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Abstract—For several decades now, games have become an
important research ground for artificial intelligence. In addition
to often present useful and complex problems, they also provide
a clear framework thanks to their rules, sometimes numerous. In
this article, we explore a very difficult two-players board game
named Blood Bowl. This game allows the players to perform many
different actions, which depend for a large part on the result of
one or more dice rolls. Thus, it can be seen as a multi-action
probabilistic problem driven by a Markov decision process. In
this article, we present the first stochastic model of the main phase
of Blood Bowl to our knowledge and the premise of a dedicated
planning framework. Such a framework could offer interesting
grounds and insights for modeling high turn-wise branch factor
games.

Index Terms—Game study, Blood Bowl, Markov Decision
Problem, model, planning, AI

I. INTRODUCTION

Recently, Blood Bowl (Games Workshop, 1986) was intro-
duced as a new board game challenge for AI [1]. Like Chess
or Go, Blood Bowl is a strategy turn-based board game where
two players fight each other. As these games, Blood Bowl
is also a perfect information game. However, the significant
differences in Blood Bowl come from the number of actions
each player can perform at each turn and the introduction of
probabilistic outcomes. Those features make this game very
difficult for artificial intelligence, even with a reduced version
of it (e.g. predetermined composition of each team, smaller
boards).

For comparison, the average estimated turn-wise branch
factor for Chess is 30 and 300 for Go [2], while for Blood Bowl
it is estimated to 1050 [1]. Traditional model-based planning
algorithm (e.g. Monte-Carlo tree search) and machine learning
algorithms do not perform well for this type of large state-
space probabilistic problems [3]. Thus, it is important to give
these algorithms a framework to work with.

In this paper, we present a model of the Blood Bowl’s rules
for simulating state progression, which does not exist yet to
our knowledge. More specifically, we propose to model only
the main phase of the game from a player’s actions standpoint.
The Fig. 1 shows the phase of the game we are focused on,

Fig. 1. An entire course of a Blood Bowl game. The main phase is where
two opponents – named coaches – compete against each other by performing
various players’ actions to be the one who scores the most points via
touchdowns (TD).

compared to the course of an entire Blood Bowl game. This
main phase is the playing phase: the two opponents, each in
turns, perform various actions through players; their goal is
to score more touchdowns than the other opponent. The other
phases are highly specific to the game, and some, like Team
Building, are complex per se and should be studied separately.
Therefore, it is not the goal of this paper to propose any Blood
Bowl solving algorithm.

Our two main motivations are: 1) scoring situations are
scarce in the state space of Blood Bowl. As shown in [1],
0 point was scored in 350,000 random games, suggesting that
randomized search approaches would not lead to challenging
AI for Blood Bowl [4], [5]. Thus, it is important to model and
manage both accurate rules definition and expert knowledge
for planning ; 2) Blood Bowl’s rules are complex: consequently
it is necessary to establish a comprehensive and modeled
baseline to facilitate the involvement of the community.

In the following section II, we introduce some game notions,
required for the understanding of the paper. Then, we propose
in section III a Blood Bowl main phase model. Afterwards, we
present in section IV how such a model can infuse planning
considerations through a multi layered framework. Finally, we
conclude the paper in section V.

II. GLOSSARY

Throughout this paper, we will consider the complete rules
defined in the Living Rulebook 6 (LRB6) [6] because of its use
as a reference for the majority of Blood Bowl competitions.978-1-6654-3886-5/21/$31.00 ©2021 IEEE



LRB6 is about sixty pages long: we cannot review the rules
here; a game overview and the main rules are listed in [1]. We
will just make a few reminders all along this article.

