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Abstract—Customizing game characters for individual players
has been a long-standing attractive feature in the game industry.
However, traditional solutions like manual editing within a game
engine are always time-consuming and unsatisfying. Our work
proposes a novel automatic face swapping method for arbitrary
users and game characters, addressing three challenges including
style gap between human and game faces, identity preservation,
and expression consistency. A game face dataset is collected to
handle the cross-style gap; an identity compound embedding
is proposed to ease the bias existing in the commonly-used ID
identifiers and it provides a more robust identity representation;
a novel expression embedding loss is proposed to enforce the
expression consistency between the swapped and target faces
and it achieves better expression consistency than the previous
methods, especially when the expression is very subtle. The
visualized results, as well as the qualitative and quantitative
comparisons, reveal the significance and effectiveness of our
proposed solutions.

Index Terms—Game CG, Face Swapping, Identity, Expression,
Image Synthesizing

I. INTRODUCTION

Game CG videos or cutscenes are animations or pictures
related to scene characters or plots in the game produced with
the support of computer graphics (CG) technology. Game CG
videos are very important for game promotion. To achieve
personalized promotion, we propose to use face swapping
to generate customized identity-specific CG videos. Given
a template video (Target), we can replace the face in the
video with a human face (Source) to obtain a personalized
video (Result) and the resulting face is similar in appearance
(identity) to the source face but maintains the attributes
(e.g. face color, lighting) and facial expression of the target
face. However, there are still several challenges that make
it difficult to directly apply existing face swapping methods
to game characters. First, the game character face swapping
needs to be identity-agnostic, while several works [1], [2] are
identity-specific. On the other hand, existing identity-agnostic
methods [3], [4], [5] only focus on human faces, they cannot
address the human-to-character cross-style problem. Second,
previous works rely on a supervisor of identity embedding
to perform the identity swapping. The identity embedding is
provided with a single pre-trained human-based face identifier,
but an identifier cannot provide sufficient identity constraint
because of the inherent feature bias existing in an identifier,
especially, when applied to game character face. Addition-
ally, the existing methods without fine-grained expression

constraints will cause inconsistent expressions in generated
videos.

Considering the above problems, we propose a new face
swapping method and make efforts in three aspects to better
generalize the existing methods to the game character faces:
solving the cross-domain problem, preserving the identity con-
sistency (with the source face), and the expression consistency
(with the target face).

To resolve the cross-style problem, we first train our face
swapping model on human data and then fine-tune the model
on the game face dataset we collected. Since there exist
few game face datasets as large as real human face datasets,
training directly on the game dataset will greatly reduce the
robustness and generalization of the model, and fine-tuning
can make full use of the knowledge learned by the model on
human dataset and does not require a large amount of game
data.

In the aspect of identity, a trivial solution to ensure the
consistency between source and swapped images is to adopt
face recognition models [6], [7], [8]. Nevertheless, the single
extracted identity embedding lacks robustness and the face
identity embedding is easily affected by the variances of
expressions and other facial attributes, which is more serious
in the game face domain. Therefore, we propose to use an
identity compound embedding which is a fusion of several
different embeddings extracted by different face recognition
models, aiming to promote the stability of the identity embed-
ding for better identity consistency.

In the aspect of the expression, the previous methods either
use the landmarks or the implicit attribute constraints to ensure
the consistency of expressions, but their methods may generate
some inconsistent expressions, as shown in the Figure 3
and Figure 4. The reason can be that the current expression
representation approaches are not capable of capturing subtle
facial movements and complicated expression. To improve
and enforce expression consistency, our work adopts a novel
expression embedding technique [9] representing the facial
expressions in a continuous space. To the best of our knowl-
edge, this is the first face swapping method that addresses
the expression consistency issue and considers expression
similarity measurement.

