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Abstract—This paper explores information-theoretic con-
straints on methods for multi-agent reinforcement learning
(MARL) in mixed cooperative and competitive games. Within
this domain, decentralized training has been employed to increase
learning sample efficiency. However, these approaches do not
explicitly discourage complex policies, which can lead to over-
fitting. To address this, we apply an information theoretic
constraint onto agents’ policies that discourages overly complex
behaviour when it is not associated with a significant increase in
reward. A second challenge in MARL is the non-stationarity of
the environment introduced by other agents’ changing policies.
Previous methods in MARL have sought to reduce the impact of
non-stationarity by inferring other agents’ policies, but this can
lead to over-fitting to previously observed behaviour. To avoid
this, a similar information-theoretic constraint is applied onto
the inference of other agents’ policies, resulting in a more robust
estimate. We evaluate the effects of these information-theoretic
constraints on a test suite of multi-agent games, and report an
overall improvement in performance, with greater improvements
found in competitive domains compared to cooperative games.

Index Terms—Multi-Agent Games, Reinforcement Learning,
Information Theory

I. INTRODUCTION

Recent work in Multi-Agent Reinforcement Learning
(MARL) has achieved impressive success in complex tasks
such as the expert-level performance demonstrated in the video
game Starcraft II [1] and emergent coordination in simulated
soccer [2]. Other methods in MARL have focused on tasks
with smaller environment representations that nevertheless
require complex learning such as predicting other agent’s
behaviour and coordination among teammates [3], [4], [5].
The ability of MARL agents to effectively coordinate with
teammates and compete with opponents is complicated by the
non-stationarity introduced by other agents behaviour chang-
ing throughout learning. As other agent’s behaviour changes,
previous experience could be a poor indication of the optimal
behaviour relative to other agent’s current policies. This work
investigates methods that apply an information constraint on
agents’ own policies and policy inference in the MARL setting
to better handle its unique non-stationarity.

Previous work in reinforcement learning has demonstrated
that an information-theoretic constraint on policy complex-
ity can improve performance [6] and generalization [7] in
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continuous control tasks, as well as robustness to chang-
ing environment dynamics in more simple environments [8].
These methods train agents to learn so-called capacity-limited
policies with lower informational complexity. The result is
a learned behaviour that is less susceptible to over-fitting
past experience, and thus more robust to changes within
the learning environment. However, these methods have not
been thoroughly explored in the MARL setting. The benefits
demonstrated by capacity-limited RL are closely connected
to the challenges introduced in MARL, indicating that the
multi-agent setting may be a good candidate for applications
in capacity-limited policies.

The work presented in this paper seeks to further the
understanding of the potential for capacity-limited methods
in MARL. To achieve this, we identify two closely related
opportunities for applying capacity-limits. The first is in a sim-
ilar manner as in previous approaches, by applying a penalty
to agent’s policies based on their informational complexity.
The second method represents a novel application of capacity
limits, by training MARL agents to learn less informationally
complex approximations of other agent’s policies. The specific
ways of achieving these features as well as their theoretical
motivation will be discussed further in the sections that de-
scribe their implementation.

II. RELATED WORK

A. Capacity-Limited Reinforcement Learning

Policy Mutual Information: The Capacity-Limited ap-
proach is motivated by a desire to avoid overly complex
policies that are not associated with a significant increase in
reward [7]. Policy complexity is represented in information-
theoretic terms by taking the policy function to be a Shannon
information channel that communicates the action an agent
should perform based on the state they are in [8]. Under this
conceptualization, policy complexity can be represented using
the mutual information of the policy which can be represented
for discrete state and action spaces as:

I(π(a|s)) =
∑
s∈S

∑
a∈A

p(A,S)(a, s) log

(
p(A,S)(a, s)

pA(a)pS(s)

)
(1)

In practice, this policy mutual information term can be
computationally expensive to calculate in the case of discrete



state and action spaces, and intractable for general contin-
uous spaces. To avoid this complex direct calculation, it is
possible to break this policy mutual information term into its
constituent entropies:

I(π(a|s)) = H(π(a))−H(π(a|s))

= −
∑
a∈A

π(a) log(π(a)) +
∑
a∈A
s∈S

π(a|s) log(π(a|s)) (2)

In practice, the component entropies in Eq. 2 are often easier
to approximate compared to the direct calculation (Eq. 1). The
precise method for approximating the constituent entropies
H(π(a)) and H(π(a|s)) are domain specific, and will be
further detailed in the methods section.