Below are important notions and terminologies for the rest
of this paper:
Game board: It is a grid of 15× 26 squares.
Roster: A roster is the race of a team. There is twenty-four
different official rosters. Each one has its specific players.
Team: Blood Bowl is a match between two teams. A team
has at least eleven players, each having a kind according to
its roster. In this paper, 1) team A has a yellow color and team
B a blue color, and 2) team A is always initiating the action.
Coach: A coach is the human or AI who takes decisions
during the game and controls the players.
Player: An entity controllable by a coach. A player has some
basic skills induced by its roster, and up to six additional skills
depending on the game style and rules.
Skill: A special action that can be triggered by a player during
a match. There are 75 different skills regrouped in 6 categories:
General (14), Agility (10), Passing (7), Strength (10), Muta-
tion(10) and Extraordinary (24). Extraordinary skills are often
associated with specific player kind (e.g. Big Guys).
Attribute: A player has four attributes: Movement (Mv),
Agility (Ag), Strength (S) and Armor (Ar). A skill outcome
may depend on the attributes of the player who use it.
Touchdown (TD): A touchdown is analogous to a try in rugby
or a US football touchdown. In Blood Bowl, a team that puts
a TD scores one point. At the end of a match, the team with
the highest score wins. It is possible to have a draw.
Block dice (BD): A block dice is a particular 6 sided dice
in Blood Bowl, as shown in Fig. 2. It is used when a player
blocks an opponent player.
xDy: It is a dice roll with x the number of dice and y the
type of dice used. Examples: 2D6 means 2 dice with 6 sides
are rolled. 1D8 means 1 die with 8 sides is rolled.
(−)xBD: It is a roll of x block dice, ”−” is used when the
choice is done by the opposing coach.
x+: x is the minimum expected outcome of a dice roll for
being successful. Example: 3+ needs 3 or more on a dice
(dice roll for those results are often 1D6 or 2D6 and for 2D6
we take the sum of the 2 dice).
Reroll (RR): A reroll gives the possibility to redo a dice roll
(a.k.a.re-roll). Note that a roll dice can never be re-rolled more
than one time.
Turnover: A turnover is a critical aspect of Blood Bowl.
Whenever an action fails, it finishes the coach turn.
Go For It (GFI): It is the possibility to move of 2 extra
squares. As a general rule, for each extra square a 2+ result
on 1D6 is needed.

III. MODEL DESIGN

According to its rules, and that it is a perfect information
game, Blood Bowl can be seen as a probabilistic planning
problem where the two coaches have to plan actions for each
of their players [7]. Indeed, several outcomes of the players’
actions made by the coaches are stochastic (depending on dice

Fig. 2. Block dice (BD) sides.

rolls). Therefore, we propose to model this problem by using
a Markov Decision Processes (MDP) [8].

A MDP is a quadruplet 〈S,A, T,R〉, with S a set of states,
A a set of actions, T is a transition function T : S×A×S →
[0; 1], where T (s, a, s′) represents the probability to be in state
s′, by doing action a while being previously in a state s. R is
a reward function such that R : S×A×S → R returning the
reward (or the cost if negative) linked to the transition. Solving
a MDP consists in defining policy π : S → A associating
an action to perform to each state. The policy is optimal if
it permits to maximize the expected gains (e.g. the sum of
the rewards weighted by the probability to collect them in
the future). Computing an optimal policy becomes intractable
when the number of states increases [4], [5], [9].

In Blood Bowl, a state s ∈ S corresponds to a ”snapshot”
of the game at any moment (e.g. position of the players, of
the ball, team scores). The actions A represent all the actions
available during a game that a coach can perform, conditioned
by the game rules. One of the particularities of Blood Bowl is
that a coach can perform several actions successively, for up to
all its players, at each turn. The transition function T defines
the effect of the action taken by a coach on the game’s state.
As mentioned previously, several of those actions (including
the more critical ones) are conditioned by a dice roll.

Finally, R defines a reward (positive or negative) received
by a coach. As a general definition for now, we define the
reward function R only for the final states of the game. This
reward function returns −1, 1 or 0, respectively if the coach
loses the game, wins it, or in case of a draw.

