
the Infection deck, which are immediately put into the discard
pile and each of the cities named on the cards gets infected.

Whenever a city gets infected, a disease cube of the corre-
sponding color is added to it, to represent the level of infection
in that city. If a city were to get infected by a disease when
it already has three cubes of that disease an outbreak occurs
instead. During an outbreak in a city, all neighboring cities get
infected by the disease causing the outbreak and an outbreak
counter goes up by one. Adding disease cubes to neighboring
cities, may lead to chain reactions, if one or more of these
cities already have three disease cubes, leading to additional
outbreaks. However, once a city was affected by an outbreak
during such a chain reaction it cannot be affected again.

In order to win, the players need to collectively find a cure
for each of the four diseases. To find a cure for a disease,
a single player must possess five player cards of the same
color, and be located in a city with a research station (initially
only Atlanta), and discard those five cards. Cards can be
exchanged between players, but only if both players are in
the city corresponding to the card they want to exchange. The
main challenge posed to the players is therefore that while the
disease cubes are distributed across the entire map, and players
must control the spread of the diseases, actually finding cures
requires coordination, as it is highly unlikely that a single
player draws five cards of the same color. Additionally, the
mechanics of the Epidemic card result in the same cities being
infected over and over again, as every time an Epidemic card
is drawn, the discarded cards from the Infection deck, which
are exactly the cards corresponding to already infected cities,
are put back on top of that deck.

In our work, we actually look at a slightly reduced version
of Pandemic, by applying two changes to the original rules.
First, event cards were removed from the game. These cards
are special player cards which can be used by the players to
perform one-time special actions. The reason for the removal
of these cards was that, while powerful, they can be used
at any given moment, even between turn phases, and have a
wide variety of possible options to choose from which greatly
increases the search space of the game. The second change
was the removal of three of the seven player roles that can
be assigned to the players. The Dispatcher and the Operations
Expert roles were removed due to having special movement
actions which add multiple options to each action, which
increases the search space significantly. The Contingency
Planner role was removed because its special actions had to
do with event cards, which left the role purposeless without
these cards. The removal of the roles has no impact on core
mechanics of the game, but the removal of the event cards

makes the game somewhat harder for the players (since they
can no longer use the powerful cards and have fewer turns to
win the game). However, together these changes significantly
reduce the search space, while leaving the core idea of the
game intact.

II. RELATED WORK

Prior work that we based our agent on generally falls into
two categories, with some overlap between them: First, we
will present some prior research into agents for cooperative
games, including agents that play with human players, and
agents that play Pandemic. Then we will briefly discuss the
relevant literature about planning, which forms the basis for
the decision making process of our agent.

As mentioned above, cooperation has been of increasing in-
terest recently, with the game AI community focusing strongly
on Hanabi [3]. The main challenge with Hanabi is that the
cooperators have disparate knowledge bases, and a limited
communication channel which they can use to coordinate their
moves. Most research has thus focused on how to optimize the
use of this communication channel, with approaches ranging
from encoding logical puzzles [4] to machine learning ap-
proaches that determine good communication protocols, either
among themselves [5] or with different cooperators [6]. There
has even been work that explores using high-resolution timing
information to improve communication [7]. However, all of
these approaches do not capture the nuances of playing with
human players, and, indeed, end up performing actions that
are incomprehensible to most humans. A different branch of
research, which is more relevant to our work, has therefore
been working towards building AI agents that are specifically
tailored to playing with human players. These approaches
often use concepts from communication theory, such as con-
versational implicature [8] to interpret communicated action
in the context of the game. Another, related approach uses the
concept of intentionality [9], [10] to connect communicative
actions with (short-term) goals the players ought to collabo-
ratively work towards [11]. While our work does not feature
explicit communication, we posit that a similar approach can
be used to interpret entirely implicit communication, which is
conveyed through the actions performed by the cooperating
player.

While Hanabi has been the main focus point of game
AI research in recent years, there has already been some
interest in Pandemic as well. In contrast to Hanabi, no explicit
communication is present, but the game itself has a much
larger state- and action-space, features “more” randomness,
and has therefore already been proposed as a new domain
of interest for AI research [12]. There have already been AI
agents that successfully play the game with themselves as
collaborators using a Rolling Horizon Evolutionary Algorithm
(RHEA) [13], which win about 22% of the games on easy
difficulty, on a similarly restricted version of Pandemic as ours.
Our own implementation, based on planning, achieves a win
rate of about 34% when playing with itself as a collaborator
[14]. While these results represent significant advances in



addressing the challenges of the domain, neither of these
agents was evaluated with human players. We can use these
win rates as a comparison baseline, though, and will compare
our agent’s performance when playing with human players
against them below.