Capacity-Limited RL Objective: The capacity-limited ap-
proach applied to reinforcement learning is a member of a
broad class of methods that alter the objective function that
the agent seeks to optimize. In the case of capacity-limited
RL this is done by penalizing the reward observed based on
the weighted mutual information of the agent’s policy to en-
courage less informationally complex policies. This gives the
capacity-limited reinforcement learning objective as follows:

J(π) =

T∑
t=0

E(st,at)∼pπ [r(st, at)− βπI(π(at|st)] (3)

where r(st, at) indicates the reward signal associated with
state s and action a at time step t, and βπ is the policy-
mutual information regularization coefficient that controls the
trade-off between reward maximization and policy simplicity.
As βπ → 0 the objective retains the traditional reward
maximization approach, and as βπ →∞ the agent will learn a
more and more informationally simplistic policy. Optimizing
this βπ parameter equips an agent with the appropriate reward-
complexity trade-off for the specific environment they are in.
Importantly, any non-zero value of βπ will lead the agent to
learn a policy that is most informationally simplistic among
all policies that achieve the same level of reward [7].

Relation to MERL: Another example of reward regular-
ization is maximum entropy reinforcement learning (MERL),
which uses policy entropy H(π(a|s)) as its reward regulariza-
tion term. An example of this is the Soft Actor-Critic (SAC)
method which uses this regularization to encourage exploration
in continuous control environments [9]. Because of the rela-
tion between policy mutual information and entropy (Eq. 2),
these two methods are mathematically similar, however their
motivations are different in two main aspects.

Firstly, the capacity-limited RL objective seeks to alter the
long-term behaviour of the agent by training it to have a policy
that is less informationally complex, whereas MERL seeks
to improve exploration during training and eventually reach
a policy that optimizes reward. Secondly, informationally
constrained policies are motivated by the desire to improve
generalization and robustness and may therefore better handle
the non-stationarity of MARL. These features of capacity-
limited RL will be further explored in the methods section
which will describe how it is applied to the multi-agent setting.

B. Multi-Agent Deep Deterministic Policy Gradient

Model Structure: The model presented in this paper fol-
lows the general structure for a decentralized actor/centralized
critic (DACC) introduced in the Multi-Agent Deep Determin-
istic Policy Gradient (MADDPG) method [3]. This model can
be considered as a member of a class of MARL methods that
use a combination of centralized and decentralized training and
execution. In the DACC method, a decentralized actor function
performs actions using only local information available to the
agent, with a centralized critic function has access to global
information. The structure of this model is shown in Figure 1.

Fig. 1. Structure of a DACC model for multi-agent reinforcement learning as
described in [3]. Agents learn policies based solely on their own observations
but update these policies through an individual centralized critic. Arrows
from agents’ policies to other agents’ Q-functions represent inference of other
agent’s policies. Importantly, these are approximations based on inference and
not the true values of the policies themselves.

The method presented in this paper differs from MADDPG
primarily in terms of how the centralized critic Q-function is
calculated as well as the policy inference method. Because
of this, we focus our detail of the MADDPG method on the
centralized critic and policy inference. For a more complete
description see [3].

