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Abstract—Despite significant breakthroughs in developing
gaming artificial intelligence (AI), Mahjong remains quite chal-
lenging as a popular multi-player imperfect information game.
Compared with games such as Go and Texas Hold’em, Mahjong
has much more invisible information, unfixed game order, and
a complicated scoring system, resulting in high randomness
and variance of the rewarding signals during the reinforce-
ment learning process. This paper presents a Mahjong AI by
introducing Reward Variance Reduction (RVR) into a new self-
play deep reinforcement learning algorithm. RVR handles the
invisibility via a relative value network which leverages the
global information to guide the model to converge to the optimal
strategy under an oracle with perfect information. Moreover,
RVR improves the training stability using an expected reward
network to adapt to the complex, dynamic, and highly stochastic
reward environment. Extensive experimental results show that
RVR significantly reduces the variance in Mahjong AI training
and improves the model performance. After only three days of
self-play training on a single server with 8 GPUs, RVR defeats
62.5% opponents on the Botzone platform.

Index Terms—Imperfect information game, multi-agent learn-
ing, reinforcement learning, Mahjong AI

I. INTRODUCTION

As abstractions of the natural world, games provide an
efficient testbed for Artificial Intelligence (AI) to learn com-
plex control in both competitive and cooperative environ-
ments. Significant achievements have been made in various
perfect information games, such as chess [1] and Go [2]–
[5]. AlphaZero [4] introduces a general reinforcement learning
framework to solve perfect information games without any
domain knowledge by self-play, which outperforms human
masters in the Go game. However, imperfect information
games (IIGs) are still challenging due to the partially visible
states.

Recent research mainly chooses Poker [6] as a benchmark
to evaluate which has a two-player or multi-player form and a
limited or non-limited form. This work aims at designing an
intelligent Reinforcement Learning (RL) agent for Mahjong,
the popular multi-player IIG in Asia. Mahjong is much larger
than games like poker in the average size of information
sets because of the game length and tile number. Due to the
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diversity of Mahjong game rules and the lack of high-quality
human data, we choose to use RL to start from scratch. There
are two critical problems when training Mahjong AI with RL.
The first problem is the inaccurate estimation of the value. AI
can only observe its own hands and public hands; however,
opponents’ hands also affect the value primarily. In Mahjong
rules, if any player gets a specific card and chooses to end
the game, other players get negative rewards. So the relative
value of the global information in Mahjong is more important
than the value of private information.The second problem is
that there exists randomness in the distribution of rewards.
Even at the end of the game, players get positive rewards
with a considerable difference due to the different last tile and
the different ways of getting the last tile (Dianpao, Zimo).
This problem makes it difficult for reinforcement learning
algorithms to learn the correct distribution of rewards.

To handle these above problems, we propose reward vari-
ance reduction (RVR) for Mahjong AI design. RVR integrates
two techniques into the reinforcement learning framework.
First, we propose a relative value network that considers not
only the player’s state but also other players’ states. This
network better gives the value of each state in the training
process and helps the policy converge faster. Different from
the global information value estimate in Honor of Kings [7],
we consider the properties in Mahjong and give a new loss
function for multi-player zero-sum games. Then we design an
expected reward network to give the expected reward in the
final state. Unlike giving true rewards with high variance, this
network considers complex situations such as several players
Shanten, the different types of the last tile, and the different
ways of getting the last tile (Dianpao, Zimo) and gives the
agents the expected rewards. It effectively reduces the variance
of reward distribution in the Mahjong game.

To summarize, we in this work make the following three
main contributions:

• We train an expert-level Mahjong AI from scratch
with limited computing resources via self-play, defeating
62.5% opponents on the Botzone platform.

