
Skeleton-based multi-agent opponent search

Wael Al Enezi
School of Computer Science

McGill University
Montréal, Canada

wael.alenezi@mail.mcgill.ca

Clark Verbrugge
School of Computer Science

McGill University
Montréal, Canada

clump@cs.mcgill.ca

Abstract—In many games, players may run away and hide
from NPC enemies that have previously observed them, either
to avoid combat or as part of pursuing a stealth-based solution.
Rational NPC response then requires searching for the hidden
player, which for maximal realism should build on the last
known location, and consider the relative likelihood of a player
hiding or reaching each searched location. Unfortunately, search
behavior is not usually systematic, and in practice is either limited
to randomized goals within a small region, or exploits global
information on the player position that should be unknown.
In this work, we introduce a real-time method for directing
a multi-agent search utilizing the environment’s topology. This
approach allows for more natural and wider-scoped search
behavior. Experimental results show that this method scales to
relatively large game maps, and performs better than or close to
a naı̈ve team of agents fully aware of the player’s position.

Index Terms—Artificial Intelligence, stealth, search, multi-
agent, games

I. INTRODUCTION

Variations on hide-and-seek or pursuit/evasion are common

game mechanics, particularly in the action and stealth genres.

Players may aim to avoid observation by enemy non-player

characters (NPCs) as part of a game requirement, or in order

to avoid combat, with the latter more common outside pure

stealth contexts. Having been observed, however, subsequent

pursuit and search by enemy agents is often based on very

simple strategies: enemies may be given full information and

know the player position despite occlusion, which is easily

perceived as unfair, or they demonstrate unrealistic search

behavior, moving or looking randomly or only in pre-scripted

locations, potentially trivializing the challenge.

In this work, we propose a novel searching behavior for

enemy agents. Our design is based on a geometric decom-

position, exploiting the reachability properties of a structured

road map (straight skeleton) to enable efficient propagation of

probable player locations. This avoids discretization artefacts

and scaling concerns common to grid-based approaches, and

ensures search behavior follows the general “shape” of the

space, guiding location probabilities better than through ran-

dom sampling approaches. It has the additional advantage of

enabling effective separation heuristics, which allows multiple

enemy agents to search independently while still avoiding

This work supported by the COHESA project, through NSERC Strategic
Networks grant NETGP485577-15.
978-1-6654-3886-5/21/$31.00 ©2021 IEEE

overlap, and thus more efficiently cover a space. In addition,

this method can be expanded to robotic contexts with tracking

systems [1].

We evaluate our method experimentally, comparing different

parameterization, as well as comparing behavior with an ex-

isting probability-based search model in multiple game levels,

modelled in Unity3D. Our results show that for most maps, our

method produced a better search performance for multi-agent

scenarios. We further show that this method is achievable in

real-time and can be deployed in real-time systems.

The major contributions of this work consist of:

• We describe a novel method for tracking an opponent’s
position that can be utilized in commercial games. This

method can also be expanded into guard patrol, or for

guiding NPC exploration behavior.

• We empirically evaluate the method’s performance on
several maps modelled from currently existing commer-

cial games. We also describe the limitations of our

method based on qualitative assessment. 1

• Finally, we provide the framework we used for this
method as an open-source to make it possible for other

researchers or game developers to replicate our results. 2

II. PROBLEM FORMULATION

Our goal is to create an efficient multi-agent behavior to

search and find an adversary opponent in an enclosed game

environment. The multi-agent team has partial observable

game states, where the opponent’s position is unknown. Each

agent is granted a Field of View (FOV) of a limited range

and angle. Once the opponent is in the agent’s FOV they are

considered to be detected. The agents’ goal is to navigate to

the opponent’s most probable position after the line of sight

is broken.

III. LITERATURE REVIEW

The problem of searching for an opponent is determined by

the ability to track and predict an opponent’s position once

it is out of the visual field. This problem was approached in

many fields, for example, to track enemy positions in military

surveillance [2], to monitor people’s movement trajectory in

1A real-time video example of the result can be viewed at https://streamable.
com/774173
2The sourcecode can be found at https://github.com/wralenezi/Stealth-

Simulator.git

robotics [3], and in games to allow Non-Playable Characters

to exhibit a human-like motion in First-Person Shooters [4].