Proposing specific reward functions is, in our opinion,
too premature and does a disservice to the establishment of
a theoretical framework. Indeed, considering that it would
be difficult to plan on a distant horizon, resulting policies
will probably tend to favor rapid scoring approaches – with
potentially dramatic decisions for the rest of the game (e.g.
the death of a player) – even if only a one point difference is
enough to win the game.

The rest of the modeling is further described below.

A. State consideration and state modeling
As a reminder, we only focus on the modeling of the main

phase and its states S, that is where a coach plans its players’
actions. In this phase, a state s can be represented by all the
elements on the game board. These elements can be separated
into two sets: permanent elements P and variable elements V .

The permanent elements set P is composed of players’
attributes and players’ skills (cf. section II), cheerleaders,
assistant coaches, babes and fame.

The variable elements set V is composed of the following
elements: the position of all the players (a square on the pitch,



Fig. 3. Classification of primitive actions.

in the reserve or in the injury ground), status of the players on
the pitch (stunned, knock down, standing up), current player
availability (played, available, or currently playing), unique
RR status from the current player’s skills (used or available),
number of RR remaining for the two coaches, RR for the turn
(used or available), score, ball location, unique action blitz
(played, available, or currently playing), unique pass action,
hand off and foul availability (used or available), current player
movement remaining, weather, apothecary (used, available,
empty), the number of available bribes ({0, 1, 2}), the number
of available wizards ({0, 1, 2}) and the roll result of the current
action (at least for reroll decision).

Consequently, the cartesian product of P and V defines all
the possible states, such that S = P ×V . But even expressing
a specific p ∈ P MDPp such that Sp = p × V , the space
state is huge. As an illustration regarding the size of S, let’s
consider only the available positions of 22 different players
on the pitch. The number of states of such a sub-problem
approximates A22

390, roughly equal to 5× 1056.

B. Action modeling

In order to define the set of actions A, we first identify all
the primitive actions P available during the main phase. We
classified them according to whether or not they are directly
dependent of a dice roll, and whether or not these actions are
forced (i.e. they must be performed when available). The Fig. 3
shows these primitive actions classified. By composing these
primitive actions, we can produce actions that can be mapped
to the common actions decided by the coaches. In this paper,
we intentionally skip specific action skills like throw team
mate, hypnotic gaze, etc.

In the rest of the paper, primitive actions are written in
lower case, and composite actions are written in upper case
(e.g. BLITZ), for the sake of readability.

1) Actions not depending on a dice roll, D−:
Activate a player: A coach selects which next player to

play. This action automatically terminates the activation of
the previous player and it cannot be played again until the
next turn. After being activated, a player movement point mp
depends on its movement attribute such that mp =Mv.
Declare a BLITZ action: Only one BLITZ action can be
performed during a coach turn. It must be declared just after
activating a player. Note that BLITZ is not a primitive action
and it will be further explained.
Move a player of 1 square: The activated player goes to
a free adjacent square. Note that if the player moves from
a square adjacent to an opponent player, then a dice roll is
required to determine whether or not this action succeed (RR
are applicable). This action costs 1 mp.
Foul: It consists in committing a foul on an adjacent opponent
player. Note that the foul outcome is determined by a dice
roll. The outcomes are: nothing happens, the opponent is
stunned, the opponent is injured and/or the fouling player can
be whistled by the referee.
Block: It consists to block an adjacent opponent player. The
success of a block is determined by a dice roll.
Pass (or throw) the ball: Only one pass action can be
performed during a coach turn. The ball is passed to another
player, irrespective of their team, or the ball is thrown on a
free square. Either way, the range is conditioned by a distance
limit. The action success is determined by a dice roll if no
successful interception has been made.
Intercept the ball: Action available when a player is between
the thrower and the destination. The outcome is determined
by a dice roll.
Stand up: Action to stand up a knocked down player. The
outcome depends both on a dice roll and on the player’s
movement attribute. If Mv ≥ 3, stand up action always
succeed. It costs 3 mp.
Hand off the ball: Only one hand off action can be performed
during a coach turn. The ball is given to an adjacent player
(cannot be an opposing player). This action implies that the
active player has the ball.
Pick up the ball: A forced action occurring when a player
move to a square containing the dropped ball. Note that the
success is determined by a dice roll.
Catch the ball: A forced action occurring when the ball
lands on a player square, irrespective of the player’s team.
The success is determined by a dice roll.
Score a Touchdown: A forced action occurring when a
player with the ball crosses the goal line of the other team.

