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Abstract—This work concentrates on decision-making for au-
tonomous movement of agents to simultaneously optimize several
objectives which occur in their local environment. Such behavior
can be achieved with steering algorithms, which have originally
been designed for moving numerous agents simultaneously where
occasional uncertainties are not noticeable by players. Neverthe-
less, concentrating on single individuals can reveal major flaws
in their movement patterns such as oscillatory movement. For
avoiding such problems, game makers are forced to develop
higher-level abstractions for handling game-relevant special cases.
Thus, eliminating the initial benefit of steering behaviors to
be highly modular, lightweight, and controllable. This work
enhances the context steering approach by Fray, which intro-
duced discretized contextual information in the aggregation of a
steering behavior’s components. We combine this method with
multi-criteria decision-making for controlling the agent’s velocity
direction and magnitude. The resulting approach is tested based
on selected scenarios which show that the resulting approach is
well suited to improve the agent’s smooth and natural movement.
Based on our observations we propose suitable parameterizations
of the designed method and discuss advantages and disadvantages
of made enhancements.

Index Terms—Context Steering, Autonomous Movement,
Multi-Criteria Optimization, NPC, AI

I. INTRODUCTION

The development of games often requires the design of
believable agents. In recent years, game worlds have become
more complex and dynamic, which can make the development
of suitable movement algorithms a daunting task. As a result,
moving entities can get stuck or show other forms of unrealistic
movement. This can break the players’ immersion and reduce
their enjoyment of the game world. Hence, flexible and robust
methods for movement control are required.

The two most common approaches for AI movement are
represented by path-planning and steering algorithms. While
path-planning methods, such as A* [1], [2] or navigation
meshes [3], [4] make use of global planning to find an optimal
path, their applicability is considerably constrained in complex
dynamic scenarios. In addition, the situation becomes even
more challenging if the game strongly relies on physics for
controlling characters, so the AI also has to consider forces
and their resulting impact on the movement. The dynamics
of a world and complex movement constraints can render
path-finding algorithms inapplicable, due to the size of the

resulting search space and the frequent re-planning required to
accommodate for the environment’s dynamics.

An alternative approach is the use of steering algorithms
which limit the agent’s search to its local environment. Instead
of making a single global decision, the agent moves by making
a sequence of short-term decisions which should bring the agent
closer to its goal. The original steering approach [5] uses a
collection of behaviors which each return a preferred movement
direction. To determine the agent’s movement direction, the
directions returned by each behavior are aggregated. Steering
has proven to be a valuable tool for game designers, due to
the simplicity of its underlying behaviors and the potential
complexity that can emerge from their combination.

This flexibility comes with the drawback of having to fine-
tune the agent’s movement by painstakingly optimizing a
large number of interdependent parameters. With an increasing
number of simple behaviors and parameters, this process can
become quite complex. In particular, a problem arises in the
dependency of many variables, which is caused by the aggre-
gation of the individual behavior decisions. Typical problems
include deadlocks or oscillatory movement [6], in which the
decisions of underlying behaviors contradict each other.

The steering approach proposed by Fray [7] is tackling these
problems by integrating the context of each behavior’s decision
into account during the aggregation process. This allows for
more fine-grained control of the aggregation process and has
shown able to eliminate some sources of unrealistic movement
but cannot avoid deadlocks entirely. In this work, we propose
to extend Fray’s approach by a multi-objective decision-making
process for stable agent movement.

The main contributions of this work are:
• Multi-Criteria Decision-Making for Context Steering:

Given our formalization of context steering, we propose a
multi-objective view of the steering problem and methods
to solve it.

• Methods for Smoothing the Steering Behavior: History
Blending has been proposed by Fray [8] to reduce the
oscillating behavior of context steering agents. Since the
approach has never been clearly defined, we propose
methods for smoothing the steering values in a single time
step and over consecutive time steps. Furthermore, we
formalize the interpolation of neighboring context values,
another principle that has been proposed by Fray [8], to978-1-6654-3886-5/21/$31.00 ©2021 IEEE



approximate the optimal steering direction based on the
receptors’ perceptions.