Prior work has also included a Turing “hide-and-seek” test,

held to evaluate agent performance in playing such a game in

a room [5].

Third eye Crime, a game well-known for implementing
opponent tracking as a core mechanic of its gameplay [6], used

a modified version of occupancy maps [7]. It overlays a grid on
top of the game map. Each node of the grid has a numerical

variable between 0 and 1 that represents a probability. The

probability reflects the likelihood of an opponent occupying

the corresponding node. In a typical game scenario, the

opponent is detected by a guard’s field-of-view. After that, all

guards simply take the shortest path to the opponent’s position.

However, once the opponent is out of their sight, the node

that corresponds to the position the opponent was last seen on

will have a probability of 1. As time progresses, the update

function consists of uniformly diffusing probability across the

neighboring nodes and normalizing them. Finally, the guards’

role is to cover the node with the highest probability, where

once a node is seen by a guard its probability is zeroed. This

method produced interesting guard behavior that served as the

core mechanic of Third eye Crime. Since this method relies
on discretizing the space into a grid, however, the accuracy

of tracking the opponent’s position depends on the granularity

of the grid. A low-resolution grid will result in inaccurate

tracking, and a high-resolution grid will increase the required

computation and memory costs [8].

The shortcomings of occupancy maps were addressed by us-

ing particle filters, a technique originally developed in robotics

[9]. By using this method, there is no need to discretize the

space into a grid, like in occupancy maps [10]. In general, this

method works by sampling a finite set of weighted particles

that represent the possible positions of the opponent. The

weight of each particle corresponds to the probability the

opponent is in that position. Once a particle is seen, it is

removed and unseen particles are resampled. After that, the

new particles are updated by a random walk by choosing

a direction, then it is moved in that direction at max speed

for one time step. The memory requirement for using particle

filters is, unlike occupancy maps, independent of the size of

the map. Alternatively, the computational expense relies on

the number of particles sampled; a high number of particles

results in high accuracy in exchange for performance, and a

low particle count will result in lower accuracy.

Particle filters may provide lesser computational and mem-

ory requirements than occupancy maps, but these two meth-

ods share a weakness where they uniformly give weights

to unlikely opponent positions due to the randomness of

particle filters and the omnidirectional diffusion of probability

in occupancy maps. In other words, they don’t make use

of the map’s layout to aid in weighing possible positions.

This shortcoming was refined by using a motion model called

“simulacra” [8]. In a simulacrum, the particles are defined on

the navigation graph used for agent pathfinding. The restricted

sampling is intended to create particles that more accurately

represent opponent movements on the navigation graph.

The simulacrum approach has been described algorithmi-

cally, but has not had sufficient research investigation to

evaluate its properties, or understand the impact of relying

entirely on a navigation graph for both agent movement and

probability propagation. In our design we follow a similar

approach, however, we expand on it by using a separate graph

that captures the map properties, regardless of the agents’

pathfinding system. In addition, we further define a multi-agent

framework for this problem.

IV. METHODOLOGY

In this section, we describe our method for predicting the

opponent’s position. In our design, agents use a navigation
mesh for pathfinding instead of a navigation graph or road-
map. This reflects modern game design, where agents have

more free-form movement potential. Probability diffusion,

however, depends on a graph that captures the topology of

the environment. This graph (which we also refer to as road-

map) is designed to reach any spot in the walk-able space. A

numerical value that represents the probability the opponent

is at a certain position is propagated through the topology

graph. For testing various approaches, we defined two methods

that dictate the manner the probability is transmitted through

the graph. In the first, the probability is simply propagated

through the graph. The second is our interpretation of using

an occupancy map approach on a graph instead of a grid. After

that, the agents choose a part of the graph by using a heuristic

feature function. For an adversary, we specified three simple

opponent behavior to test the performance against.

First, we create a graph that serves as a backbone of the

map and captures its topology.