• We propose a relative value estimate algorithm that
contains other players’ information in each decision node



TABLE I
RULES IN CHINESE STANDARD MAHJONG

Category Type Description Number

Card
Ordinal tiles Dot (1-9) / Bamboo (1-9) / Character (1-9) each type has 4 tiles

Honor tiles Wind tiles East / South / West / North each type has 4 tiles
Dragon tiles Red / Green / White each type has 4 tiles

Action

Discard Discard a tile from your private hands. 34

Chow Make a straight of 3 Ordinal tiles like (1,2,3 Dot) 63by seizing the upper player’s latest tile Discard.

Pong Make a Three-of-a-Kind of 3 identical tiles like (1,1,1 Dot) 34by seizing other players’ latest tile Discard.

Kong

Concealed-Kong Make a Four-of-a-Kind of 4 identical tiles like (1,1,1,1 Dot) 34when the 4 tiles are in your private hands. The tiles are not revealed to other players.

Exposed-Kong Make a Four-of-a-Kind of 4 identical tiles like (1,1,1,1 Dot) 34by seizing other players’ latest tile Discard.

Add-Kong Make a Four-of-a-Kind of 4 identical tiles like (1,1,1,1 Dot) 34by adding a tile to your exposed Three-of-a-Kind.

Hu Compose Legal hands by Draw a tile on your own (Zimo) or seizing other players’ latest 1tile Discard (Dianpao). Zimo will get more Fans than Dianpao. It ends the game.
Pass-Hu Give up the action of Hu and then you should choose another legal action. 1
Draw Give up legal actions of Chow, Pong or Kong, and Draw a tile from the Remaining wall. 1

Terminology

Suit The type of Ordinal tiles, i.e. Dot, Bamboo, Character. 3
Fulu The meld generated by action of Chow, Pong or Kong. Up to 4 per player
Discards The tiles that player Discard. Up to 24 per player
Remaining wall The tiles that player can Draw except initial hands. Up to 21 per player
Fan The point is called Fan in Mahjong. -

Official hands The Official hands is a part of hands that satisfy some special requirements, such as tiles 81should be same in the suit. Different Official hands come with different scores, 12 in total.

Legal hands
Legal hands are generally in the form of four melds (straight, Three-of-a-Kind or Four-of-a-Kind)

-and a pair, or in the form of 7 pairs. Legal hands can belong to multiple Official hands,
and the score of the hands is the sum of Fans of the corresponding Official hands.

Shanten When there is only one tile away from Legal hands. -

to reduce the value’s variance and guide the AI to make
decisions under imperfect information as close as possible
to the optimal strategy under perfect information.

• We design an expected reward network that trains the
network during the self-play process and uses the net-
work’s output as the reinforcement learning reward signal
to reduce the game’s randomness and improve the training
speed.

Based on the above technical contributions, our experimental
results show that the proposed methods significantly reduce
the variance and randomness among the Mahjong training and
speed up the model training process.

II. PREREQUISITES

A. Chinese Standard Mahjong

There are many variations of Mahjong, usually distin-
guished by the type of cards and the actions players can
do with a card. The rules of Chinese Standard Mahjong
were formulated by the General Administration of Sport of
China in 1998 and have become one of the two most popular
competitive Mahjong in the world. Chinese Standard Mahjong
has 144 cards with 36 types, and each type has four same
cards. Thirty-six types could be further divided into three
classes: Ordinal tiles include 27 types, Honor tiles include
seven types, and Bonus tiles include eight types. Bonus tiles
are usually ignored in the game. There are four players in each
game of Mahjong, one of which is the banker, and each player
is dealt with 13 cards at the beginning. Through a series of
actions such as Discard, Chow, Pong, Kong, Draw, and Hu,
players make their hands compose Legal hands to win. Please
see Table I for details about the rules.