In the following section, we will provide a brief overview
of the principles of steering, context steering, and a review
of related work on the optimization of steering behaviors. In
Section III we present our multi-objective context steering
algorithm and formalize methods for smoothing the agent’s
behavior. In Section IV we will introduce several test scenarios
and discuss the observed performance of the proposed approach.
We conclude this work in Section V by summarizing our results
and discussing possible applications and ideas for possible
enhancements to be analyzed in future work.

II. BACKGROUND AND RELATED WORK

In the following, we briefly summarize the original steering
approach proposed by Reynolds (Section II-A). Furthermore,
we review the context steering approach by Fray, which
represents a well-known extension on which this work will
be based on (Section II-B). In Section II-C, we describe how
multiple behaviors are combined in context steering. Thereafter,
we review the fundamentals of multi-criteria decision-making
(Section II-D), which will be used in Section III. This section
ends with a brief overview of related work on optimizing agent
movement and multi-objective optimization for agent control
(Section II-E) to place this work into the context of others.

A. Steering

Steering algorithms represent a class of movement algorithms
that reduce the path-finding problem to a series of short-
term decisions, whereas each decision takes the agent’s local
environment into account. In this work, we will consider
the agent’s environment to be a 2-dimensional, dynamically
changing world. This environment can consist of multiple
objects which can draw the agent’s interest or represent objects
to be avoided.

Reynolds [5], [9] proposed the use of multiple simple
behaviors to define the building blocks of a more complex
steering agent. Each of these steering behaviors observes the
agent’s local environment and returns velocities, consisting of
a direction vector and its magnitude, to react to the current
game situation. Most common examples are the behaviors
seek and flee. The former returns velocities pointing towards
objects the AI agent is interested in, whereas the flee behavior
returns velocities pointing away from objects an agent wants
to avoid. Moreover, the way these vectors are computed can be
altered by the use of additional steering forces. For example,
such forces might be used such that the resulting motion path
always describes an arc instead of a direct line for simulating
a physics-oriented movement even if no physics engine is
involved. After their acquisition, the velocity vectors returned
by each behavior are aggregated and result in a single velocity
used for the agent’s movement. This final vector can be altered
with weight-based and/or priority-based methods depending
on the specific game and situation.

Due to the simple principles of underlying movement
behaviors, steering has proven to be an accessible tool for AI

designers in the games industry. Although steering behaviors are
designed to be lightweight and simple to combine, in practice,
they come with major problems which especially stand out
when looking at single computer-controlled individual instead
of flocks and herds. Because of its aggregation, steering can
result in a movement that appears unreasonable to the player
in specific situations, such as the example shown in Figure 1.
The weighted aggregation of a seek behavior pulling towards
the green diamond and pushing away from red circles, may
result in a deadlock in which the agent stands still because the
aggregation of each behavior’s movement vector yields a null
vector. Similar problems occur in dynamic environments, in
which agents can show oscillating movement behavior.

B. Context Steering

As we will see in the following section, changing the
aggregation process has the potential to improve on the
observed problems. Fray’s proposal of context steering [8]
origins from the observation of discussed deadlock situations.
He argued that such problems can be avoided by adding more
information to the aggregation process.

Instead of just aggregating the proposed movement direction
of each behavior, those will return a context map instead. The
context map consists of a behavior’s rating of each movement
direction. To generate such a context map, the agent will have
a set of receptors r ∈ R to perceive the agent’s surroundings
in their associated direction vr. Based on this observation each
behavior generates a rating of each direction, e.g. interest or
danger, and writes the result in a scalar array hence worth
called context map.

Figure 2a shows the generation of a seek behavior’s context
map. The value of each cell is dependent on the type of object
the behavior is sensitive to, the distance of the agent posa and
the object poso, and the angle ω between the steering direction
vs and the direction the receptor is pointing to vr.