A. Topology graph

1) Graph creation: The purpose of the graph is to create
a simplified representation of the map and utilize that rep-

resentation as spatial knowledge for the agents. We use the

scale axis transform (SAT) [11]. We choose the SAT graph

because it captures the main features of a polygon in a simpler

skeleton graph, well covering a space and extending naturally

into corners or other areas that may be useful for searching be-

havior. We implemented the SAT graph based on this method

[12]. Note that the algorithm to build this graph is based on a

discrete grid, but it can also be constructed directly from the

level geometry (with a more complex implementation). Figure

1.a shows the result on an example game map. After that, to

ensure our graph is connected to the corners, we expand on

the graph by connecting each convex angle of the map to

the closest corresponding projection on the graph. Figure 1.b

further shows our extension.

2) Discretizing the graph: We divided each edge of the
graph into smaller edges with a fixed length, which we refer

to as segments. This will serve in further decomposing the

graph to simplify and improve the precision in determining

possible locations of the opponent. Another advantage of using

segments is to ensure probabilities degradation to match the

(a) SAT (b) Modified SAT

Fig. 1: SAT graph on Docks level from the game Metal Gear Solid.

opponent’s movement. Each segment is associated with a

numerical value that represents the probability an opponent

is present near it. Figure 2 shows the final shape of the graph.

Fig. 2: The divided graph of the Docks map of Metal Gear

Solid.

The segments are affected by the guards’ Field of View

(FOV). Once the two end-points and mid-point are in the FOV,

that segment is considered to be seen.

B. Search behavior
While the opponent is in the FOV of at least one guard, all

guards simply navigate to the opponent’s position. Once the

opponent is out of the FOV of all guards present on the map,

the closest segment in the direction of the opponent’s velocity

is assigned with a probability of 1. After that, the probability

is propagated through the neighboring segments. We define

the following two methods for the probability flow.
1) Probability propagation: In this method, the probability

is propagated to neighboring segments while deteriorating for

each segment. The probability deterioration serves in prioritiz-

ing the search of closer segments. The amount of deterioration

depends on the size of the map’s area. To match the opponent’s

movement, the propagation pace is set to match the opponent’s

maximum movement speed. At each time step, the probability

of each segment is incremented only if it satisfied at least one

of the following conditions:

• It has a nonzero probability.

• It is adjacent to another segment that has a nonzero
probability.

To find the opponent, the guards scan the segments and start

moving toward the midpoint of a chosen segment. A segment

is chosen by a fitness function that guides the search; see

section IV-C below. Once a segment is seen by a guard, its

probability is set to zero, and then its probability increments

at a fixed rate and the guard chooses a new segment. However,

if at one point during the search, the max probability of the

segments is less than a specified threshold, then the probability

of all segments will be (re-)normalized. This method can be

also used as a patrol behavior, which is an alternative approach

to the one in [13].

2) Probability diffuse: In this method, the probability is
similarly diffused to Isla’s implementation of occupancy maps

[6]. However, in our implementation, the discrete Gaussian

distribution is allocated to the segments instead of pixels. At

every time step, the probability is diffused to the neighboring

segments using equation 1. After diffusing the probabilities,

they are normalized over the segments.

Pt+1(n) = (1− λ)Pt(n) +
λ

|Adj(n)|
∑

n′∈Adj(n)

Pt(n
′) (1)

where λ ∈ [0, 1] is the diffuse factor, Adj(n) are the
neighboring segments to n.

C. Choosing a segment

The goal of the guards is to efficiently investigate the

segments to find the opponent. Once a guard queries the

available segments, it chooses its next destination by a fitness

function, which is described in equation 2. After the segment

is chosen, the guard uses the NavMesh to find the shortest

path to see it.

fi(g) = pi ∗ wp + di(g) ∗ wd +mint∈G(di(t))) ∗ wg (2)

Where i is a segment, g is a guard, pi is the probability
assigned to i, wp is the weight assigned to the probability

variable, di(g) is the segment i distance from the guard, wd is

the weight assigned to the distance variable, mint∈G(di(t)))
is the path-distance of the closest other guard to the segment

i, and wg is the weight assigned to that variable. The weights

range between [-1,1].

After testing the performance, we fixed the weights

[wp, wd, wg] to [1,−0.8, 1].
D. Opponent behavior

To assess our method, we need a suitable hiding opponent.