Centralized Critic: The decentralized nature of learning
in the DACC model ensures that at execution time actions
can be performed without information from other agents,
while improving learning through the centralized action-value
function Qµi which is updated as:

L(θi) = Ex,a,r,x′ [(Qµi (x, a1, ..., aN )− y)2],

y = ri + γQµ
′

i (x′, a′1, ..., a
′
N )|a′j=µ′

j(oj),

(4)

In this equation, the N agents actions are {a1, ...aN}, tar-
get policies with delayed parameters θ′i are {µθ′1,...µθ′N },
agents policies are {πi, ..., πN} which are parameterized
by {θi, ..., θN} respectively. Additionally, x represents the
state information that can be simply the agents observations
(o1, ..., oN ) or alternatively additional information of the
environment. While this Q-function requires information of
other agent’s policies that is not known generally, it can be
approximated through policy inference.

Policy Inference: Because access to other agents’ policies
is not guaranteed generally, as other agents may be opponents
who would not freely give this information, in some cases it



must be inferred through observations. This is done through
policy inference by maintaining for each other agent an
approximation µ̂ji with parameters φji . This approximation is
updated through the learning objective:

L(φji ) = −Eoj ,aj
[
log µ̂ji − λH(µ̂

j
i )
]

(5)

Here we see a regularization based on the policy entropy
H(µ̂ji ) and coefficient λ. This can be motivated by the desire
to add a certain level of randomness to our model of other
agents behaviour that prevents overly confident predictions
about their actions. This is especially necessary in cases
when our approximation is not an accurate reflection of other
agent’s behaviour. This policy inference model is updated
using examples sampled from memory using a replay buffer.

III. METHODS

The application of a capacity-limited learning and inference
method onto a decentralized structure results in a capacity-
limited decentralized actor-critic (CLDAC). This section de-
tails how the capacity-limited objective is applied onto the
decentralized domain.

A. Policy Information Approximation

Exactly calculating the mutual information of an agent’s
policy generally requires summing over the full state and
action space which is further complicated in the multi-agent
setting through the non-stationarity introduced by other agent’s
policies as this impacts the steady-state distribution. To allow
for a simple approximation of the agent’s policy information,
we adopt an approach based on first deconstructing the policy
into its constituent entropies before approximating each en-
tropy based on the current mini-batch memory sample at each
training step.

To aid in approximating the policy mutual information based
on mini-batch samples, we embed the replay buffer with the
instantaneous policy entropy for action ai as H(ai) (referred
to as hi moving forward) at each experience step. This results
in the individual agent’s memory at time t being represented
by M0:t−1 where (oi, ai, ri, oi+1, hi) ∈ M0:t−1 ∀0<i<t−1.
This inclusion allows us to approximate the policy mutual
information for a mini-batch sample D as follows:

I(π(a|o)) = H(π(a))−H(π(a|o))

≈ −
∑
a∈D

π(a) log π(a) +
∑
o∈D

π(a|o) log π(a|o)

≈
∑
h∈D

h−
∑
o∈D
Hπ(a|o)(a|o)

(6)

Where Hπ(a|o)(a|o) is the entropy of the agent’s current
predicted action a = π(a|o) conditioned on the observation
o sampled from memory. This approximation will approach
the true policy mutual information in the limit of infinite
experience under the assumption that all agents’ behaviour
converges as the actions a and observations o approach the
steady-state distribution relative to each agents’ policy, and

the average of individual action entropies h approaches the
true marginal action probability H(π(a)).

In practice, for timescales used in comparing agents learning
in complex environments this approximation does not reach
the true policy mutual information. Additionally, in continuous
state or action environments an exact calculation of policy mu-
tual information is intractable, making an empirical compari-
son of approximated and true policy information impossible.
It would be possible to estimate the policy mutual information
based on the entire memory instead of only the current
training mini-batch. However, this would be significantly more
computationally expensive and not expected to produce a more
accurate estimate. This is confirmed through experimentation
comparing the two possible approximation approaches in the
Experiments section.

Generally, the closeness of the policy information approx-
imation to ground truth may not be critical for an update
relative to the current batch from memory, as the most useful
approximation for training is not necessarily the true policy
information. This is because the true policy mutual information
may over represent states that are irrelevant to the current
training batch being used to update an agent’s behaviour.
As long as the policy information approximation effectively
penalizes reward based on policy complexity, the desired
impact on training is achieved.