Mahjong is still an unsolved benchmark for multi-agent
reinforcement learning. Three interesting properties make
Mahjong particularly challenging to solve. Firstly, it is a
complex game with much hidden information. The number
of information sets represents the number of all possible
decision nodes in an imperfect information game. The average
size of the information sets represents the amount of hidden
information behind each situation in the game. Mahjong is
10121 and 1048 in these two indicators, respectively, which
are much larger than other games such as bridge and Texas
Hold’em. The player only knows the 13 cards in his hands
and the cards that have been played before, but he does not
know the cards in other people’s hands and the cards remaining
on the wall. The visible information is much smaller than
invisible information. With more invisible information, there
will be more possible situations, making it difficult for AI to
connect the final reward signals with the current observations
during training. Secondly, Mahjong is not only complicated in
terms of cards but also intricate in action rules. In a Mahjong
game, players need to consider a variety of decision types: not
only deciding which card to Discard in their round but also
choosing Chi, Pong, Kong, or Hu in others’ rounds. According
to the rules, there are many types to finish a game, such as
Draw a particular card to Hu, getting a specific card from
others to Hu, and Draw all cards on the wall with no one
Hu. In the case of Hu, different hand types have different
scores, and some even differ by several times. Thirdly, unlike
the previous two-player zero-sum game, many special issues in
the multi-player game need to be considered. Mahjong players
want to maximize the benefits, not only from their perspective
but also from the opponent’s perspective, the upper, and the
next. In addition, any player’s Pong and Kong may change



the current playing order, which causes the game tree to be
irregular and dynamic.

B. Reinforcement Learning

In self-play, given an opponent whose policy is known and
fixed, the original four-player Mahjong game reduces to a
single-player RL problem. We consider the standard Markov
Decision Process (MDP). An MDP consists of a set of states
S = {s0, s1, s2, . . . , st, . . . }, a set of actions A = {ak}Kk=1,
and a reward function r : S ×A×S → R. After executing an
action at ∈ A at each state st ∈ S, the agent will enter a new
state st+1 according to the transition probability model and
get a reward r(st+1|st, at). The objective of the agent is to
maximize the cumulative rewards R =

∑∞
t=0 γ

tr(st+1|st, at),
where γ is the discount factor to favor more recent rewards.
In RVR Mahjong AI, we employ the popular Proximal Policy
Optimization (PPO) [8] learning algorithm.

III. RELATED WORK

A. Reinforcement Learning in Imperfect Information Games

Cepheus [9], DeepStack [10], Libratus [11], and
Pluribus [12] have made breakthroughs in two-player
and six-player Texas Hold’em using Counterfactual Regret
Minimization (CFR) [13]–[15]. CFR relies on the game tree
and converges to Nash equilibrium after multiple iterations
by calculating regrets. Nevertheless, it is difficult to apply
in games with large state space because of the complicated
game tree. Recently, Rebel [16], AlphaHoldem [17],
DeltaDou [18], and DouZero [19] use reinforcement learning
and achieve significant progress in two-player Texas Hold’em
and Doudizhu. Benefited from the growth of deep neural
networks, complex games with multiple units and complex
scenarios such as StarCraft II [20], Dota2 [21], and Honor
of Kings [7], [22] have achieved outstanding performance by
deep reinforcement learning methods.

B. Mahjong AI Design

Efforts in Mahjong mainly focus on the following aspects.
The first one is the knowledge-based search algorithm [23],
which mainly simplifies the huge state and action space of
Mahjong by previous human knowledge and rules. In 2020,
[24] builds an effective search tree by abstracting Japanese
Mahjong into multiple Markov decision processes (MDPs)
according to the hands. However, there are still some short-
comings: the model’s ability is minimal if the designer makes
unreasonable assumptions or abstractions.

The second one is the supervised learning algorithm. In
2014, the University of Tokyo adopted the supervised learning
method to train a Mahjong AI by using many high-level human
players’ data. Their AI’s average score [25] reached six dan
in the Tenhou platform1 and was rated above 96.6% of the
Japanese Mahjong players. However, the model’s performance
based on supervised learning usually fluctuates wildly during
the complete Mahjong game training.