For the opponent’s behavior, we relaxed the problem into

having the opponent choose a hiding spot from a set of

predefined hiding positions on the map to navigate to. We

populated the set of hiding spots by allocating one hiding spot

on the normal vectors of edges forming a convex interior angle,

and two hiding spots on the sides of an interior reflex angle,

using a small fixed offset. Figure 3 shows the two cases.

(a) Reflex Angle (b) Convex Angle

Fig. 3: Possible hiding spots based on the angle of the corners

of obstacles.

Defining good hiding heuristics remains a research chal-

lenge in itself. We thus defined 3 simple behavior patterns for

the opponent to choose its hiding spot:

• Heuristic: The opponent is aware of the guards’ posi-
tions, and so it chooses the hiding spot that has the fur-

thest path distance from the other guards. The opponent

stays in that position until it is spotted, then it moves and

finds another spot to hide.

• Heuristic with Movement: This is similar to the previous
behavior, however, after the opponent arrives at a hiding

spot, it waits for a random time interval and then relocates

to a new spot using the same heuristic, irrespective of

whether it has been seen yet or not.

• Random with Movement: This behavior is also con-
stantly moving between hiding spots with a random wait

time, however, it instead of randomly choosing a new

destination using the base heuristic, it chooses the next

hiding spot randomly.

V. EXPERIMENTS

For our experiments, we defined a scenario to start by

randomly allocating the guards on a map. After that, the

opponent is spawned in front of one of the available guards by

random. The guards’ goal is to reduce the distance between

them and the opponent. Since our goal is to study our search

implementation, we relaxed the scenario by preventing it from

ending once the opponent has been caught. Each experiment

thus ends after a fixed amount of time is passed, sufficiently

long that multiple separate opponent sightings and searches

will have been performed.

We ran 40 episodes for each combination of the following

variables:

A. Game maps

We focused on using maps from commercial games. We

recreated maps from First-Person Shooter, Action/Stealth, and

Role-Playing games. Figure 4 shows an illustration of the maps

used, which are:

• The “Docks” level from Metal Gear Solid 1 (as shown
in figures 1 and 2).

• Two maps from the Dragon Age series. They were taken
from MovingAI collection [14].

• An excerpt of the “San Cristobal Medical Facility: Basic
care unit” from Alien: Isolation.

• A map we designed to be similar to a warehouse with a
high number of intersections.

• The “Ascent” map from the Multiplayer FPS game,

Valorant.
• “Vacant”, a multiplayer map in the FPS game Call of

Duty: Modern Warfare. This is the largest and most com-
plex map we included in our experiment. We included it

as a stress test.

B. Search behavior

We considered three search behaviors:

• Cheating: The guards were cheating by knowing the
opponent’s position at all times, even if occluded. This

was intended to serve as an upper-bound on possible

performance, and to reflect common game practice.

• Probability Propagation: Our main model, as described
in section IV-B1.

• Probability Diffuse: An occupancy map approach

adapted to our road-map model, as described in section

IV-B2.

C. Guard FOV

The radius of the guard’s FOV depends on the map’s

dimension. It is proportional to the largest side of the bounding

box of the exterior polygon of the map. The default radius we

defined is 20% as a reasonable fit for the maps we investigated,

however, we also considered the effect of changing radius on

the search performance.

D. Number of Guards

Finding an opponent can be accomplished easier when the

guards cooperate in tracking the opponent. We used a default

of 3 guards, but also consider the search performance for

different numbers of guards in a team.

(a) Dragon Age brc202d (b) Valorant: Ascent

(c) Dragon Age drslavers (d) Alien Isolation: Hospi-
tal

(e) Warehouse (f) Call of Duty

Fig. 4: Game Maps with one guard in each map, the light blue

area is its FOV.

E. Opponent speed

Guards that move as fast or faster than players are much

less likely to lose track of a player, and can easily reduce the

testing situation into a pure chase. Since our goal is to test

search performance, we set the opponent’s movement to be

150% faster than the guard’s, a value found to be effective

without being excessive in initial testing. We also considered

the three opponent behaviors in section IV-D.