In general, as illustrated in Figure 1, our face swapping
framework is built upon a generative adversarial network
(GAN). It is first trained on human face dataset and then fine-
tuned on a game character dataset that we collect. Apart from



the encoder-decoder structure and skip connection design, we
further extract identity embeddings from two face recognition
models [7], [8] and allow the decoder to refine the robust iden-
tity information from two identity embeddings. Furthermore,
we design an expression embedding loss for constraining the
swapped face image and the target image within a continuous
expression space. In summary, our main contributions are as
follows:

• Our work proposes a new method for game character face
swapping. By collecting a game character face dataset and
applying a fine-tuning strategy, we manage to translate
the face swapping model from the real human face to the
game face.

• Our work proposes an identity compound embedding to
improve the identity consistency between the source and
the swapped face images, while preserving the subject’s
attributes to be harmonic with the game character.

• Our work introduces a new expression consistency metric
for the face swapping task. By our designed expression
embedding loss, it can enforce the generated faces to keep
expression similarities with the target faces as close as
possible.

• Our work conducts full experiments on both human and
game character faces. The quantitative and qualitative
experiments demonstrate that our results outperform the
previous face swapping methods in terms of cross-style
translation capability, identity consistency and expression
similarities.

II. RELATED WORK

This section reviews some literature in face swapping and
expression representation areas which are closely related to
our research topic.

Previous works on face swapping can be divided into
three categories: pixel-based methods, 3DMM-based methods,
GAN-based methods. The most straightforward solution is to
replace the inner face part in pixel space [10]–[12]. However,
the manipulated image patches usually suffer from attribute
mismatch. 3DMM-based methods [13]–[15] generate the face
region by 3D fitting and then the source faces and target
backgrounds are blended via inverse rendering. More recently,
there occurs many GAN-based methods [1]–[5], [16]–[23].
Specifically, the most popular methods like Deepfakes [1] and
its variants [2], [16] need to be trained pairwise. FSGAN [19]
first animates the source face by reenactment and then blend it
into the background with an in-painting and blending network.
FaceShifter [3] generates a swapped face with high-fidelity
and handles the occlusions with a second-stage refinement
network. SimSwap [4] proposes a weak feature matching loss
to improve the facial attributes consistency. FaceController [5]
proposes a unified framework for identity swapping and at-
tribute editing and is the first work that uses 3D parameters
and the identity embedding to represent facial identity. Later,
HifiFace [21] solves shape inconsistency problem in face
swapping by 3D shape-aware identity to control the face
shape with geometric supervision. MegaFace [22] proposes

the first megapixel level method and achieves 1024×1024 face
swapping. The methods mentioned above are all based on
human data so they can’t be applied to the game data directly.

Most methods [3]–[5], [21], [22] transfer identity with a
single identity embedding which may be affected by other
facial attributes such as facial expressions. In addition, implicit
attribute constraints [3], [4] or facial landmark loss [5], [21],
[22] are not able to capture subtle expressions, causing the
problem of expression consistency.

A. Expression Representation.

Facial expression plays a vital role in human social com-
munication. However, due to its complicated natural and
subtle movement, it is non-trivial to represent the accurate
expressions of human faces, and thus prevent the downstream
tasks such as face editing and manipulation. The commonly-
used categorical expressions are still a block to many fine-
grained expression-related applications [9], [24]–[27], being
inadequate to characterize all the facial expressions and dis-
tinguish those facial expressions labeled in the same category.
In some facial expression translation tasks [28], [29], facial
action units (AUs) are also used as a representation of facial
expressions. But the low accuracy of AU detection and AU
intensity estimation makes it difficult to represent expressions
accurately. Some talking face generation tasks [30]–[33] have
no explicit supervision of facial expressions since ground truth
images are available in their tasks and the expression transfer is
achieved implictly (eg. pixel-level reconstruction loss). Since
pixel-level ground truth images in our task is not available,
we can only model and supervise expressions explicitly.

In this work, we turn to address the expression consistency
manner into face swapping framework and adopt a novel
expression representation [34] which extracts a continuous
space based on expression similarities.