The angle can be determined through:

ω = cos−1
〈~vr, ~vs〉
‖~vr‖‖~vs‖

∈ [0, π] (1)

If the angle is smaller than a given threshold θ ∈ [0, π],
the receptor is affected by the object, and a context value zr
greater than 0 is calculated.

zr = f(ω)g(‖~vs‖) ∈ [0, 1] (2)

The context value zr depends on the exact location of the
detected object o in relation to the agent a and its related
receptor r. The function f maps the angle ω from the domain
A ∈ [0, θ] to a value in the range of U ∈ [0, 1]. Function
g(‖~vs‖) maps the distance of the detected object ‖~vs‖ which
is in the domain [ξmin, ξmax] to a value in the range of [0, 1].
Given the thresholds ξmin and ξmax we can denote the agent’s
detection range, which effectively results in the agent ignoring
all objects outside of this range. In case multiple objects are
in range, only the highest context value will be written to the
context map.
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Fig. 1: An example where a steering scenario (a) can lead to to a deadlock (b). Green diamonds represent objects that the blue
agent is interested in. The red circles on the left and right represent dangerous objects.
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Fig. 2: Example of the context steering aggregation process.

The mapping type used for f(ω) and g(‖~vs‖) depends on
the desired agent behavior. For a seek behavior that shall find
close objects, an inverse linear mapping should be used for
f(ω) and g(‖~vs‖). Other interesting mappings may be squared
mapping, square-root mapping, or their inverse versions.

C. Combining Behaviors and Context Maps

For the aggregation of multiple behaviors, we first define how
two behaviors with the same objective can be aggregated in a
single context map, after which we describe Fray’s approach
for combining context maps of different objectives.

In context steering, multiple behaviors can be defined with
the same objective in mind, e.g. minimizing the distance to
objects of interest. Those context maps can easily be aggregated
to z(agg) by using the maximum value for the related entries
of the two context maps z(1) and z(2).

z(agg)
i = max{z(1)i , z

(2)
i }, ∀i : 1, . . . , |R| (3)

Besides combining multiple behaviors with the same ob-
jective into one context map, the context steering algorithm
proposed by Fray [8] is also able to handle multiple objec-
tive functions. He specifically focused on the objectives of
minimizing the distance to interesting objects while avoiding
dangerous objects.

Figure 2c illustrates an example for combining context maps
of different objective functions. To combine these into a single
steering direction, first, the lowest value in the danger map will
be determined (i). All directions with a higher danger value will
be eliminated as they are considered to be too dangerous (ii).

For the remaining directions, we choose the direction with the
highest interest value as the agent’s steering direction.

While this process has shown to yield a more stable and
robust steering behavior, the aggregation process is still ignoring
much of the available information. In this work, we will
propose the use of multi-criteria optimization methods for the
aggregation of context maps with different objective functions.

D. Multi-criteria Optimization (MCO)

MCO methods can be applied whenever there are two or
more conflicting objective functions to be optimized at the same
time. Within this work, we will use the following notation:

minimize {f1(x), f2(x), . . . , fk(x)}
subject to x ∈ S

(4)

whereas fi represents an objective function used to rate an
agent’s movement direction and a total of k ≥ 2 objective
functions will be optimized at the same time.

Each objective functions fi : Rn → R which span the
objective space Rk. The decision (variable) vectors x =
(x1, x2, . . . , xn)

T belong to the (nonempty) feasible region
(set) S which is a subset of the decision variable space Rn. The
image of the feasible region which is a subset of the objective
space is denoted by Z and called feasible objective region, and
its elements are called objective (function) vectors or criterion
vectors and denoted by f(x) or z = (z1, z2, . . . , zk)

T , where
∀i = 1, . . . , k : zi = fi(x) are objective (function) values or
criterion values [10, p. 5].
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Fig. 3: Example MCO problems; left: convex, right: concave.
The Pareto optimal sets for minimizing the two objectives are
highlighted in orange.

It is important to note that there is no total order for
solutions because of the conflicting objectives. Thus, the
notion of Pareto dominance is applied to determine the
optima of our MCO problem. A decision vector x∗ ∈ S
is Pareto optimal if there is no other decision vector x ∈ S
such that ∀i = 1, . . . , k : fi(x) ≤ fi(x

∗). In addition, an
objective vector z∗ ∈ Z is Pareto optimal if there is no other
objective vector z ∈ Z such that ∀i = 1, . . . , k : zi ≤ z∗i
and ∃j : zj < z∗j , or equivalently, z∗ is Pareto optimal
if the decision vector corresponding to it is Pareto optimal
[10]. The set of all Pareto optimal solutions is called Pareto
optimal set [10] or Pareto front, and all solutions resulting
by the subsequently introduced methods in Section III-B are
elements of this set. Figure 3 visualizes the Pareto Fronts of
two exemplary MCO problems.