2) Actions depending on dice roll, D+:
Select a dice roll result: The coach chooses the dice –thus
its result– from of a roll of several block dice (e.g. 3DB).
Reroll: The coach re-rolls a dice roll using a RR (thanks to a
skill or by using a general one).
Following a block: When a block result is pushing the
opposing player, the initiating player can go to the square
previously occupied by the pushed opponent.
Use apothecary: Some actions can injure players. When a
player is being injured, the coach can decide to heal it by using



Fig. 4. Basic push actions. Yellow players (Yp) push the blue ones (Bp).

an available apothecary. The outcome depends on a dice roll.
Use a bribe: Bribe action can be performed when the referee
calls for a fault of the player who committed the foul.
Depending on the success of the dice roll, the player may
not be excluded from the match.
Use of specific skills: Some skills can only be performed
during outcomes of specific actions, and are conditioned by
dice rolls. A coach can choose to use them or not (some can
only be used once per turn).
Push player(s): When a block action results in pushing a
player, the coach of the player who blocks has to choose the
push direction between one of the three free squares behind
the pushed player. If no free square is available, the pushed
player can be pushed toward a non-free square, recursively
cascading the push mechanism until a player is pushed on a
free square, as shown in Fig. 4 and Fig. 5. This can be modeled
by transposing the pushed player of the pushing phase n into
the pushing player of the n+ 1 pushing phase.
Additional blocking: When a player performs a push –while
it has the frenzy skill– it is forced to follow the block, then to
perform another block action on the same pushed player.

We classify all these primitive actions P as P = D−∪D+.
Interestingly, this provides some space reductions and planning
optimizations, as discussed in the section IV.

Now that primitive actions has been presented and
classified, they can be composed in order to be mapped to
more composite actions available during the game.

3) Composite actions, G:

A composite action g ∈ G can be seen as a partially ordered
set representing the succession of several primitive actions p ∈
P , such that:

∀g ∈ G, g = (X ,≤),X = {pi | pi ∈ P} (1)

where the order of the elements in the set indicates the
moment a primitive action has to be performed relative to
the others on the set. Performing a composite action with a
player automatically activates this player.

For the sake of readability, composite actions are described
below using a regex format and written in uppercase. Note that
this is not conventional and it is only done to provide a brief
overview of the primitive actions composition.

MOVE ⇔ (stand up?) (move*): Stand up a knocked down
player and perform up to X primitive move actions, where X
depends on Mv.

Fig. 5. Complex push actions examples. To the left: Y1 chooses to push B1
on B2, it can then be pushed on one of the two free squares behind it. To the
right: illustration of a recursive push made by Y2 to B8, B8 to B10, B10 to
B14 then B14 to Y3.

BLOCK ⇔ (block) (reroll?) (select dice) (following block?)
(push player(s)*): Block an adjacent opponent player and
do all prospective actions among reroll, select a block dice,
following block (if available) and push players.
BLITZ ⇔ (blitz declaration) (stand up?) (move*) (BLOCK?)
(move*): BLITZ always starts with its declaration phase, then
standing up the player –if needed–, followed by potentially
moving the player to connect for a BLOCK before choosing
to continue to move or not.
FOUL ⇔ (MOVE?) (foul): Performing a foul on a player
may be preceded by a composite MOVE action. The foul
action ends the turn of the performing player.
PASS ⇔ (MOVE?) (pass): Performing a pass may be
preceded by a composite MOVE action. Performing such a
PASS ends the turn of the player.
HAND OFF ⇔ (MOVE?) (hand off): Performing a hand-off
action may be preceded by a composite MOVE action. This
action ends the player turn.