B. Capacity-Limited Policies

The capacity-limited learning objective is applied to the
DACC model through altering the decentralized Q-function
from the original shown in Eq. 4 as follows:

L(θi) = Ex,a,r,x′ [(Qµi (x, aq, ..., aN )− y)2]

y = ri − βπI(πi(a|s)) + γQµ
′

i (x′, a′1, ..., a
′
N )|a′j=µ′

j(oj))

(7)

where βπI(πi(a|s)) is the weighted approximated policy
mutual information for the agent with policy πi(a|s) as defined
in Eq. 2. The result is a training regime that penalizes policies
that are informationally complex in relation to the current
batch that is being used to update agent’s behaviour.

This change has the most significant impact on agent’s
performance, and is responsible for achieving the desired goal
of training agents to have less informationally complex poli-
cies. In experimentation, we demonstrate the improvement in
performance that is observed when using this capacity-limited
objective alone, as well as a comparison of performance when
incorporating the additional option to impose a capacity-limit
on information in policy inference. When using the policy
inference method, this Q-function no longer assumes access
to other agents’ policies and can be re-written as:

L(θi) = Ex,a,r,x′ [(Qµi (x, aq, ..., aN )− y)2]

y = ri − βπI(πi(a|s)) + γQµ
′

i (x′, â′1, ..., â
′
N )|â′j=µ̂′

j(oj))

(8)

where the predicted actions are based on the approximated
policies of other agents such that ∀i 6= j : âj ∼ µ̂′j(oj) and



where µ̂′j is the approximated policy learned through the policy
inference method, as shown in [3].

The motivation for applying an information capacity-limit
to the Q-function in this way is to discourage the agent
from learning a policy that maximizes performance relative to
sampled experience at the expense of flexibility to newer ob-
served behaviour of other agents. As agents’ memory becomes
more homogenous with experience, over-fitting to maximize
reward relative to this can result in behaviour that is at risk
of being exploited by other agents. Finding the appropriate
mutual information regularization coefficient βπ allows the
agent to appropriately balance informational simplicity and
reward maximization to avoid this issue.

C. Capacity-Limited Policy Inference

The capacity-limited policy inference aspect of the CLDAC
approach describes the information constraint that is applied to
an agent’s model of other agent’s behaviour. When modelling
other agent’s behaviour in MARL, it is important to not make
strong predictions on which action another agent will make.
In the cooperative setting, this is important as the model
of other agents behaviour may be inaccurate, and failing to
account for other possibilities can have a negative impact
on collaboration. The competitive setting is perhaps more
relevant for the desire for less informationally complex models
of other agent’s behaviour. This is because opponents could
theoretically take advantage of a policy inference model that
is overfit by changing their behaviour.

For these reasons we investigate an approach for modelling
other agent’s behaviour that replaces the entropy regulariza-
tion approach described in Eq. 5 with a policy information
regularization as follows:

L(φji ) = −Eoj ,aj
[
log µ̂ji − βµI(µ̂

j
i )
]

(9)

Where I(µ̂ji ) is the estimated policy mutual information of
other agent’s inferred policies µ̂ji . This value is estimated in
the same manner as the estimated policy entropy in the stan-
dard inference method, based on observations from opponents
behaviour.

While the entropy regularization based approach could be
motivated by a similar desire as previously mentioned to
motivate this capacity-limited approach, they result in slightly
different models of other agent’s behaviour. By using the
policy mutual information regularization, the policy inference
is encouraged to predict behaviour that is more similar to
another agent’s marginal action, independent of the state they
are in. This is similar to the concept of trying to learn a default
behaviour that describes another agent, and assuming that they
will perform similarly to that default behaviour. This approach
can be beneficial in modelling other agent’s behaviour in
states that have not been previously observed, which occur
frequently in environments with continuous state spaces as
the environments used in this paper.