An MCO problem is shaped either convex or concave as also
illustrated in Figure 3. The shape determines which methods
for obtaining Pareto optimal solutions are convenient to use
because the ability to find specific solutions differ from method
to method. In Section III-B, we discuss the problem shapes
that can be expected in the context of multi-objective context
steering and how this reflects on our selection of a suitable
MCO method.

E. Learning and Optimization of Steering Behavior

Since we are going to propose a new method for the
aggregation of context steering and therefore the optimization
of their movement behavior, we are briefly reviewing alternative
methods in this section. Despite the common use of (context)
steering for designing an agent’s movement behavior, there is
not much literature on extensions of the baseline approaches.
Most notably, Fray has reviewed the context steering approach
in his recent work [11], in which he discussed context steering
for racing agents. In this, he also suggested the use of history
blending, which can help in reducing observed oscillating
behavior. For this purpose, the agent blends between context
maps of consecutive time-steps for a smoother transition.

Another line of work concentrates on the optimization of a
steering agent’s behavior. The development of steering agents
involves setting up a set of rules and behaviors that will
ultimately be combined to result in an agent’s steering behavior.
This results in a large number of parameters to be tuned,
which is especially complex due to these parameters being

Algorithm 1 SAMPLEOBJECTIVES
in: (O,B, V, θ, ξmin, ξmax) | in+out: (D, I)

1: set all objective values of D and I to 0
2: for all objects o ∈ O do
3: for all behaviors b ∈ B do
4: ~vs ← CLASSICSTEERINGBEHAVIOR(b, o)
5: if ‖~vs‖ < ξmin or ‖~vs‖ > ξmax then
6: continue (with next element, skip current)
7: s← 1− (‖~vs‖ − ξmin)÷ (ξmax − ξmin) ∈ [0, 1]
8: ~vs ← ~vs ÷ ‖~vs‖ · s
9: for k ← 1, . . . , |V | do

10: ~vr ← V [k]
11: ω ← cos−1(〈~vr, ~vs〉 ÷ ‖~vr‖‖~vs‖) ∈ [0, π]
12: if ω ≤ θ then
13: zr ← f(ω)g(‖~vs‖) ∈ [0, 1]
14: if o is danger then
15: D[k]← MAX(D[k], zr)
16: else
17: I[k]← MAX(I[k], zr)

dependent on each other. To address the high dimensionality
of the optimization problem, Gerdelan and O’Sullivan [12]
proposed the use of an evolutionary algorithm to tune the rules
of a fuzzy controller for steering. Their evaluations show that
this system is able to produce a better controller configuration
than the hand-tuned reference set. However, due to the nature
of the aggregation, this system is still prone to deadlocks.

An alternative process has been explored by Croitoru [13]
who tried to learn steering behaviors to approximate given
trajectories. For this purpose, a particle swarm optimization-
based method has been proposed to derive agent steering
behaviors based on Reynolds’ boids model [9].

None of these steering methods specifically address the multi-
objective nature of the steering problem. In the following, we
are going to propose a multi-objective aggregation process that
should help in reducing the number of deadlocks and overall
increase the believability of the agent’s movement.

III. METHODOLOGY

This work enhances the context steering approach by
interpreting sampled geometric data as two conflicting objective
functions fd(x) = zd ∈ [0, 1] (danger) and fi(x) = zi ∈ [0, 1]
(interest) with x = 1, . . . , n sample points. The notation f(x)
states that fd(x) and fi(x) can be applied respectively. From
an agent’s point of view, dangerous objects can be in the
same direction as interesting objects, which result in an MCO
problem to be solved.