4) Transition functions, T :

The Blood Bowl’s rules provide the necessary context for
defining the transition functions T of the MDP, which we
define accordingly. Incidentally, the number of transitions |T |
is in the same order of magnitude as |S|. Nonetheless, despite
being a large set, each transition function only has a local
impact on the game and therefore does not change the state of
the game excessively. For instance, a free move just changes
the player position to one of the eight squares around it.

Consequently, we will only illustrate some of the main
game’s transitions through some examples, illustrated from
Fig. 6 to Fig. 12. Note that from the Fig. 7 knock down, stun
and injury appear. We symbolized knock down by a white ”/”
on the afflicted player, stunned player by a white ”X” and
injured player by a white skull.

In Figs. 7, 8 and 10, when a player is knocked down or
fouled, an armor roll must be performed (RR is impossible
here). If the roll is successful (i.e. the armor roll is higher
than the player’s armor attribute) then an injury roll is needed.



Fig. 6. Basic move right action. From the state S0, Y1 goes to the state S1
with a probability of 1, that is moving one square to the right.

Fig. 7. Complex move right action with a 2+ dodge. RR is available. Y1
moves to the right and needs to dodge B1. From S0, by doing a0, Y1 has
a 5/6 probability to succeed and being in S1, and a 1/6 probability to fail
and being in S2. From there, the coach can use its RR (a1) or not (a2).
The former takes Y1 to either the state S1 or S3, respectively, with a 5/6
probability and a 1/6 probability. The later takes Y1 to the S3 – where we
have simplified the KO/stun/injury outcome.

Depending on the outcome, the nature of the injury is: stunned
(injury roll score i < 8); KO (8 ≤ i ≤ 9); injured (i > 9).
In a KO or injured situation, the concerned coach can use an
apothecary to alleviate the player status: a player KO will then
become stunned, and injured player will be put in the coach
reserve and made available for the next run.

Notwithstanding that we only use primitive actions in those
examples, transition functions can involve composite actions
as well. It is therefore apparent that the full size of the related
MDP will be very important.

IV. TOWARDS A MULTI LAYERED FRAMEWORK

As the previous section clearly shows, computing an optimal
policy for the entire main phase of Blood Bowl – or any
other game with very high branching factor – is currently
intractable. Thus, planning proficiency becomes essential to
perform well. Blood Bowl complexity has helped us to high-
light an opponent-wise hierarchy of planning, with a growing
complexity. In this section, we present a nomenclature of these
levels and show where the current state of the art algorithms
for Blood Bowl fall in. We also discuss introducing expert
knowledge in the framework in a way that could benefit
models for these kind of games and foster better AI algorithms.

Fig. 8. 11+ Foul action. Yellow coach has a bribe. Y1 does a foul action a0
on B2, currently knocked down, and can be in one of the four states S1, S2,
S3 or S4. In S1, armor roll is successful, but the referee calls out a fault on Y1
with a probability of 8/216 (twice 6 or a 5 and a 6 for the armor rolls, then
a double for the injury rolls (1/6), thus p = 1/36 + 2/36× 1/6 = 8/216).
In S2, armor roll is successful and the referee sees nothing with a probability
of 10/216 (5 and 6 for the armor rolls and no double for the injury rolls
(5/6)). In S3, armor rolls fail and the referee calls out a fault on Y1 with a
probability of 5/36 (each double lower than 11). In state S4 (as well as S6),
the foul fails and the referee sees nothing. When a fault is called, the coach
can use a bribe a1, with a probability of 5/6 of being graciously accepted by
the referee: if the foul roll succeeds, the injury roll determines what happens.