Our agent uses planning to determine which actions it
should perform on its own turn. Planning is a process, in which
an agent is given a formal description of the current state of
the game, actions it may perform, and a goal it should work
towards. In classical formulations, such as STRIPS, actions
are described using preconditions, i.e. which states they are
applicable in, and effects, i.e. how they change a state to
produce a successor state [15]. More generally, planning can
be seen as a search process on an implicitly defined graph,
where the nodes are states and the (directed) edges are actions
the agent can take [16]. While there are standards on how to
describe planning problems, such as PDDL [17], our agent
instead uses this more generic view to implement a custom
planner. We do this, because encoding the entire game domain
in a logical language would be prohibitively cumbersome, and
to address the randomness inherent in the game by integrating
a Monte-Carlo sampling procedure [18], [19] in the planning
process as described below.

Finally, in order to cooperate with a human player, our agent
performs a plan recognition process on the actions performed
by the other player. Plan recognition is the problem of deter-
mining which plan an observed agent is attempting to perform
given some observed actions performed by that agent [20]. The
way our agent performs this process is by transforming it into
a planning problem [21], where it compares plans it would
perform for each of the candidate goals with the observed
actions to determine the most likely plan followed by the
cooperator. We will now describe how our agent works in
more detail.

III. OUR AGENT

In this section we will describe our agent, which uses AI
planning to determine which actions it should perform on each
of its turns. In order to apply planning to Pandemic, we need
to define the game in terms of states and actions, provide the
agent with a suitable goal or set of goals, and guide the search
process with a heuristic. In the following sections we will
briefly describe these parts, as we implemented them in our
existing agent. The main novelty of this article is the addition
of a plan recognition module in order to determine which goals
the cooperator is likely pursuing, as well as a Unity interface
to allow human players to play with the AI agent, which we
will present in more detail.

A. State and Action Representation

Pandemic, as a game, readily affords a state representation
of the public game state: The location of the players, research
stations and disease cubes on the board, the roles of each
player, as well as which cards they hold are all known to all
players. The hidden information, on the other hand, requires
some finesse. While we could model the infection deck to

be in random order, it actually consists of two parts that
are independently randomized: The bottom cards, which have
never been seen by the players, and the top cards, which were
put there from the infection card discard pile as the result of
an epidemic card. As this information is essential for strategic
play (players have some idea which cities are likely to be
infected next), we track these two parts separately.

Actions the players perform then take one such game state
and transform it into a new game state: On each of their turns,
a player performs four actions which are unaffected by the
order of cards in either deck, and then have to draw cards from
each of the decks, which involves these random orders. Our
implementation decouples the actual state of the game from
what players know about it: A player may perform a forward
simulation step and when the game requires cards from either
of the two decks the game state will instead be generated as
one in which the decks are reshuffled while taking the player’s
observed knowledge, i.e. which cards are in the top and bottom
part of the infection deck, into account.

B. Possible Goals

The ultimate goal in Pandemic is to discover the cure to
the four diseases ravaging the world. However, when playing
the game the players face one additional challenge: they have
to avoid losing the game. This challenge requires players
to balance their priorities between a duality of goals when
deciding their actions: they can either focus on discovering the
cures or on fighting the diseases to stop them from spreading.

To handle this challenge, our agent performs an evaluation
of the current game state whenever it needs to find a new plan:
If it is possible to discover a new cure with the cards currently
in play it will try to find a plan to do so. Otherwise it chooses
the “survive” goal, which is defined as “not losing the game”.
The agent will then try to find a plan for the next n turns, our
planning horizon, that reaches the chosen goal as closely as
possible.