III. METHOD

This section introduces the proposed method including the
framework overview, the game faces collection, the identity
transfer and the expression consistency. In the end, we describe
the loss functions we used during training.

A. Framework Overview

The framework is shown in Figure 1. Given one source face
image Is and one target face image It, it performs face swap-
ping and generates Io that reflects the attribute information
(expression, skin color, etc.) of It but the identity information
of Is. Specially, our framework contains five components:
facial image encoder(Ef ), facial image decoder(Df ), identity
embedding module(Eid), expression embedding module(Eexp)
and a multi-scale discriminator [35]. In face swapping, Ef
extracts attribute-related fattr = {f1attr, f2attr, f3attr, f4attr}
from a target image It. Next, Eid extracts two different identity
embeddings {f1id, f2id} from a source image Is. Then, Df is
fed with fattr and {f1id, f2id}, and render facial semantics into
the swapped face Io.
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Fig. 1: Architecture of our proposed framework. The framework mainly consists of five components: facial image encoder(Ef ),
facial image decoder(Df ), identity embedding module(Eid), expression embedding module(Eexp) and a multi-scale discrimi-
nator [35].

B. Game Faces Collection

The game faces are collected from two sources. On one
hand, we render face images using a computer graphic engine.
We collect 30 3D models of game characters. Each model is
driven to perform 1000 different facial expressions by travers-
ing in its expression blendshape and pose parameters. The
generated expressions are then rendered into the corresponding
images separately by the Unity game engine [36]. In this way,
we get about 30,000 rendered game face images with desired
expression diversity.

On the other hand, since the rendered images lack identity
diversity, we crawl more game images from the Internet. To
reduce labor costs, we design an automated filtering method
based on face detection and only the images with detected
faces are retained. To improve the detection accuracy, we
use two different face detection models [37], [38] for cross-
validation. Finally, we obtain about 80,000 game face images
with better identity diversity.

Finally, we collect a game face dataset containing 110,000
images. These images are used to finetune and evaluate our
model for cross-domain face swapping.

C. Identity Transfer

To , we propose to utilize an identity compound embedding
instead of using a single identity embedding to provide the
identity information of Is. The identity compound embedding
are offered by two pre-trained face recognition models. They
provide raw and sufficient identity information from different
identity recognition models for the decoder Df . This allows
for avoiding the bias from a specific identity recognition
model. Therefore, the compound strategy allows for refining
identity information through Df . Section IV-D provides more

analysis and discussion about the bias of an identity embed-
ding.

To inject the identity information into the decoder Df ,
we replace the normalization layer in the original resid-
ual block [39] with the adaptive instance normalization
(AdaIN) [40] and then the identity information (embedding)
is mapped to two modulation vectors (γid and βid) of the
normalization layer in AdaIN with two fully connected layers.
The difference is that the identity information in our method
is from two different models, so we first compound the
two identity embeddings with a multi-layer perceptron. The
formulation is written as:

ciid = P i(
[
f1id, f

2
id

]
), (1)

where P i represents the perceptron in the ith block of the
decoder. Then the compound identity ciid is then injected into
the intermediate feature map with AdaIN:

Ziid = F iγ(c
i
id)

(
Zi − µ(Zi)
σ(Zi)

)
+ F iβ(c

i
id), (2)

where F i∗ are two fully connected layers in the ith block of
the decoder and Zi is the input feature map of the ith block.

To recover the details lost due to downsampling, we design
a Detail Recover Block (DRB) following [3]. In the ith Detail
Recover Block, we first obtain the identity-injected feature Ziid
through the injection method in the AdaIN residual block, and
then the corresponding attribute feature f iattr is used to merge
with Ziid adaptively with attention. The difference with [3] is
that we not only use spatial attention but also channel attention.
Specifically, we first inject the f iattr into Zi with spatially-
adaptive normalization (SPADE) [41].