1Obtained from: https://tenhou.net/
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Fig. 1. RVR architecture. RVR network consists of a ResNet [28] to encode
cards and 2 layers of FCN with hidden dimension of 1024. The network
predicts the action based on the private information, and predicts the value
base on both the private information and the hidden information.

The third one is the reinforcement learning algorithm.
Microsoft Research Asia develops a Japanese Mahjong AI
named Suphx [26], which includes five deep convolution
neural network models and a rule-based winning model. It uses
a gradient-based reinforcement learning algorithm to update
the network. It uses a parametric Monte Carlo strategy to
dynamically adjust the offline strategy before the game in real-
time to better adapt to the current state. Suphx achieved ten
dan in the Tenhou platform, which outperforms 99.99% of
officially ranked human players. It is currently the strongest
Japanese Mahjong AI. However, this model requires many
computing resources and is difficult to apply directly to the
Chinese Standard Mahjong due to a large amount of human
data. Actor-Critic Hedge [27] extends the actor-critic algorithm
framework in deep reinforcement learning and solves 1-on-1
Mahjong.

IV. METHODS

To design a Mahjong AI, we provide a deep RVR architec-
ture equipped with the RL schema to learn policy and value
functions. We illustrate the RVR architecture in Fig. 1. As
shown in Fig. 1, it contains a policy network like the traditional
RL network and a global information value network. The input
of the policy network is the game state representations of
private information, and the input of the value network is the
game state representations of private information and hidden
information. RVR network gives better value estimates during
training and does not use extra information during testing. To
better solve the problem of variance in Mahjong, we propose
a new loss function that considers the relative value relation
among the whole four players for the value network. This
design is the reason that we call it a relative value network.
Also, we present an expected reward network to reduce the
randomness in Mahjong. In the following, we highlight game
state representation in Mahjong and these two networks’ train-
ing methods. We believe these new techniques and underlying
principles help develop general learning algorithms for more
IIG AIs.



1 2 3 4 5 6 7 8 9

Bamboo 1 1 1 0 0 0 0 0 1

Character 1 0 1 0 1 1 0 0 0

Dot 0 0 0 0 0 1 1 0 0
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Fig. 2. Encoding of Mahjong state. We encode the Mahjong tiles into a 4× 9 binary matrix, with each column corresponding to one number, and each row
corresponding to one suit. The private hands, Fulus, and Discards are encoded into 4 channels, 68 channels, and 112 channels, respectively. Taking the private
hands as an example, the i-th row in the j-th column of the n-th channel means there are n tiles of the i-j type in the hands.

A. State Representation

The states of Mahjong games can be divided into two
categories: visible and invisible information. The visible in-
formation that the player can access includes his hands,
everyone’s Fulus, and everyone’s Discards. The invisible in-
formation includes the opponent’s hands and the remaining
wall. Since Mahjong is not naturally encoded in image format
like Go, in this paper, we design unique encoding methods
for Mahjong based on prior human knowledge to facilitate
the neural network training process. As shown in Fig. 2, we
use a 4 × 9 binary matrix to represent the Mahjong state,
where columns correspond to the nine Ordinal tiles and Honor
tiles, and rows correspond to the four suits. This encoding
method unifies the suits and numbers of Ordinal tiles, making
learning the relationship more accessible. Winning a Mahjong
game is to make the private hands compose Legal hands. The
private hands largely determine the subsequent game strategy,
so we use four channels to represent it, the i-th row in the
j-th column of the n-th channel means there are n tiles of
the i-j type in the hands. We use 68 channels to represent
Fulus, which can help to infer the rest of the players’ hands
and playing strategies. The 68 channels contain channels of
each player’s Chow melds (4 × 4), the tiles in Chow melds
seized from other players (4× 4), Pong melds (4× 4), Kong
(except Concealed-Kong) melds (4× 4) and the player’s own
Concealed-Kong melds (4×1). Based on the currently known
information, it is possible to roughly estimate the distribution
of the remaining cards to help make better decisions, so we use
112 channels to represent the Discards, including channels of
each player’s sequence of historical Discards (24×4, one card
one channel) and each player’s counts of historical Discards
(4×4). The private information is encoded into 184 channels in
summary. Similarly, we use another 112 channels to represent
the hidden information, including the channels of opponent’s
hands (4 × 3), each player’s sequence of Remaining wall
(21 × 4, one card one channel), and each player’s counts of
Remaining wall (4× 4). We encode the Mahjong actions into
238 dimensions according to Discard, Chi, etc. The policy
network outputs the probability of 238 actions being selected.