Fig. 9. Hand off, then 3+ catch ball actions. RR is available. Y1 hand off
automatically succeed, then Y2 catch action a0 has a 4/6 probability to
succeed, and a 2/6 probability to fail. Regarding the later, the coach can
use its RR. In S2, Y2 has the ball, while in S3 the ball is missed and bounces
one square away –including to another player who can do a catch action.

A. A nomenclature of the planning level in Blood Bowl

Level 1 – One player At this level of planning, each
player’s actions are planned independently of the other players,
until all the players have depleted their actions – or a turnover
is called. In this plan, the best action is always played, irre-
spective to the player and without any consideration regarding
the next player action. In other words, it consists of finding,
locally, the best outcome at a specific time for a player. The
main difficulty of such an approach is to determine the quality
of the action.

This kind of approach is implemented in GrodBot and



Fig. 10. Block action. Y1 performs a 1DB block (a0) on B1. The side of
the dice dictates the outcome of the block (cf. Fig. 2). Note that a coach can
perform a reroll action a6 to modify the initial outcome. S7, S8 and S9 are
further described in Fig. 11

Fig. 11. Push and follow actions. After a block, in some cases, blocking
player Y1 can push the blocked B2. Actions a0, a1 and a2 correspond to
the three push directions. In states S1, S2 and S3, blocking player can choose
to follow the block (a3, a5, a7) or not (a4, a6, a8), resulting the six states
from S4 to S9.

Fig. 12. 3+ pass with a 6+ interception action. In S0, Y1 declares a pass
(a0). Immediately after, the opposing coach can try to intercept it (a1) with
B3. The ball can be intercepted with a 1/6 probability, or not thus being in
S3 with a 5/6 probability. In the later, the opposing coach can use a reroll
action (a2). If after using RR the interception fails again, the pass is made. Its
quality is determined by a pass roll: clumsy (S4), inaccurate (S5) or perfect
(S6). The yellow coach can use its RR here (a4). Note how the probability
of the outcomes of the pass change drastically if the opposing coach uses its
RR or not.

Minigrod [1], winners of Bot Bowl I and II1. So far and
to our knowledge, Minigrod is the reference algorithm in AI
for Blood Bowl. Its proficiency is somewhat equivalent to a
beginner human player.

Level 2 – Multiple players At this level of planning, x
players’ actions are considered, such that x =

∏n
i=1 |Ai,j |,

where Ai,j ∈ A are the actions potentially available2 for a
player i of the jth team and n ≤ 11. Thus, level 1 planning
is a specific case where n = 1. Considering our modeling, it
is clear that the more n increases, the more the complexity of
the planning phase is significant. It is generally accepted that
the average proficiency of a human coach for planning lies in
this level. With n ∈ [0; 4], finding some potential good actions
(e.g. another player assists a block) can be tractable.

Level 3 – One turn
At this level of planning, all the actions available during a

team turn are considered while searching a potential solution.
Therefore, x =

∏m
i=1 |Ai,1|, where m is the number of

playable players for the jth team. This proficiency of planning
concerns very good human coaches - even if their plans contain
flaws. It is comparable to compress sub-spaces S′ of our model
into new states S, s.t. S2 = S∪(S\S′), leading to a simplified
MDP, s.t. 〈S2, A, T,R〉.

Level 4 – One turn with the two opponents At this
level of planning, the entire turn is planned according to
both the available actions and what the opponent players can
do. Therefore, x =

∏2
j=1

∏m
i=1 |Ai,j |, where Ai,2 are the

available actions that an opposing player from the team B
will be able to perform after the team A turn. This level of
planning is only achieved by expert human coaches.

Level 5 – More than one turn At this level of planning,
plans can be built on multiple turns and up to an entire half-

1https://njustesen.github.io/ffai/
2The order in which the actions are played have an influence.



time interval. This type of planning is undoubtedly intractable
for now, in regards to its branch factor. We do not believe
any human coach capable of efficiently elaborating such vast
planning. Therefore, any AI algorithm that falls under this
section could claim supremacy over human coaches.