Ziattr = T iγ(f
i
attr)

(
Zi − µ(Zi)
σ(Zi)

)
+ T iβ(f

i
attr), (3)

where T i∗ are two convolutional layers used to compute
modulation parameters γattr and βattr of the normalization
layer in SPADE. But unlike the vector form parameters in
AdaIN, γattr and βattr here are tensors with the same spatial
dimension as Zi.

Then, we generate the spatial attention mask M i
s and the

channel attention maskM i
c from the original input Zi with a

convolutional block attention module (CBAM) [42].

(M i
s,M

i
c) = CBAM i(Zi). (4)

Finally, the attribute-injected feature Ziattr and the identity-
injected feature Ziid are fused using the two attention masks:

Ẑi =M i
s ∗M i

c ∗ Ziid + (1−M i
s ∗M i

c) ∗ Ziattr, (5)

where Ẑi is the output of the ith block.

D. Expression Consistency

Some previous methods [3], [4] treat the expression as the
same as other attributes and achieve consistency of expressions
through an implicit constraint on attribute features, some other
methods use facial landmarks [5], [19], [22] to characterize
and constrain expressions. We argue that attribute features
cannot obtain some subtle expressions since they contain
many other attributes like pose, skin color, etc. And the facial
landmark is related to the identity which may harm the identity
consistency.

To avoid problems in previous methods and achieve bet-
ter expression consistency, we leverage a novel expression
embedding technique called DLN [34] in Eexp to compute
the expression loss between Io and It during training. The
expression embedding provided by DLN can provide a fine-
grained representation for facial expression and the embedding
is well disentangled from identity. This allows for estimating
expression similarity within a continuous compact space with
no impact on identity. Therefore, expression embedding is
used to enforce expression consistency.

E. Loss Function

This section details the supervision in the training, including
reconstruction loss, identity loss, expression loss, and cycle
consistency loss.

Reconstruction Loss: During training, we make Is and It
the same with a certain probability and expect the generated
image Io as same as the input. So we introduce a pixel-wise
reconstruction loss following [3]. The reconstruction loss is
written as

Lrec = ‖Io − It‖2 , (6)

where ‖∗‖2 denotes the euclidean distance. In our experiment,
we set the probability that Is and It are the same as 0.25.

Identity Loss: An identity loss is usually used in face
swapping tasks. The loss enforces Df to acquire identity

information from the injected identity embedding. Due to the
identity compound embedding for injection, the identity loss
is also based on two face recognition models (ArcFace and
FaceNet):

Lid =
K∑
k=1

λk(1− cos(Eid(Io), Eid(Is)), (7)

where λk represents the relative weight of each face recogni-
tion model and cos(∗, ∗) denotes the cosine similarity of two
identity embeddings. In our experiments, we set K=2 and λ1
= 10, λ2=5 for ArcFace and FaceNet respectively.

Expression Loss: To make the expression of the swapped
face Io more consistent with the target face, we adopt an ex-
pression loss that penalizes the L2 distance of two expression
embeddings.

Lexp = ‖Eexp(Io)− Eexp(It)‖2 , (8)

The expression loss encourages the generator to learn to
acquire expression-related information from target faces other
than some unrelated disturbance like identity.

Cycle Consistency Loss: In addition to expression and
identity, it’s also important to guarantee that the swapped face
properly preserves the attributes of the target face. To do this,
we introduce a cycle consistency loss [43]:

Lcycle =
∥∥∥Îo − It∥∥∥

1
, (9)

where Îo= Df (Ef (Io), Eid(It)) and ‖∗‖1 denotes the L1

distance. This objective encourages the generator to learn to
preserve the original attribute of It while only changing its
identity.

GAN Loss. To make the synthesized facial images more
realistic, adversarial training is used in our framework. Specif-
ically, we adopt Hinge loss [44] as the adversarial loss, denote
as Ladv .

Full objective: Our full objective can be summarised as:

L = Ladv+Lid+λexpLexp+λrecLrec+λcycleLcycle, (10)

where λexp, λrec, λcycle are hyperparameters for each term.