VI. RESULTS

For evaluating the search performance, we ran 40 episodes

of 250 seconds long for 3 guards chasing an opponent for

each combination of the search behavior, opponent behavior,

and maps. We measure performance in terms of relative

“alert time”, which is the proportion of time an agent is

observed versus staying successfully hidden: a lower alert

time indicates better performance. We first evaluate the search

performance over the different maps, and the effect of different

parameters on the search performance, then We describe

interesting limitations that affected the performance on our

maps. We then consider the effect the opponent behavior

has on the search performance of the probability propagation

method. Lastly, we report the worst-case computation for the

probability propagation method.

A. Overall search performance

Figure 5 shows the percentage of time the opponent was

in the line of sight by at least one guard over all our

maps, keeping opponent behavior constant (base heuristic).

Noticeably, as the map size and complexity increase, we notice

a decline in performance across all methods. In other words,

all methods could not keep the opponent detected for more

than 30% of the episode’s time. This could be caused by the

fact the opponent is faster by 1.5 times than the guards, so

the opponent can easily move out of sight, however, further

experiments is required to confirm this. Another factor is

the map complexity, which we will describe more in detail

in the following section. Interestingly, we found that the

cheating guards were often outperformed by our methods. We

quantitatively assess a possible cause in the following section.

B. Search method performance

We noticed that the probability propagation performed the

best in most maps, in many cases exceeding our cheating

“upper-bound”. While this result might seem counterintuitive,

figure 6 provides a possible explanation to why a group of

guards unaware of the opponent’s position outperformed the

ones who had full data of the opponent’s whereabouts. It can

be seen that in cheating, guards spent more time being close to

each other during the scenario. This is because the opponent’s

position was known, and all guards simply navigated towards

them. Even if they started in random positions, they would

easily end up converging to the same path after a certain

time passed. In our method, since we gave a weight that

motivated the guards to navigate to segments that are further

from other guards, they ended up dispersed across the map.

This wider distribution of guards resulted in a higher chance

for the opponent to be spotted or intercepted as they moved

around the maps.

After observing the performance of the “Probability diffuse”

method, we also observed several factors that led to its

relatively weaker performance. A core factor seems to be

due to the omnidirectional approach to probability diffusion:

segments that were on the opposite side of the opponent’s

velocity had the same probability as those in its direction.

This caused the guards to go back and investigate unlikely

segments. This observation confirms a similar observation

made in [8], and which motivated specific tuning concerns

in Isla’s Third eye Crime. On the other hand, this limitation is
handled in the probability propagation method by preventing

the probability of being transmitted to segments that the

opponent cannot possibly enter. Figure 7 shows an example

where the opponent is out of sight and the probability is not

propagated behind the guard since, assuming the FOV is large

enough, the opponent cannot pass by the guard unnoticed. This

allows the guard to search in more reasonable locations rather

than re-investigating previously seen areas.

The cheating did manage to outperform our method in a few

maps, notably the “Warehouse” and “Call of Duty” levels. The

latter is a large map, but the former is not, and so we attribute

this outcome to the relatively high count of path-crossings in

Fig. 5: The percentage of the time the opponent was detected by at least one guard to the episode’s total time.

Fig. 6: The percentage of time the guards were 0.5 meter close

to each other to the total episode time.

these maps. The guard spends more time searching for the

opponent since there are a higher number of possible paths

the opponent took. On the other hand, the cheating team of

guards simply navigates to the opponent’s position.

C. Number of guards vs FOV radius

In commercial games, defining the adversary’s character-

istics, like the number of guards in a level, the sensory

parameters of the guard, the health of the guards, etc., are

usually determined by human testing. We consider the possi-

bility of quantitatively assessing the impact of tweaking such

parameters on the game as a preliminary step before human

testing.

Fig. 7: A guard (red) looks for the opponent (blue), who is

out of sight. The red line represent the segments with nonzero

probabilities; note that the probabilities behind (left of) the

guard are 0.

For example, to provide a reasonable degree of difficulty

for players in stealth games, they should be faced with a

challenging, but still doable task of staying hidden. Guard

speed is trivially manipulated, but two other major factors that

affect the difficulty of this task are the number of guards in

the level, and the radius of their FOV.