A. Sampling Objective Values

We combine a set of steering behaviors B with context
maps as described in Section II-C, whereby iterated objects
O are either interest or danger. So they can be associated
with their objective array D = fd(x) or I = fi(x). The
set of context map receptors R determines the resolution of
our discrete MCO problem with n = |V | = |D| = |I|. The



SAMPLEOBJECTIVES procedure (see Algorithm 1) aggregates
discrete functions and additionally gets the inputs θω as angle
threshold and [ξmin, ξmax] as perception range.

For simplification in this work, we only use SEEK. In
practice, e.g., an agent’s finite-state machine (FSM) controls
active steering behaviors based on the current situation. For
an improved run-time, iterated objects should be limited to
objects relevant and visible for an agent, depending on the
current scenario. Therefore, data structures that enhance spatial
queries might be applied.

B. MCO Decision-Making

The two sampled discrete functions fd(x) and fi(x) form
our 2D MCO problem and the 2D objective space, respectively.
Since we formulate a minimization problem, we need to negate
fi(x) to find solutions having minimum danger and maximum
interest.

minimize {fd(x),−fi(x)}
subject to x ∈ {1, 2, . . . , n}

(5)

An agent sampling one interest and one dangerous object
results in the typical ellipsoid MCO problem shape, as in Figure
3. The greater the number of sampled objects, the more concave
problem shapes arise. For finding a Pareto-optimal solution
that corresponds to a suitable movement vector (receptor) for
each frame, we investigate three methods.

The first evaluated MCO solver is the weighting method
[14], [15], although we expect that this approach might lead
to sub-optimal results since it misses solutions in concave
problem shapes. The configuration of the weighting coefficients
wd, wi ∈ [0, 1] with wd + wi = 1 selects specific solutions
out of the Pareto-optimal set by collapsing the 2D problem to
a conflict-free 1D function. Hence, a solution can easily be
obtained by simply selecting the minimum value.

minimize wdfd(x)− wifi(x)
subject to x ∈ {1, 2, . . . , n}

(6)

A more promising technique is the ε-constraint method [16],
since it also considers concave solutions. The negated interest
function −fi(x) ∈ [−1, 0] is defined to be minimized, whereby
the danger function fd(x) ∈ [0, 1] is limited to a configurable
upper bound εd ∈ [0, 1] and applied as a constraint. Thus, an
agent considers corresponding movement directions only with
a configured limited danger.

minimize − fi(x)
subject to fd(x) ≤ εd, x ∈ {1, 2, . . . , n}

(7)

As a third approach, we test a hybrid method [17], [18],
which represents a combination of the two preceding methods.
Similar to the ε-constraint method, it is also capable of finding
solutions in concave areas of MCO problem shapes.

minimize wdfd(x)− wifi(x)
subject to fd(x) ≤ εd, x ∈ {1, 2, . . . , n}

(8)
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Fig. 4: Context interpolation of the Pareto-optimal solution
(r5); (left) determining the steering direction (adapted from
Fray [8]); (right) resulting solution in objective space.

C. Gaussian Blurring and History Blending

To further improve results, we optionally apply two methods
proposed by Fray for stabilizing decided directions before the
MCO because more inert decisions might appear subjectively
more natural [8].

Objective functions fd(x) and fi(x) can be smoothed. As
implemented in this work, we separately apply an approximated
discrete Gaussian filter hσ(x) with σ = 0.4. Since adjacent
values decrease in variation, smoothing can reduce sudden
changes between multiple MCO solutions from frame to frame.

hσ(x) =
[
0.10558, 0.78884, 0.10558

]T
(9)

(f ∗ hσ)(x) =
∞∑

k=−∞

f(k)hσ(x− k) (10)

As a second method, we memorize discrete objective
functions f t−1(x) of past frames and combine them with
current values f t(x). So during MCO solving, agents favor
solutions already made before. This method is our variant of a
history blending approach, whereby the parameter α ∈ [0, 1]
determines the proportion applied for blending past and present
values.