IV. EXPERIMENTS

A. Datasets and Settings

We construct two datasets for our task, one is called
HFDataset for the human face swapping and the other is called
GFDataset for game face swapping. HFDataset is a combi-
nation of three public datasets including CelebA-HQ [45],
FFHQ [46], and VGGFace2 [47]. As for GFDataset, images
are collected by the method described in Section III-B. For
each image in the two datasets, we aligned and cropped
the face to 256 × 256 with a face detector [38]. To ensure
high-quality training, we have deleted some images that are
too blurry or small. HFDataset is used for training, then we
randomly choose 10,000 images of GFDataset for evaluation
and the rest are used for fine-tuning.
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Fig. 2: Comparison of game character results generated by our
face swapping method and manual method.
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Fig. 3: Game character face swapping comparison with FS-
GAN and FaceShifter. Some expression errors and occlusion
errors are marked with red and green boxes, respectively.

Our model is trained on HFDataset from scratch and fine-
tuned on GFDataset, the framework is implemented with
PyTorch [48]. We adopt Adam [49] optimizer with β1=0 and
β2=0.999 and the learning rate is set to 0.0001. We set λexp=5,
λrec=10, λcycle=10 for our full pipeline, and our model is
trained first about 550K steps and then finetuned about 200K
steps with a batch size of 4.

B. Comparison On Game Character Faces

To validate our method on game character faces, we conduct
both qualitative and quantitative comparisons with the existing
methods.

1) Qualitative Comparison: We first compare our method
with the Manual method. The Manual method usually tasks a
skilled game player several hours to edit the hundreds of face
parameters to create a character that looks like the source face.
As shown in Figure 2, our face swapping method can produce
comparable results as the Manual method in less than one
second.

As for face swapping methods, we compare our method with
FSGAN [19] and FaceShifter [3]. We first obtain the official
pre-trained model of FSGAN and then reproduce the first stage
of FaceShifter. As shown in Figure 3, FSGAN suffers from
unpleasant illumination and face color since FSGAN adopts a
blending model to fuse the swapped face with the background
and when the source and target face have huge differences in
texture, lighting, or skin color (just like the difference between
a game character face and a human face), such a fusion method

TABLE I: Quantitative Comparison on Game Character Faces.

Method ID Retrieval Accuracy (%) ↑ FID ↓ Expression Error ↓
CosFace ArcFace2 SphereFace DFER FECNet DLN

FSGAN 49.21 52.37 55.61 71.32 4.13 0.28 0.45
FaceShifter 95.73 98.54 97.72 66.49 4.09 0.35 0.41
Ours 98.76 99.68 99.15 28.95 3.69 0.21 0.25

TABLE II: Subjective Comparison Results.

Method ID.(%) Exp.(%) Realism(%)
FSGAN 11.4 28.9 19.6
FaceShifter 42.5 16.4 38.2
Ours 46.1 54.7 42.2

will cause this attribute mismatch. And the swapped faces of
FSGAN look less similar to the source face than our method.
FaceShifter also has problems in cross-domain face swapping
and the expression is affected by the source face, it can also
be observed that FaceShifter without its refinement network
can not handle the occlusions well but our method can even
if we are a one-stage method.

2) Quantitative Comparison: We further perform the quan-
titative comparison with FSGAN and FaceShifter on the game
character faces. We construct a test set that contains 10K
human-game face pairs for human-to-game face swapping.
Three types of evaluation metrics are taken into account
including identity retrieval accuracy, expression error and
Frechét inception distance [50].

ID retrieval accuracy is used to estimate whether the iden-
tity of the swapped face is consistent with the source face. We
adopt three face recognition models including CosFace [51],
[52], ArcFace2 [7], [53] and SphereFace [6], [54] for the
evaluation. And identity retrieving [3] is performed in the
corresponding test set.