Here, we compared the impact of changing the radius of the

guards’ FOV and the number of guards on a map. Figure 8

shows the results of our comparison on two maps. It is evident

that the impact of changing such parameters can have different

effects on the search performance depending on the map. In

both cases we observe an increase in performance in rough

proportion to the number of guards, but changing the FOV

has almost no impact on the “Call of Duty” map, while it

has a quite noticeable impact in the “Warehouse” level. The

Fig. 8: The alert time for different guard count (x-axis) with

different range of FOV (y-axis). Results for two maps.

dense occlusion in the latter map may be responding better

to increased guard vision. This does not necessarily mean the

effect is unimportant in the “Call of Duty” map, as even though

the setup of two guards with a 50% radius range offers similar

performance to the setup of 4 guards with 20%, these two

setups might provide a different experience for a human player.

The lack of measurable impact of an increased FOV in

“Call of Duty” can also be partly explained by the nature of

the map structure. As we previously mentioned, the decision

to use a straight skeleton for probability propagation is to

capture the map’s topology. However, using this graph for

modelling possible opponent trajectories may not be practical

for maps with large, wide and open spaces, which the “Call of

Duty” map does contain. Figure 9 shows an example of this

limitation. When the guards lose sight of the opponent, the

closest segment in the direction of the opponent’s movement

is set with a probability of 1. After that, the probability is

propagated in the direction of the opponent’s movement along

the straight skeleton. However, in some locations on the map,

an opponent may navigate through an area where the skeletal

road-map coverage is reduced or does not fully reach, and

probability diffusion diverges from the opponent’s actual path.

A denser variation on the road-map may reduce this limitation.

D. Opponent behavior

As figure 10 shows, the 3 different opponent behavior types

are all able to hide effectively, although the different choices of

hiding behavior did not have a significant impact: preemptively

moving to a different hiding spot may result in slight benefit

or degradation in performance, but is otherwise relatively

ineffective, with variance across maps higher than across

behavior type. These behavior types, however, are simple and

meant to provide a benchmark to compare the search methods;

more complex opponent behavior remains future work.

E. Computation costs

The limited computation budget for AI in most games

requires an efficient implementation for any practical design.

We evaluated the performance of the probability propagation

method by measuring the maximum amount of time it takes to

complete one loop of execution. We measured it over several

(a)

(b)

(c)

Fig. 9: An Example of a limitation in our method. The dashed

red line is the straight skeleton of the map. The blue line is the

segments that had a non-zero probability. As the FOV zeros

out the propagated probability, the enemy escapes.

maps in a worst-case situation, when all segments have non-

zero probabilities. Table I shows the method’s performance

over the maps for 3 guards.

We notice that this method is relatively cheap, and realizable

in real-time for normal-sized maps. Unsurprisingly, the perfor-

mance is slower on larger maps, such as the “Call of Duty”

map. Performance could be improved by increasing segment

length, reducing the update rate, or through hierarchical or

other spatial partitioning approaches that focus on local area

over more distant locations.

VII. CONCLUSION

NPCs that show rational, intuitive behavior can be more

interesting to play against in games. In this work, we intro-

duced a method that allows guards to exhibit a real-time search

Map Map Area (M2) Segment Count Make a Decision (ms) Update loop (ms)
MGS Docks 236 99 4 3

Dragon Age brc202d 550 274 26 9
Dragon Age dr slavers 362 136 3 4

Valorant Ascent 1020 219 13 7
Warehouse 504 192 14 4

Alien Isolation 466 183 9 8
Call of Duty 4 Vacant 3970 727 210 25

TABLE I: The worst-time decision time and update loop time for different game maps. The experiments were done on a CPU

Intel(R) Core(TM) i7-7700K CPU @ 4.20GHz with 16 GB RAM.

Fig. 10: The percentage of time the opponent, using one of the

3 opponent behaviors, was in sight of guards over two maps.

behavior for an opponent that better exploits awareness of the

level geometry. For this, we used a skeletal graph representa-

tion to better propagate the probability of potential opponent

locations. Our method showed interesting behavior for multi-

guards searching for an opponent in several maps taken

from existing commercial games, improving even over a full

information scenario when guards know the exact opponent

location. The approach performs best in relatively occluded

contexts, where the skeletal graph well approximates the level

shape, and can be tuned through different parameterization,

such as extent of guard FOV.

VIII. FUTURE WORK

A number of future directions are possible from our work.