(f t−1 + f t)α(x) = αf t−1(x) + (1− α)f t(x) (11)

D. Context Interpolation

After MCO, we refine the Pareto-optimal solution by linear
interpolation of directly neighboring values. This makes it
possible to compensate for discretization disadvantages and
prevents sudden unnatural changes in direction from frame to
frame. Hereto, we use approximated gradients analogously for
both objective functions. Supplemental to Fray’s approach [8],
we formalized the method for both adjacency directions:

∇f(x− 1) = f(x− 1)− f(x− 2) (12)

∇f(x+ 1) = f(x+ 1)− f(x) (13)

Next, let zr = m · pr + c be a linear equation (with
slope m and intercept c) for interpolation point pr to check



whether zr has better interest without violating a possibly given
danger constraint. This method is applied analogously for both
existing adjacency directions. Moreover, we can interpolate the
associated receptor w.l.o.g. ~vr = prV [x− 1] + (1− pr)V [x]
between the original receptor and its respective adjacent, as
shown in Figure 4.

zr = ∇f(x− 1) · pr + f(x− 1) (14)

zr = ∇f(x+ 1) · pr + f(x)−∇f(x+ 1) (15)

pr =
f(x)−∇f(x+ 1)− f(x− 1)

∇f(x− 1)−∇f(x+ 1)
(16)

IV. EVALUATION AND RESULTS

In this section, we describe the scenarios and metrics to test
our approach. We evaluate and discuss different methods and
parameter setups that we described in the previous section.

A. Test Scenarios
In our scenarios, we use standard use-cases in game-AI that

consist of the following components:
• Agents: triangular-shaped character that is only able to

rotate and move forwards
• Collectible: objects of interest that can be picked up by

the agent and result in objective interest
• Obstacles: objects that should be avoided and result in

objective danger
• Paths: linear routes of ordered way-points that the agent

should follow iteratively; The currently active way-point
is perceived as objective interest

To measure the performance in each test case, we use the
following metrics:
• Pick-Ups: number of collectibles the agent reached, which

should be maximized
• Collisions: number of collisions between the agent and

the obstacles, which should be minimized
• Distance Traveled: the accumulated euclidean distance

between each update step of the agent, which is to be
minimized as well

The scenarios are designed to highlight special features or
flaws of the methods introduced in this work. They represent
standard use cases as well as more complex situations that
come close to real-world applications. To guarantee equal
conditions in all tests, we define that each scene only consists
of static instead of dynamically moving objects. Note, this
is no limitation to our methods since the perception of the
environment is frame-based within its fixed update frequency
so that objects are perceived as static nevertheless. Additionally,
it is easier to consistently design challenging benchmark
situations. The following scenarios (cf. Figure 5) always contain
a single agent and are described as follows:

a) Single Objects: The scene consists only of a single
interest and a single danger object. From the start on, the
agent cannot travel on a direct path to the collectible, since
the dangerous object will block the way. As an optimal result,
the agent reaches the collectible without colliding with the
obstacle.

(a) Single Objects (b) Classic Steering Deadlock

(c) Multiple Objects Path (d) Holes in Walls

(e) Complex Object Arrangement

Fig. 5: Test scenarios: Agent = blue polygon, Collectible
(Interest) = green diamond, Obstacle (Danger) = red circle,
Path way point = cross, Path = black line

b) Classic Steering Deadlock: This scene describes
conflicting solutions that need high-level logic. The agent is
placed in the center. To the left, there is a collectible covered
by an obstacle. To the right, there is a collectible that is slightly
further away than the left one. In this situation, classic steering
approaches [5], without additional case handling, fall into
deadlocks since steering algorithms usually consider the left
collectible more interesting. Hence, it completely ignores the
additional circuitous route to overcome the obstacle.

c) Multiple Objects Path: In this scenario, the agent
should move back and forth along a path covered with three
obstacles. Optimal results exhibit no collisions, and a minimum
traveled distance while reaching all way-points.

d) Holes in Walls: The scenario consists of multiple
closely arranged obstacles that form game-typical structures
like walls with passable holes. Therefore, the agent should
follow a path and pass these holes whereby the world features
holes of varying size. Especially the smaller ones require careful
navigation to avoid collisions with any of the obstacles.

e) Complex Object Arrangement: The last scenario con-
sists of a problem space that is typical for racing or space games.
The agent should follow a closed path (circuit), whereby it can
pick up collectibles. In an optimal result, the agent manages
to reach all collectibles without colliding with any obstacles
while minimizing the distance traveled.