The capacity-limited policy inference method uses the mu-
tual information coefficient βµ, which could be optimized to
maximize performance. However, the policy inference used in

MADDPG has a single policy inference entropy coefficient
λ = 1e−3 across all models. For that reason, all results
presented in this paper use the same policy inference mutual
information coefficient βµ = 1e−3 to allow for a valid
comparison of the CLDAC and MADDPG models.

D. Capacity-Limited DAC

Taken together, the application of capacity-limits onto
agent’s policies and policy inferences results in the learning
structure for the CLDAC model shown in Figure 2.

Fig. 2. Structure of a capacity-limited DAC model. Double arrows indicate the
presence of an information-theoretic capacity constraint introduced through
the training methods. Double arrows between and agent’s decentralized q-
function and their policy (labelled #1) indicate the information constraint on
agent’s policy complexity described in Eq. 8 Double arrows between agent’s
policies and other agent’s Q-functions (labelled #2) indicate the information
constraint on policy inference described in Eq. 9.

E. Capacity-Limited DAC Algorithm

Algorithm 1: Capacity-Limited DAC
Initialize: Memory D = ∅
for each episode do

for each environment step do
Execute actions (a1, ..., an)
h← (H(π1(a)), ...,H(πn(a)))
Observe rewards r and new states x’
D ← D ∪ (x, a, r, x′, h)

for each agent i = 1 to N on gradient step do
Sample S samples (xj , aj , rj , x′j , hj) from D
I(πji (aj |xj))← βπ

(∑
hj −

∑
H(πi(·|xj))

)
r̂ji ← rji − βπI(πi(aj |xj))
yj ← r̂ji + γQµ

′

i (x′j , a′j1 , ..., a
′j
N )|a′k=µ′

k(o
j
k))

Update critic w.r.t the loss:
L(θi) = 1/S

∑
j

(
yj −Qµi (xj , a

j
1, ..., a

j
N )
)2

Update agent policy w.r.t the policy gradient:
∇θiJ ≈
1/S

∑
j ∇θiµi(o

j
i )∇aiQ

µ
i (x

j , aj1, ..., a
j
N )|ai=µi(oji )

Update policy inference w.r.t the loss:
L(φji ) = −Eoj ,aj

[
log µ̂ji − βµI(µ̂

j
i )
]

Update target network parameters for all agents i:
θ′i ← τθi + (1− τ)θ′i



Fig. 3. Multiagent Particle Environments [3]. All environment names are taken from the codebase. Adversary: 2 Good agents and 1 adversary are rewarded
by closeness to a target, good agents must not reveal which object is the target by spreading to both the target and distraction. Crypto: 1 Good agent
communicates target landmark to another good agent over a public communication channel, 1 adversary attempts to decode communicated target. Push: 1
good agent moves towards target landmark while avoiding 1 adversary. Reference: 2 mobile good agents communicate to determine which landmark is the
target. Speaker: 1 static good agent communicates to 1 mobile good agent which landmark is the target. Spread: 3 good agents spread to cover all landmarks.
Tag: 1 good agent moves to distance itself from 3 adversaries using obstacles to slow their approach. World: 2 good agents move to gather food, hide within
trees, and avoid 4 adversaries, 1 adversary leader can observe good agents hiding in trees and communicate their location.

The capacity-limited DAC algorithm is adapted from the
related MADDPG method [3], with additions to approximate
agent’s own policy mutual information as well as the mutual
information of other agents’ policies. I(πi(aj |xj)) represents
the policy mutual information relative to the portion of the
full state representation xj that agent i observes, or oj . These
estimates are used to penalize complexity of both agent’s
policies as well as the inference of other agent’s policies.
Notation used matches the equations defining capacity-limited
Q-function loss in Eq. 8 and capacity-limited inference Eq. 9.
For a complete description of additional notation see [3].