The effect or our approach, of course, depends on how well an

agent may hide or attempt to elude pursuers. This represents

an interesting research challenge in itself, but a user study

would be ideal to assess relative effectiveness with actual

human players, where we can not only observe the impact of

different, human-driven evasion strategies, but also the relative

appeal and naturalness of our approach—does our design

result in more “human-like” searching behavior? Believability

may be additionally improved by incorporating “barking,”

where guards announce their intentions or frustrations based

on their success, or lack thereof.

We are also interested in optimizing performance. Eval-

uation of our method shows it is efficiently realizable on

average-sized game maps, but we believe additional benefit is

possible by tuning segment size, graph density, and update rate

based on map structure. This extends into other motivations

for parameter tuning; for example, changing the weights used

for choosing the best segment to visit during the gameplay

may lead to different behavior, that can be exploited to control

relative advantage—weaker players can stay more effectively

hidden when we can encourage guards to stick together.

Improving guard separation, on the other hand, gives us a more

difficult, but also intuitively more natural search behavior, and

integrating the full path choices of guards into our propagation

approach would allow us to extend the separation heuristic to

further reduce the amount of guard overlap, which as we have

observed is a major factor in search performance.

REFERENCES

[1] Á. M. Guerrero-Higueras, C. Álvarez-Aparicio, M. C. Calvo Olivera,
F. J. Rodrı́guez-Lera, C. Fernández-Llamas, F. M. Rico, and V. Matellán,
“Tracking people in a mobile robot from 2d lidar scans using full
convolutional neural networks for security in cluttered environments,”
Frontiers in neurorobotics, vol. 12, p. 85, 2019.

[2] D. A. Borovies, “Particle filter based tracking in a detection sparse
discrete event simulation environment,” NAVAL POSTGRADUATE
SCHOOL MONTEREY CA, Tech. Rep., 2007.

[3] M. Bennewitz, W. Burgard, G. Cielniak, and S. Thurun, “Learning
motion patterns of people for compliant motion,” International Journal
of Robotics Research, 2004.

[4] S. Hladky and V. Bulitko, “An evaluation of models for predicting
opponent positions in first-person shooter video games,” in 2008 IEEE
Symposium On Computational Intelligence and Games. IEEE, 2008,
pp. 39–46.

[5] A. Cenkner, V. Bulitko, M. Spetch, E. Legge, C. G. Anderson, and
M. Brown, “Passing a hide-and-seek third-person turing test,” IEEE
Transactions on Computational Intelligence and AI in Games, vol. 6,
no. 1, pp. 18–30, 2013.

[6] D. Isla, “Third eye crime: Building a stealth game around occupancy
maps,” in Proceedings of the AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment, vol. 9, no. 1, 2013.

[7] ——, “Probabilistic target tracking and search using occupancy maps,”
AI Game Programming Wisdom, vol. 3, pp. 379–388, 2006.

[8] C. Darken and B. Anderegg, “Particle filters and simulacra for more
realistic opponent tracking,” in AI Game Programming Wisdom, vol. 4.
Charles River Media, 2008, pp. 419–428.

[9] S. Thrun, “Particle filters in robotics.” in Uncertainty in artificial
intelligence, vol. 2, 2002, pp. 511–518.

[10] C. Bererton, “State estimation for game ai using particle filters,” in AAAI
workshop on challenges in game AI, 2004.

[11] J. Giesen, B. Miklos, M. Pauly, and C. Wormser, “The scale axis
transform,” in Proceedings of the twenty-fifth annual symposium on
Computational geometry, 2009, pp. 106–115.

[12] C. W. Niblack, P. B. Gibbons, and D. W. Capson, “Generating skeletons
and centerlines from the distance transform,” CVGIP: Graphical Models
and image processing, vol. 54, no. 5, pp. 420–437, 1992.

[13] W. Al Enezi and C. Verbrugge, “Dynamic guard patrol in stealth games,”
in Proceedings of the AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, vol. 16, no. 1, 2020, pp. 160–166.

[14] N. Sturtevant, “Benchmarks for grid-based pathfinding,” Transactions
on Computational Intelligence and AI in Games, vol. 4, no. 2, pp.
144 – 148, 2012. [Online]. Available: http://web.cs.du.edu/∼sturtevant/
papers/benchmarks.pdf