C. Planning Heuristic

When performing the planning process, our agent uses a
heuristic as part of its evaluation of the “quality” of the
states it visits, by measuring how “far” from a solution each
state might be, i.e. states with lower heuristic values are
considered to be closer to an overall positive outcome of
the game. This heuristic is used to choose the best actions
to explore during planning, and as a tie breaker between
multiple possible final states/plans. Our heuristic is composed
of a number of equations, each of which evaluates a different
aspect of the game state. Before presenting the equations used,
some of their expressions will be explained. The expression
active (k) evaluates whether the k colored disease is currently
active. The expression distance (p, c) represents the minimum
distance (as number of movement actions required) between
the player p and the city c. In a similar fashion, infection (c)
represents the number of disease cubes present in the city
c. The expression cards (p, k) stands for the number of k
colored cards currently in player p’s hand, and the expression



discard (k) counts the number of cards of k color currently in
the discard pile. Finally, the constant Rp represents the number
of cards required by a player to discover a cure (five for every
role except for the Scientist which only needs four cards for
this action).

Equation 1 evaluates the number of active diseases which is
directly related to the overall goal of the game, i.e. if hcures
starts out at 4, and if it reaches 0, the players have found a
cure for all four diseases and won the game.

hcures =
∑

k∈Color

active (k) (1)

Equations 2 and 3 evaluate the distance of the players to
places of interest. Equation 2 measures the distance of the
players to each city weighted by the number of disease cubes
in that city. This measurement is then divided by the total
number of disease cubes on the board. This equation has the
property of increasing in value as the players move further
away from the nexuses of infection on the board. Equation 3,
on the other hand, measures the distance of the players to the
closest city with a research station on it, which are the only
places where they can discover cures.

hdsurv =
∑

p∈Player

∑
c∈City distance (p, c) · infection (c)∑

c∈City infection (c)

(2)

hdcure =
∑

p∈Player

min
c∈Crs

distance (p, c) (3)

Equations 4 and 5 evaluate the cards available to the players.
Equation 4 measures the minimum number of missing cards
for each of the active diseases in the players’ hands required to
discover a cure. This equation has the property of decreasing in
value as player manages to concentrate more cards of the same
color in their hand. The equation 5 evaluates the number of
discarded cards for each active disease, as this value increases
it becomes more difficult for the players to win the game (there
are fewer cards remaining of a given colored disease).

hcards =
∑

k∈Color

active (k) · min
p∈Player

Rp − cards (p, k) (4)

hdisc =
∑

k∈Color

active (k) · discard (k) (5)

Equation 6 evaluates the number of disease cubes currently
active across the board. This equation is directly related to the
goal of preventing the spread of the infections by the players.
Furthermore, the reduction of disease cubes also motivates
agents to eradicate diseases, since that will lead to future states
with fewer infections. Finally, equation 7 evaluates the average
distance between all the cities in the game multiplied by the
ratio of turns remaining. The resulting value is not constant
because as the players build research stations in cities, the
cities become connected between them (because players can

“fly” between research stations), reducing the average distance
among cities. The impact of this distance reduction however,
decreases in importance as the game approaches its end, with
fewer actions remaining.

hinf =
∑

c∈City

infection (c) (6)

hdist =
∑

c1∈City

∑
c2∈City

distance (c1, c2)

48 · 47
· turnsremaining

turnsmax
(7)

All of these equations are then added into a single equation
using weights. The weights used were selected after perform-
ing a grid search to test the performance of the planning agent
playing with itself with different values. Equation 8 is the one
used by our planning agent as an heuristic to evaluate the
states of the game.

hstate = 0.5 · hdsurv + 0.5 · hdcure + 1 · hcards+ (8)
0.5 · hdisc + 0.6 · hinf + 0.6 · hdist + 24 · hcures

D. Plan Recognition

Our agent incorporates the use of a plan recognition module.
The objective of this module is to identify, through the obser-
vation of the actions taken by the other player, their current
goal. The intention behind it is to allow the planning agent
to incorporate the other player’s goal into its own planning
process, by assuming the other player will continue with their
current plan. This allows the agent to formulate plans that
enhance its cooperation with the other player.

At the beginning of its planning process, the agent performs
a plan recognition pass. There are two possible goals the
agent assumes the player may pursue: Eliminating diseases
(i.e. avoiding losing the game), or trying to discover a cure
(i.e. working towards winning the game). The agent takes the
state as it was at the beginning of the other player’s turn,
and performs its own planning process with each of these two
possible goals as a goal, resulting in two possible plans. It
then compares the actions it actually observed the other player
perform against the actions it would have performed itself for
each possible goal, to determine which goal the other player
is more likely to pursue. Assuming the other player uses a
similar strategy to decide which actions to perform, the plan
that matches more of the observed actions is the one they are
more likely to be executing.