As shown in Table I, our method obtains the highest
accuracy. The validated performance in ID retrieval accuracy
means that our method maintains identity consistency and
guarantees robustness in identity transferring. It indicates that
the use of the identity compound embedding contributes to
identity consistency in face swapping.

Expression error is used to evaluate the expression distance
between the swapped and the target faces. We metric this error
by computing the euclidean distance between the swapped
face expression embedding and the target face expression em-
bedding. We adopt three facial expression recognition models
for the evaluation including DFER [55], DLN [34] and FEC-
Net [9]. As shown in Table I, our method obtains the lowest
expression errors in three expression metrics, illustrating our
superiority in expression consistency.

Frechét inception distance is used to measure the discrep-
ancy between two sets of images. We use the final average
pooling features of an pretrained Inception-V3 [56] to compute
FID. As observed from Table I, our method obtains lower FID
than FSGAN and FaceShifter. This proves that our method
better preserves the game domain feature.

3) Subjective Comparison: To further illustrate the effec-
tiveness of our method, we conduct a user study on our
game test set (10K human-game face pairs) with FSGAN



TABLE III: Quantitative Comparison on FF++.

Method
ID Retrieval Accuracy (%) ↑ Expression Error ↓

CosFace ArcFace2 SphereFace DFER FECNet DLN
Deepfakes 83.70 81.79 87.18 5.02 0.56 0.73
FaceSwap 71.45 64.04 77.01 4.35 0.42 0.58
FSGAN 48.90 49.37 53.85 4.02 0.29 0.42
FaceShifter 86.83 90.77 81.37 4.03 0.36 0.49
Ours 97.66 98.84 98.31 3.61 0.21 0.28

Source Target Deepfakes FaceSwap FSGAN FaceShifter Ours

Fig. 4: Comparison with Deepfakes [1], FaceSwap [2], FS-
GAN [19] and FaceShifter [3] on FaceForensics++ [57]. Some
expression errors are marked with red boxes.

and FaceShifter. Thirty participants are asked to complete the
questionnaire in terms of identity consistency, expression con-
sistency, or image realism. All these participants have gaming
experience so that they can provide more accurate judgements.
Each metric contains 30 questions and each participant need
to choose the best result under each metric.

Table II demonstrates the results of the subjective compar-
ison in the user study. Our method outperforms the baselines
in terms of identity consistency, expression consistency, and
image realism. These results further validate the performance
of our method.

C. Comparison On Human Faces

To further validate our contributions on identity consistency
and expression consistency, we conduct comparison experi-
ments with more face swapping methods on human faces and
report the comparative results as below, including qualitative
comparison, quantitative comparison. For a fair comparison,
models used in this section are only trained on human data
without fine-tuning.

1) Qualitative Comparison: We first compare with Deep-
fakes [1], FaceSwap [2], FSGAN [19] and FaceShifter [3] on
the FaceForensics++ (FF++) [57] dataset.

As shown in Figure 4, without any constraint on identity
or attributes (expression, etc.), the results of Deepfakes and
FaceSwap cannot preserve identity well and suffer a very
serious mismatch in attributes (expressions, etc.). Results gen-
erated by FSGAN loss similarity with the source face and also
suffer from inconsistent lighting and skin color. FaceShifter
performs very well in terms of image quality and attributes
consistency, but cannot preserve the target expressions well
such as gaze direction .

TABLE IV: Quantitative ablation study.

Method ID Retrieval Accuracy (%) ↑ Pose
Error ↓

Expression Error ↓
CosFace ArcFace2 SphereFace DFER FECNet DLN

w/o Exp 98.81 99.59 99.13 3.04 4.24 0.32 0.41
Single ArcFace 95.70 99.45 97.59 2.68 3.63 0.20 0.23
Single FaceNet 76.29 64.60 74.88 2.46 3.68 0.21 0.25
Ours 98.76 99.71 99.15 2.63 3.52 0.20 0.23

We further compare with FaceController [5] and Sim-
Swap [4] by cropping images from their paper, Figure 5 (a), (b)
illustrate the qualitative results, and the comparisons show that
besides the comparable image quality, our method preserves
the identity of the source image and the subtle expressions
of the target image better. As can be seen from the red
box in Figure 5, the results of the two compared methods
contain some unwanted subtle expressions such as wrong gaze
direction and disappearing frown.