B. Relative Value Network

One key factor in training the deep architecture with the
above state representation is the learning paradigm with a

suitable value estimator. The value of the current state depends
not only on the visible information but also on the hidden
information. Without the hidden information, it is difficult for
players to determine their relative value, which is one of the
fundamental reasons Mahjong games are challenging to solve.
[26] uses knowledge distillation and trains a value network
with high-performance human data. This value network is
trained by supervised learning using global information and
then makes the output of the value network in reinforcement
learning as close to this network as possible. However, without
high-quality data, the Mahjong training process makes it
difficult to give an effective value with limited observations.

To solve this problem, we modify the variant value network
to get the global state information, while the strategy network
still uses the original visible information as input. To make the
value network learn the relative relation of the four players’
values, the output of the network is all four players’ value Vθ.
The optimization objective is shown in (1):

argmin
θ

1

|Dk|T
∑
τ∈Dk

T∑
t=0

4∑
j=1

(
Vθ

(
sjt , h

j
t

)
− rjt

)2

, (1)

where θ denotes the parameters of the relative value network,
|Dk| denotes the number of trajectories of the training data in
the k-th iteration, T denotes the total length of the trajectory,
sjt denotes the state for the j-th player in the t-th round,
hj
t denotes the hidden information for the j-th player in t-

th round, Vθ(s
j
t , h

j
t ) denotes the value predicted by the value

network, and rjt denotes the cumulative return with discount
factor of the j-th player in the t-th round. We guarantee that
the sum of all four players’ rewards is 0 at any round. By
Lagrange’s theorem, such a loss function can be designed
to make the sum of the estimated values 0. In a sense,
this is similar to the idea of the popular operation batch
normalization [29] in machine learning.

Some previous works [7], [22] also report that better results
can be achieved by using global information for guidance.
Different from the global value network in [7], we consider
the relative value in the Mahjong game and change the
loss function for the value network. The difference between
variant value network, global value network, and relative value
network is shown in Fig. 3. Compared with variant value
network and global value network, relative value network
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Fig. 3. Comparison diagram among variant value training structure, global
value training structure, and relative value training structure. Relative states’
value ensures that the sum of the states’ values in the training process is 0.

considers the properties of a four-player zero-sum game. It
makes the value estimation more accurate by this loss function.

C. Expected Reward Network

Due to the great randomness in Mahjong, using the raw
reward of the game as a training signal for reinforcement
learning may not indicate how good or bad the strategy is,
especially for top professional players. For example, in the
game’s final stage, two players are only one step away from
the Legal hands. They can both Draw the card they need from
the remaining wall, which means that both players have the
possibility of Zimo to win by themselves. Whoever Draw the
needed tile first will win, while the other player will lose many
Fans, and the final reward may be very different due to the
last tile Draw. However, this negative reward is not owing to
bad strategy but the randomness of the Mahjong game. Since
the number of remaining tiles in the remaining wall may be
significant, it is difficult for AI to explore those data randomly,
which results in slow convergence of the model.