With this information, our agent then adapts its plan assum-
ing the player will continue forth with their plan as well. For
example, when the other player performs actions that the agent
would have performed to find a cure for a disease, the agent
detects that. As our agent accounts for the other player’s likely
future actions when calculating its own plan (i.e. it assumes
the player will continue working towards the goal that was just
recognized), this results in actions such as passing a necessary
card to the other player, or meeting up with the other player
so that they can give the agent their cards.



It should be noted that this process requires the execution
of the planning process multiple times during the agent’s turn.
In order to keep the response time of the agent within an
acceptable range for play with a human player (around 20-
30s), the planning process used for plan recognition only
plans actions for a single turn, and uses the planning heuristic
described above to evaluate each state that was reached.

E. User Interface

To evaluate the agent’s performance when playing with
human players, we implemented a graphical user interface1

in Unity, shown in figure 1. It is designed to run in a web
browser, and connects to the actual implementation of the
game using HTTP calls. The server it connects to contains the
aforementioned representation of the game state and actions, as
well as the planning agent, with or without the plan recognition
module. This user interface allows human participants to play
with our AI agents, while allowing us to record game play
information. We also use the same Unity application to present
survey questions to participants, as described below.

IV. EVALUATION

The evaluation of our agent was two-fold: First, we were
interested how well the agent plays with human players in
general. Second, we were investigating if plan recognition
would add significant capabilities to the agent, with regard
to the outcome of the game as well as how the participants
perceive it. For this evaluation, we performed an experiment
with volunteer participants playing our implementation of
Pandemic with our agents. We will first describe how we set
up the experiment before reporting the results we obtained.

A. Experiment Setup

We recruited participants via snowball sampling on social
media, including Facebook, Twitter, and the boardgame com-
munity on reddit, to play Pandemic with our AI agents. Partici-
pants were randomly and secretly assigned to one of two agent
types: The basic planning agent, or the planning agent with
plan recognition, which we will call “plan recognition agent”
from now. After being shown a consent form, participants were
asked to read a brief explanation of the user interface, and
optionally the game rules, and then played one game with the
agent type assigned to them. After the conclusion of the game,
participants were prompted to answer survey questions about
their experience with board games in general and Pandemic
specifically. They were also asked to rate the AI agent they
just played with in terms of how well it played, how helpful
it appeared to their actions, and how well the participant
understood what the agent was trying to do, each on a 5-point
Likert scale. 51 participants finished their game when playing
with the basic planning agent, while 65 participants did so
with the plan recognition agent. Participants were assigned to
the agents randomly but evenly, and we could only speculate
about what caused the disparity in completion between the
two agents.

1Available in the GitHub repository: https://github.com/BlopaSc/PAIndemic

Our participants represented a relatively balanced cross-
section of players, with around 40% having never played the
game before, 21% having played between 11 and 50 times,
and 10% having played more than 50 times. While there is
no published data on an average win rate of Pandemic, most
of our participants reported never winning the game (48%),
or winning it about one in four times (27%). Only about
25% of our participants report winning the game every one
in two-three times, or more often than one in two games. This
underscores that Pandemic is a challenging game, even for
pure human player teams, with access to the special event
cards.

B. Results

The first metric we looked at was the percentage of games
participants won when playing with our agents. Overall, 26.7%
of games were won by participants with either agent, with no
statistically significant difference between the two agent types
(planning agent: 25.49%, plan recognition agent: 27.69%).
This falls between the results obtained by the agent-agent
teams of the RHEA agents (22%) and our planning agent
playing with itself (34%), and compares favorably to the
participants self-reported win-rate.

Of the 116 participants, only 77 answered the post-game
survey (32 for the planning agent, 45 for the plan recognition
agent). We compared the responses of these participants to
our three evaluation metrics, play skill, helpfulness and un-
derstandability, using a χ2-test and applied a Holm-Bonferroni
correction to account for multiple testing. Only the results for
how well participants understood the agent showed a statis-
tically significant difference (p < 0.05), with the participants
evaluation of the two agents shown in figure 2. We also per-
formed a Mann-Whitney-U test on these results to determine
whether there was a difference in the mean response, but were
unable to detect one. As can be seen, the plan recognition agent
was rated as being understood “sometimes” or “often” more
often than the planning agent, while the planning agent was
rated as being understood “Rarely” more often. However, at
the extremes, of being understood “Never”, or “Always” the
planning agent outperforms the plan recognition agent. We
interpret this as meaning that while the plan recognition agent
does make an effort at performing actions a human player
would expect and understand, there are some cases in which it
completely fails to determine what the human player is trying
to do, or how to support them in their endeavors.