B. Benefits of a MDP modeling for level 2 and 3 planning
Using a MDP modeling to drive the planning process in

Blood Bowl appears to be quite relevant, because it is possible
to model the entire main phase of the game and the game
rules mathematically. By composing primitive actions P , the
probability of any plan in such a model can then be computed.
Incidentally, the quality of a plan can then be derived through
these probabilities.

As shown in Fig. 13, 3 composite actions G are planned
for the blue players. These actions can be decomposed into
primitive ones, with their associated probability to succeed,
leading to the overall probability of success of the plan
(BLITZ, then MOVE, then PASS, then catch). Probability of
success or failure regarding common action sequences could
be computed beforehand and used as is. The Table I illustrates
this for several actions.

Moreover, classifying all the primitive actions P as P =
D− ∪ D+ brings interesting modeling properties, especially
regarding optimization. It is possible to define a new MDP’
such that MDP ′ ⊂ MDP , where MDP ′ = {S′,D′, T,R}
(e.g. S′ = V ). With all that, the space search can be drastically
reduced under certain circumstances or considerations.

For example, by only considering D− actions
{move, pass, touchdown, catch, handoff} ∪ {reroll},
with reroll ∈ D+, we simplify the problem by considering
only dice-independent actions, but we can still search for a
potential sequence of actions leading to a touchdown in one
turn with 3 players.

C. Simplify the prospect of actions
It is important to consider and explore failure when estab-

lishing a plan (e.g does players’ position offer a good cover
in case of a turnover?). That is because, in a failure case
scenario, the turnover mechanism of Blood Bowl does not
allow the coach to play anymore until its next turn. With
this consideration in mind, some composite actions could be
simplified under certain circumstances.

For the composite MOVE action, when a player moves, it
has up to 8 possibilities (all the squares around it). It goes the
same for the move action that follows this move. When the
number of dodge actions is strictly less than 2, considering the
path with the highest probability to succeed in the MDP to go
to the objective square B from the starting square A should be
interesting, otherwise (e.g 2 or more dodges) it is not always
the best plan to go with. For example, while attempting a
MOVE action including two 2+ dodges with a single RR, the
probability that the action succeed is 25/27: if the first dodge
is successful, the second has a success probability of 35/36.
If this first dodge fails, then succeeds the second time thanks
to the reroll action, the success of the second dodge decreases
to 5/6.

TABLE I
FAILURE PROBABILITY TABLE, AS SUGGESTED IN [10]

Dice rolls Calculation %
3BD(RR, block) (1/6)6 0.002
2BD(RR, block) (1/6)4 0.077
3BD(RR, no block) (1/3)6 0.137
2BD(RR, block) (1/6)4 0.077
3BD(RR, no block) (1/3)6 0.137
3DB(block) (1/6)3 0.463
2BD(RR, no block) (1/3)4 1.235
2+(RR) | 2BD(block) (1/6)2 2.778
3BD(no block) (1/3)3 3.704
2+2+(2RR) 1− (35/36)2 5.478
2+2+(RR) 1− (25/36 + 10/36 ∗ 5/6) 7.407
-2BD(RR, block) (1− (5/6)2)2 9.535
3+(RR) | 2BD (1/3)2 11.111
2+2+2+(RR) 1− ((5/6)3 + 3 ∗ 1/6 ∗ (5/6)3) 13.194
2+ | 1BD(block) 1/6 16.667
2+(RR)2+ 1− 35/36 ∗ 5/6 18.981
2+2+ (2RR, intercept 6+) 1− (35/36)2 ∗ 5/6 ( 21.232
4+(RR) (1/2)2 25
-2BD(block) | 2+2+ 1− (5/(6)2 30.556
2+2+ (RR, intervept 6+) 1− 35/36 ∗ 5/6 ∗ 5/6 32.485
3+ | 1BD 1/3 33.333
2+2+2+ 1− (5/6)3 42.13
5+(RR) (2/3)2 44.444
4+ 1/2 50
-2BD 1− (2/3)2 55.555
5+ 2/3 66.666
6+(RR) (5/6)2 69.444
6+ 5/6 83.333