IV. EXPERIMENTS

The learning environments used to compare performance of
the CLDAC method are the multi-agent particle environments1

(MPE) that were originally presented alongside the MADDPG
method [3] and based on [10]. This suite of environments is
a popular testbed for MARL methods, especially in decentral-
ized training centralized execution approaches [11]. While the
original work presented 4 environments, the environment suite
contains 4 additional environments that are in some cases more
complex, containing more agents and environment features.

1https://github.com/shariqiqbal2810/multiagent-particle-envs

For completion we include all 8 environments2 in our testing,
detailed in Figure 3.

The structure of the CLDAC method applies capacity-limits
in two separate ways, one in policy complexity and one in
policy inference complexity, making it possible to compare
the impact on performance of these alterations individually as
well as together. In the following section presenting experi-
mentation training results we compare the complete CLDAC
model with two alternate versions that apply the information
constraint to only agents policies, and only agent’s policy
inferences.

A. Experiment Results

Figure 4 shows training results for the MPE environments
comparing the CLDAC model against MADDPG. These re-
sults indicate that the CLDAC model affords an improve-
ment over the baseline MADDPG method in the majority
of environments we tested. This difference in performance is
most significant towards the end of training, as the policy
mutual information approximation becomes more accurate.
The most significant difference in end of training performance
is observed in the Crypto, Push, Tag and World environments

2Due to limitations in the original codebase, 2 environments are not
included in tests that involved approximating other agent’s policies, as the
environments contained agents actions being represented by unsupported types
of action distributions. These are the Reference and World environments.



Fig. 4. MPE environment results comparing CLDAC and MADDPG models averaged across 10 agents trained for 50K training episodes. For CLDAC policy
mutual information coefficient βπ parameters are optimized based on performance from 3 left out agents not included in these results. Policy inference βµ
parameters are set to 1e−3 for all environments. Reference and World environments do not support policy inference and CL-π results are shown in place of
CLDAC results. Shaded region represents standard deviation of reward, all rewards are averaged over a window of 500 episodes. A one-way between agent
ANOVA showed a significant effect of model type on end of training reward (1K episodes) (F = 19.11, p = 1.4e−05) using environments as conditions.

which are 4 of the 5 competitive environments. The coopera-
tive environments have a relatively similar performance. This
indicates that the CLDAC method may be more impactful in
competitive environments as the positive impact of informa-
tionally simplistic policies and policy inference is more critical
in competitive environments.

To understand how the capacity-limited policy training and
capacity-limited policy inference interact with each other to
result in improved performance, we compare performance
of a complete CLDAC model with an ablation of models
using only capacity-limited policies (CL-π) and only capacity-
limited policy inference (CL-µ). For these cases we compare
average performance in the final 1K training episodes as it
represents performance after the CLDAC method has learned
a useful policy mutual information approximation. The results
shown in Figure 5 show the performance of the CLDAC model
against the baseline MADDPG model, with reward normalized
to the setting with only MADDPG agents.

These results indicate that the CLDAC method demon-
strates improved performance over MADDPG in the MPE
environments through the integration of the capacity-limited
learning objective and policy inference method. The most
notable difference in performance occurs when CLDAC agents
are competing against MADDPG agents in competitive and
mixed environments. This is expected as any advantage af-
forded by the capacity-limited approach will be magnified
when competing against agents that do not use this training
method. Additionally, the original justification for utilizing

Fig. 5. Final 1K training episode reward averaged across all 8 environments of
3 different types of CLDAC models. For the strictly cooperative environments,
MADDPG reward is normalized to 1. For competitive and mixed environments
a CLDAC vs. MADDPG reward was normalized against a baseline of
MADDPG vs. MADDPG reward. As World and Reference environments do
not support policy approximation these are only included in the CL-π results.

capacity-limited policies in MARL was accounting for non-
stationarity of other agents’ changing policies, which can have
a larger reward impact in competition. Within the competitive
and mixed environments, the largest contribution to improved
performance is from the capacity-limited policies, demon-
strated by the relatively large difference in performance for
the MADDPG vs. CL-π results. This conforms to intuitive
expectations as our agent’s behaviour is more impactful on
their observed reward compared to how accurately they model
other agent’s behaviour. A one-way between agent ANOVA



showed a significant effect of model type (CLDAC vs. CL-
π vs. CL-µ) on end of training reward (1K episodes) (F =
44.17, p = 5.60e− 11) using environments as conditions.