Another result we want to highlight is how players rated
the helpfulness of the two agents, shown in figure 3. While
we were unable to show a statistically significant difference in
the distribution of the two ratings, as they are very similar for
most ratings, there is a significant difference in how many
participants rated the two agent types as “Always” being
helpful, with 13% of participants giving this rating to the plan
recognition agent, but only 3% doing so for the planning agent.
This indicates that our plan recognition agent, when it manages
to pick up on the human player’s plans, is perceived as being
actively helpful.



Fig. 1. Screenshot of the game client for Pandemic depicting the game board, players’ meeples and cards, and other game information.

Fig. 2. How often the participant understood the agent.

Additionally, we investigated if there were any interesting
correlations between the ratings given for different metrics.
For both the planning and the plan recognition agents there is
a strong correlation (0.69 and 0.76 respectively) between the
perceived skill level of the agent and the perceived helpfulness,
which indicates that human players perceive a good player
as one that is willing to help others, further supporting the
necessity for better cooperation.

Finally, while all participants were asked to play one game,
they were given the option to continue playing additional
games with a random agent. In order to avoid the influence
of learning effects, aforementioned results only take the first
game played by each participant into account. However, sub-

Fig. 3. How often the agent was helpful towards the participant.

sequent games by the participants were also recorded, and
we also calculated their win rate. Of these 71 additional
games, participants won 40.8%, with no statistically signifi-
cant difference between the two agent types (planning agent:
41.02%, plan recognition agent: 40.63%). This indicates that
our agents are actually capable of assisting a human player
on a competent level. It also suggests that players need some
time to adjust to, either, our user interface or the agents.

Qualitative analysis of the game information showed that,
while there was no statistical difference between the kinds
of actions actions used between the two agents, the plan
recognition agent seemed to “time” its actions in a way that
better integrated with the other player’s actions. For example,



the planning agent transfers cards whenever it is possible and
immediately increases the value of the players’ hands (as
evaluated by the heuristic), while the plan recognition agent
behaved in a more deliberate way, delaying the transfer of
cards until the discovery of a cure was actually at hand.

V. CONCLUSION

In this paper we presented our implementation of a plan
recognition agent for the game Pandemic, designed to play
the game with a human cooperator. We explained the different
challenges presented by the game and how they are handled
by our agent. We also presented the results obtained by the
agent when playing with human participants using a web-
based implementation of the game.

The results of our experiment were two-fold. First, we
demonstrated that our agent is able to successfully play the
game with human cooperators, at a level that is comparable
to teams consisting only of AI-agents, as well as the self-
reported average performance of our participants. Second, the
results indicate that there are some advantages of performing
plan recognition in order to better assist human players. On
one hand, participants understood our agent better when it
performed plan recognition in most cases, with some error
cases where the recognized plan apparently did not match
what the player was actually doing. On the other hand, we
also found a general correlation between the perceived “skill”
and “helpfulness” of our agent by human players.

These results indicate that AI agents can play a cooperative
game like Pandemic successfully with human players, and
that assisting them is an important aspect of this cooperation.
However, in future work we want to focus more on the
nuances of different plans in order to better determine what
the human player is actually trying to do. Our agent currently
very coarsely tries to peg the human player as either trying
to “win” or “not lose”, when there would be many different
variants of each, as well as shades in between. For example, a
player may have a choice between multiple regions of the map
to control diseases in (“not lose”), which may be influenced
by the availability of another player and their cards, making a
potential cure be found more easily (“win”).

Our implementation also has the limitation of requiring sig-
nificant expert knowledge to construct and tweak the heuristic
used to evaluate game states and guide the planning process.
In lieu of having to rely purely on expert knowledge, we plan
on using actual game logs to train a machine learning model
to improve this heuristic.

Finally, while our work focuses on Pandemic, we believe
that the general structure of our agent is applicable to more
general domains. While our agent uses a custom planning
approach, we are currently investigating the use of a more
general planning implementation in order to support multiple
different domains more easily in the future. Another topic
for research could focus on the exploration of the space of
different heuristics weights, studying their impact in more
detail, as well as different methods for choosing them.
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