A common problem can also be observed from the above
comparisons: the swapped faces of the six baselines are
affected by the expression of the source face to some extent
which is sufficient proof of the point we mentioned that
the face identity embedding can be easily affected by facial
attribute information.

2) Quantitative Comparison: The quantitative comparisons
only involve the four results-available or codes-available meth-
ods Deepfakes, FaceSwap, FSGAN, and FaceShifter. We con-
stuct the testset following [3], The quantitative comparisons
rely on these five test sets. To metric the effectiveness of
our proposed method in identity consistency and expression
consistency, we adopt the identity retrieval accuracy and
expression error as in Section IV-B2.

The quantitative results are shown in Table III. Similar to
the results of the game character face swapping experiment,
we also get the highest identity retrieval accuracy and lowest
expression error for human face swapping. This means that
our method with compound identity is more robust in identity
transferring than single-identity-based methods (FaceShifter)
and much better than those methods (Deepfakes, FaceSwap)
without any identity constraint. And a fine-grained expression
constraint contributes more to expression preservation than
implicit constraint methods.

D. Ablation Study

We conduct several ablation settings on the game dataset to
demonstrate the effectiveness of our framework.

To verify the effectiveness of the finetune strategy, we train
a model without fine-tuning (w/o FT). As shown in Figure 6,
it can be observed that the finetune strategy significantly
improves the quality of the generated image and FID also
drops from 43.56 to 28.95. This proves that the finetune
strategy contributes to cross-domain face swapping.

To demonstrate the effectiveness of our expression em-
bedding loss, we conduct an experiment setting without the
expression loss (w/o Exp). Quantitative results in Table IV and
qualitative results in Figure 7 show that the expression error
rises a lot without the expression loss. Observing Figure 7,
the swapped faces without the expression loss tend to be



Source Target SimSwap [4] OursSource Target FaceController [5] Ours

(a) Comparison with FaceController (b) Comparison with SimSwap

Fig. 5: Comparison with FaceController and SimSwap. These illustrated images are cropped from their published paper. As
observed, our method preserves the identity of the source image and the subtle expressions of the target image better than the
two methods. Some expression errors are marked with red boxes.

Source Target w/o FT Ours

Fig. 6: Ablation results for the finetune strategy.

Source Target w/o Exp Single ArcFace Oursw/o DRB

Fig. 7: Ablation study for each component in our framework.
Some expression errors and occlusion errors are marked with
red and green boxes, respectively. Please zoom in for more
details. Please zoom in for more details.

influenced by the expression of the source face (marked in
red boxes).

To evaluate the effectiveness of the identity compound
embedding, we train another two models called Single ArcFace
and Single FaceNet. As shown in Table IV, the identity
compound embedding outperforms the single identity embed-
ding. This validates that compound identity embeddings can
alleviate the effect of expression leaked in identity embedding
and provide more robust identity information.

V. CONCLUSION

This work proposes a novel automatic face swapping
method for game character face swapping, allowing game
players or developers to generate customized identity-specific

game CG videos or cutscenes. We mainly focus on three chal-
lenges including the style gap between human and game faces,
identity preservation, and expression consistency. Specifically,
a game face dataset is collected to handle the cross-style gap;
an identity compound embedding is proposed to ease the bias
existing in the commonly-used ID identifiers and provides a
more robust identity representation; a novel expression em-
bedding loss is proposed to enforce the expression consistency
between the swapped and target faces. Qualitative, quantitative
experiments on both human data and game data show that the
proposed method is well adapted to the problem of cross-
domain face swapping and outperforms the state-of-the-art
methods.
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