D. Looking for failures and Chance impact

As the attentive reader may have noticed, dice rolls in
Blood Bowl are abundant. Dice roll results have often an
important effect on coaches’ decision-making process. For
example, coaches extensively rely on blocking specific players
in their planning: regarding the blocking outcome, they either
continue their initial plan or switch to another. Consequently,
anticipating failure is a factor to be taken into account.

Incidentally, rerolls and how they are spent also have a high
impact on the probabilities all along the entire game. In some
situations, having a RR can change an unlikely successful
action into a successful one. Additionally, some actions are
safe (P (p) = 1) and it can be interesting to consider some of
them before other risky ones regarding the turnover rule.

E. The quality criterion

The quality of a plan is conditioned by the quality of
criteria used to evaluate potential solutions. These criteria
can be defined through the use of utility functions. A utility
function’s design greatly depends on the type of algorithm
that implements it. For instance, it can be fitness functions in
evolutionary computing, or rewards in reinforcement learning,
MDP, etc. [11]. Either way, that is the reason that we do not
focus on reward functions in our modeling: designing them for
high branching factor games is complex. Nonetheless, studying
Blood Bowl has highlighted that introducing expert knowledge
as variables feeding the model can efficiently reduce the space-
complexity of the problem and drive these utility functions.
For example, in the subsection IV-C, we consider stopping
the sequence of move actions in case of a successful RR as



Fig. 13. Planning of the blue team (lizardmen) against the red team (chaos), made of 3 composite actions (19 ordered primitive actions) and one primitive
action. The first action consists to BLITZ with a 2DB to succeed, then safely moves another player. Finally, with a third player, undertake a PASS action
which begins by safe moves and ends by sequencing a 3+ pass action then a 3+ catch action. All risky actions (p < 1) are assumed to be successful. 2DB
blocking has a probability of 5/9 to KO the opponent, 3+ passing and 3+ catching both have 2/3. Since all the moving actions are safe, the probability of
the plan to succeed is p = 20/81 = 5/9× (2/3)2 without RR.

an expert knowledge: injecting this rule into the model can
reduce the complexity of the MOVE action.

V. CONCLUSION AND PERSPECTIVES

In this paper, we studied the main phase of the game Blood
Bowl, which has been recently introduced as a new board game
challenge for AI. We propose to model Blood Bowl as a MDP,
incidentally classifying players’ actions and game states, and
show how this model fosters planning prospects.

Our proposition is the first to model Blood Bowl as an
MDP to our knowledge, and could serve as a first multi
layered framework for future AI algorithms trying to tackle
Blood Bowl challenges, or any games with high branching
factors, probabilistic outcomes and rare scoring situations
– like evolutionary approaches in multi-actions games [12]
[13]. Such a framework could also be used in deep neural
network: data could be fed to a network dedicated to model
the game according to the first framework level, then using
this model as another input in another network to model the
game according to the next layer of the framework, and so
on. Eventually, it will facilitate the participation to Bot Bowl,
an AI competition about Blood Bowl using the The Fantasy
Football AI Framework3.

Meanwhile, we are currently working on defining a tactical
framework for the game in order to bring expert knowledge in-
side our modeling and ultimately be able to use this knowledge
directly inside algorithms and their core parts. We are also
considering modeling other phases of the game, such as the
team building, which is assimilable to a stochastic optimization
problem. Moreover, with the release of the newest version
of Blood Bowl (a.k.a. the 2nd Season Edition), we have an
exciting opportunity to study how a framework is susceptible
to change when the rules of a game evolve.

3https://github.com/njustesen/ffai
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