TABLE I: Variable parameters whose modification is evaluated.

Variable parameter Default value

Context steering Context map resolution r 32
Angle threshold θ 89°
History blending, Gaussian blurring Disabled

MCO Danger weight wd 0.49
Interest weight wi 0.51
Danger constraint εd 0.56
Context interpolation Enabled

B. Parameters

This work introduces a variety of parameters that can be
categorized either as variable or fixed. Fixed parameters remain
the same for each scenario and test run so that they depict
fundamental conditions for all examinations. These parameters
are sub-grouped to Context steering (perception range, objective
mapping weights, and active steering behavior), AI mechanics
(velocity magnitude, AI update frequency, and agent rotation
speed), and the Scenario setup (radius of collision boundary).
Most remarkable in this setup are the objective mapping weights
such that the agent slightly favors collectibles over waypoints
since they are mapped to the same objective interest. In contrast,
the variable parameters directly influence the behavior and
decision of the agent, respectively. Table I contains all variable
parameters and their default values whose modifications and
resulting influences are evaluated. As before, parameters are
classified corresponding to their thematic affiliation. The post-
processing methods such as history blending and Gaussian
blurring are deactivated by default to obtain initial unbiased
results. The default writing condition angle ensures that selected
context map vectors must result in a positive dot product when
compared with steering vectors. Interpolation is used by default
to support the fluent decision-making process.

C. Results and Observations

As shown in Table II, the three methods perform differently
well. Most notably, the constraint method has shown superior
performance in all scenarios since it outperforms the two other
methods in all metrics most of the time. The constraint method
is the only one that reaches all collectibles, never hits an
obstacle, and always finishes the test scenarios. In scenario c
and d, the weighting method performs better in terms of the
traveled distance but collides with obstacles. In contrast, the
hybrid method gets stuck in deadlocks in these two scenarios.

We observed that the agents move smoothly for the scenarios
with a single obstacle but sometimes tend to jitter if there are
multiple obstacles due to slight rotational updates between the
time steps. In this case, the agent cannot decide to move either
left or right since both are valid and of equal quality. In the
following, we show the influence of the variable parameters.

1) Context Map Resolution: Lowering the resolution to
a minimum of r = 8 has no negative impact in the first
three scenarios but leads to more unstable movement so that
agents fluctuate between decided directions. In scenario d
and e, the traveled distances become significantly larger. A

TABLE II: Test-results based on the default parameterization.

MCO Pick-Ups Collisions Distance

a) Single objects Weighting 1/1 0 8.98
Constraint 1/1 0 6.94
Hybrid 1/1 0 8.72

b) Classic steering Weighting 2/2 0 18.38
deadlock Constraint 2/2 0 15.33

Hybrid 2/2 0 17.38

c) Multiple objects Weighting 0/0 1 44.11
Constraint 0/0 0 48.74
Hybrid 0/0 0 ∞

d) Holes in walls Weighting 0/0 4 77.05
Constraint 0/0 0 82.34
Hybrid 0/0 0 ∞

e) Numerous objects Weighting 8/10 2 129.55
Constraint 10/10 0 179.61
Hybrid 9/10 0 210.86

greater resolution leads to more stable results and better
overall performance in terms of our metrics but comes at
a higher computational cost because of the linear run-time
complexity. Hence, high resolutions are not needed since our
methods significantly benefit from the context interpolation
in Section III-D. To obtain similar, jittery-free results without
interpolation, the resolution has to be greater by a factor of
two for the first three scenarios and by a factor of three for
the last two scenarios. Hence the resolution correlates with the
complexity of the scene.

2) Writing Condition Angle: Lesser values reduce agents’
awareness and lead to a more strict movement behavior so that
agents are less sensitive to obstacles. This slightly reduces
the distances traveled. For angles θ < 50°, the number
of collisions increases significantly for all MCO methods.
Increased angles destabilize the movement of agents and
increase jittery movement. Angles with θ > 120° have shown
to result in deadlocks for all MCO methods.

3) History blending and Gaussian blurring: If enabled, the
context steering significantly stabilizes movement behavior and
reduces jittery without altering numeric results in Table II. Only
traveled distances are slightly affected, but their proportions
remain the same. The constraint method benefits the most.