While the largest difference in performance can be at-
tributed to the capacity-limited policy training method, as
mentioned previously the capacity-limited policy inference did
not optimize the mutual information coefficient βµ. Additional
testing on optimizing this parameter for each environment
may demonstrate further improvement in performance from
the CLDAC and CL-µ models. However this would require
additionally optimizing the entropy coefficient λ used in the
base policy approximation method for validity, for that reason
this is outside of the scope of the present work.

To better understand the performance of the CLDAC method
in individual environments, we compare performance against
the MADDPG model in each environment in Figure 6. Results
in environments that are strictly cooperative show the same
general trend of relatively low difference in performance
between the CLDAC and MADDPG methods. Results in
competitive and mixed environments show a larger difference
in performance, and importantly the more complex World and
Speaker environments have the largest difference in perfor-
mance among their respective groups. This indicates that the
improvement afforded by the capacity-limited approach is not
only observed in less complex environments.

Fig. 6. Final 1K training episode reward from all 8 environments for 10
CLDAC vs. MADDPG models. Left group is strictly cooperative environ-
ments, right is competitive and mixed environments. All environments have
βµ = 1e−3 and βπ optimized using 3 left out models, values listed in
appendix. Reference and World environments do not accommodate policy
inference and CL-π results are shown in place of CLDAC results.

B. Policy Information Approximation

As mentioned previously, the continuous state space of the
MPE environments makes a direct calculation of agent’s policy
mutual information intractable. To analyze the accuracy of the
policy information approximation method, we instead compare
the approximation used in training with an approximation
calculated using the entire agent memory.

Additionally, we are interested in determining the impact
on policy mutual information and end of training reward
that occurs by varying the policy information coefficient βπ .
To compare this effect we vary the βπ coefficient in the
Spread task and report the end of training mutual information

approximation as well as reward (mean ± standard deviation)
averaged across three agents.

MI Coef βπ Batch Approx. Full Approx. Reward

1e-1 0.1710 0.1723 -456.9 ± 27.2
1e-2 0.2360 0.2348 -453.5 ± 28.7
1e-3 0.2454 0.2457 -448.3 ± 28.2
1e-4 0.2521 0.2526 -454.9 ± 26.2

0 0.2664 0.2666 -466.7 ± 21.4

These results demonstrate the expected impact that varying
the policy mutual information coefficient has on the approx-
imated policy mutual information, as increasing the value of
the coefficient decreases the approximated mutual information.
While this trend can be seen, the effect is not statistically
significant due to the limited number of agents trained (n=3),
and additional agents would be required to confirm this trend.
The impact of varying this coefficient on reward matches
previously presented results, very low values of βπ have
little impact on performance, and too high values have a
negative impact, while a moderate value (1e-3) improves
performance. Additionally we can see that approximating the
mutual information based on only the current batch alone is
very close to an approximation that uses the full memory.
This demonstrates that approximating the mutual information
using the entire agent memory would be unlikely to result in
an impactful difference in training.

V. DISCUSSION

In this paper we presented the Capacity-Limited Decentral-
ized Actor Critic (CLDAC) method which trains agents to
have less informationally complex behaviour to improve their
performance in multi-agent settings. This was done through
the use of a capacity-limited learning objective and similarly
constrained policy inference method. Results from compar-
isons of performance on a suite of 8 complex cooperative and
competitive environments showed improved performance after
optimizing the trade-off of reward and policy complexity when
training agents. These results demonstrate that the capacity-
limited approach is a good candidate for applications in a range
of MARL environments.