4) Danger/Interest Weight: Lesser danger weights wd result
in greater interest weights wi and vice versa due to the partition
of unity wd + wi = 1. So, w.l.o.g. only the modification of
the danger weight is examined. The effects are similar for
each scenario. Danger weights wd < 0.5 result in careless
agents that move closer to obstacles and increase the number
of collisions. In contrast, danger weights wd > 0.5 increase
traveled distances and disable agents to pick up most of the
collectibles in the last scenario. The latter has shown to also
increase the number of deadlocks.

5) Danger Constraint: As for weights, the effects of
altering constraints are similar for all scenarios. For constraints
εd < 0.5, the number of collisions increases significantly,
whereby values εd > 0.6 disable agents to pick up most of the
collectibles in the last scenario and provoke deadlocks.



6) Context Interpolation: Disabling context interpolation
does not alter numeric results except for increasing traveled
distances, but it dramatically destabilizes the overall movement
behavior.

7) General Observations: The complexity of the problem
space correlates with the number of objects in the scene.
Therefore, the constraint method shows the best overall
performance. Problems arise if the collectibles are nearly co-
linear since the problem space degenerates to a line, causing
the agent to jitter, especially using the constraint method. The
post-processing methods yield a relief since history blending
supports the agent to stay constant. A practical advantage of the
weighted and the constraint method is the more straightforward
setup since there is only a single control parameter each, w or
ε, to adjust the overall behavior even though multiple behaviors
will increase the complexity.

V. CONCLUSION AND FUTURE WORK

In this work, we presented a fast, optimal, and natural
behaving extension to the problem of multi-objectives that
arise from the basics of context steering [8] and overcomes
the problems of classic steering [5]. Therefore, we applied and
compared three different multi-criteria optimization algorithms
whereby the constraint method performs best and offers an
easily understandable control parameter ε. This affects how
brave an agent acts, i.e. how close it moves to obstacles. Due to
the power of combining different behaviors, game designers are
able to build natural and robust movement controllers that are
based on local decision-making. With a few parameter changes,
different AI personalities can emerge from the designers
choices. Further, widely used path-finding methods can easily
be integrated using waypoints as collectibles.

The evaluation shows that agents move autonomously and
naturally most of the time, but in some circumstances, they
tend to jitter, e.g. if there is a large number of objects in the
scene such that the context map becomes unstructured. We
recommend limiting the perception range as well as the use of
post-processing methods such as history blending and context
interpolation. Based on our observations, the latter enables the
possibility to reduce the resolution of the sensor to improve the
computation time and enable features like AI level-of-detail
with respect to the sensor resolution, as proposed by Fray [8].

Even though we showed that our proposed method yields
reasonable and stable decisions that overcome the flaws of
classical steering approaches [5] and provide rich extensions
to the problem of multi-objectives that arise from the basics of
context steering [8], other problems are yet to be solved. More
advanced MCO algorithms might be more suitable, such as
the elastic constraint method or Benson’s method [19]. Since
context steering is an extension to the basic steering algorithms,
it contains the same amount of parameters. Additionally, a new
parameter for the MCO-solver has been introduced. Hence,
combinations of behaviors result in a large set of parameters to
be optimized so there is a need for automated parameter tuning.
Evolutionary algorithms or neural networks may prove suitable
in tuning such a large amount of parameters. Additionally, some

parameters might be more sensitive to specific situations. Such
correlations need to be examined to allow for effective online
tuning of the parameters. In this work, we focused on 2D planar-
shaped sensors, where context interpolation is an effective way
to smooth the movement of an agent and effectively reduce
the number of required receptors on the sensor, and hence
the computational effort. Since a 3D spherical sensor comes
with a naturally high number of receptors, there is a need
to keep their count as small as possible. Unfortunately, this
is non-trivial for three-dimensional problem spaces since the
intersecting lines of the gradient descent of the neighboring
receptors in 2D become intersecting planes resulting in an
over-determined linear system in 3D. Therefore, other context
interpolation methods would be required to effectively reduce
the number of required sensors in 3D space.
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