The main source of comparison for the CLDAC method was
the MADDPG approach which leverages a mix of centralized
training and decentralized execution to combat non-stationarity
and increase sample efficiency [3]. More recent methods
in decentralized MARL have demonstrated improved perfor-
mance over MADDPG in some learning tasks, such as the
Multi-Actor-Attention-Critic [5] which avoids concatenating
all agents observations into the decentralized critic through
the use of attention heads. This is motivated by the desire to
avoid overly large critic observation spaces for environment
with very many agents. While this approach shows improved
performance on these tasks, it differs in motivation from the
CLDAC method presented in this work. For this reason it is
possible that the capacity-limited learning objective can be
extended to the MAAC structure as well, though this is outside
the scope of the present work.



Other related work has recently shown that centralized
training decentralized execution MARL methods may suffer
from the common overestimation bias in Q-learning, and can
benefit from reward regularization when learning in the MPE
environments [11]. The results presented in this work are
complementary to this finding, as fundamentally the capacity-
limited learning objective regularizes the reward in a similar
manner. However, the key difference between these approaches
is the way that the capacity-limited method uses the policy
information as a regularization term, resulting in a bias for
more informationally simplistic behaviour as long as it is not
associated with a significant decrease in expected reward. In
this way, the capacity-limited RL approach when applied to
MARL serves a dual purpose of avoiding overly informa-
tionally complex policies that can be exploited by opponents,
while additionally regularizing the value estimate.

Another approach that is closely related to the motivation
of Capacity-Limited RL is the Information Bottleneck Actor
Critic (IBAC) [12]. This method seeks to improve general-
ization and reduce over-fitting to experience of RL agents
by minimizing I(X,Z), the mutual information of the input
and a stochastic latent variable Z. Although closely related,
this method differs in application from capacity-limited RL
which approximates policy complexity based on states and
actions alone, instead of using a latent representation of a
state. Additionally their motivations differ slightly, as IBAC is
attempting to account for issues introduced by methods from
supervised learning such as batch normalization and dropout
which can have a negative impact on performance in RL agents
[12], whereas the motivation of CLDAC focuses more on
issues of generalization and non-stationarity in MARL.
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VI. APPENDIX

Table I: Environment policy mutual information coefficients
βπ used in CLDAC and CL-π training methods. βπ param-
eters were fit using best performing average end of training
performance from 3 left out models. βπ coefficients tested
were (1e-3, 5e-3, 1e-2, 5e-2, 1e-1).

Environment Poliy Coef βπ

Adversary 1e-2
Crypto 1e-1
Push 1e-1

Reference 1e-2
Speaker 1e-1
Spread 1e-2

Tag 1e-1
World 5e-3

Table II: Training parameters used across all experiment
results presented. Parameters are kept as originally presented
in the codebase alongside [3], apart from the number of
episodes which was increased from 25K to 50K to better
differentiate performance, and allow for the capacity-limited
method to approximate policy mutual information.

Parameter Value

Number of Episodes 50000
Episode Step Length 25

Learning Rate 1e-2
Discount (γ) 0.95
Batch Size 1024
MLP Units 64
MLP Depth 2

Memory Max 1M

Table III: Environment number of good agents, bad agents,
observation space and action space. In some environments the
adversary agent has a different action or state space due to
the differences of the tasks between the good and bad agents.
In these cases observation and state spaces are represented as
(bad agent space, good agent space). In all cases observation
spaces are represent by continuous values over the range
(−∞,∞), and action spaces are discrete.

Environment Obs. Space Action Space # Good # Bad

Adversary (8,10) (5) 2 1
Crypto (4,8) (4) 2 1
Push (8,19) (5) 1 1

Reference (21) (50) 2 0
Speaker (speaker) (3) (3) 2 0
Speaker (listener) (11) (5) 2 0

Spread (18) (5) 3 0
Tag (14,16) (5) 1 3

World (28,34) (5,20) 2 4