For the reason above, we need a new reward signal to
eliminate irrelevant factors such as randomness for better
evaluation of strategies and a good guide of optimization
directions. Nowadays, few researchers have researched this
area. To solve this problem, we introduce the expected reward
network, which can predict each player’s expected reward
based on the game’s final state to help the training process be
smoother and improve the training speed. The training data for
the expected reward network is derived from the reinforcement
learning process via self-play, and the optimization objective
is shown in (2):

argmin
θ

1

N

N∑
i=1

(
fθ

(
gT−1
i

)
− ri

)2
(2)
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Fig. 4. The training process of the expected reward network. It derives training
data from the reinforcement learning process via self-play to predict each
player’s expected reward based on the game’s final state.

TABLE II
MODEL PERFORMANCE AGAINST SEARCH MODELS

Environment Model AF WR

Simplified Mahjong
RL-1 +6.94% +3.96%
RL-2 +4.10% +1.43%
RL-3 +7.46% +4.91%

Chinese Standard Mahjong RL-1 +5.22% +6.34%
RL-2 +3.81% +2.10%

where θ denotes the parameter of the expected reward network,
N denotes the number of games in the training data, ri denotes
the i-th game of four players’ reward in T -th round (i.e. the last
round), gT−1

i denotes the state in i-th game (T − 1)-th round,
which includes the four players’ hands, Fulus, and remaining
wall. After the training of the expected reward network, we
use the output of this network as the new reward signal in
(T − 1)-th round for each player during the training process.
The training process is shown in Fig. 4. Similar to the relative
value network, the expected reward network considers global
information and gives better rewards with less randomness for
Mahjong games.

V. EXPERIMENTS

A. Experimental Setup

We run all experiments on a single server with 56 Intel
Xeon E5-2690 CPU @2.60GHz and 8 TITAN V GPUs. We
set the batch size M = 2048, λ = 0.995, the discount factor
γ = 0.95, and adopt Adam optimizer with a learning rate
ϕ = 0.0003. For parameters of PPO [8], we set the policy
clip range to 0.2, the value clip range to 0.2, and the gradient
clip range to 0.5.

B. Ablation Experiments

1) Simplified Mahjong: The Chinese Standard Mahjong is
very complex and not convenient for an experimental environ-
ment. While retaining the basic rules and unique challenges,
we designed a simplified Mahjong environment, retaining only
1Dot to 6Dot, 1Bamboo to 6Bamboo, East and Red, with three
cards of each kind, a total of 42. The number of players is
reduced to three, the actions including Chi, Pong, and Kong are
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Fig. 5. Result in Simplified Mahjong. The plot shows the AF and WR of the
Mahjong agents using different components against Search model w.r.t. the
number of training steps in Simplified Mahjong.

reserved, and the number of Official hands types is reduced
to four. This simplification reduces the number and average
size of information sets and dramatically reduces the necessary
training resources and time.

2) Metrics: Inspired by the duplicate bridge, we use the
Swiss-system tournament and Duplicate Format, in which each
matched three players will play a 100-deck wall, and each wall
will play 6 games, so a total of 600 games will be played.
Specifically, 6 games per wall mean that the three players are
seated in full alignment. The scoring rule is an average of 6
game scores. In this paper, we use two metrics to compare the
performance of the model:

• AF (Average Winning Fan): The average winning Fan
per game. The average score of each game is zero-sum.

• WR (Winning Percentage): The number of games won
by a player divided by the total number of games.

The different handling of the same hands by different players
will lead to various changes in the state. With the same number
of games, this evaluation method can reduce randomness and
reflect the model’s ability more effectively. In this way, the
ranking is more persuasive.

3) Model Details: To demonstrate the value of each com-
ponent, we trained several Mahjong agents via self-play from
scratch:

• RL-basic: the basic version of the reinforcement learning
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Fig. 6. Result in Chinese Standard Mahjong. The plot shows the AF and
WR of the Mahjong agents using different components against Search model
w.r.t. the number of training steps in Chinese Standard Mahjong.

agent.
• RL-1: the RL agent that enhances RL-basic with relative

value technique.
• RL-2: the RL agent that enhances RL-basic with expected

reward technique.
• RL-3: the RL agent that enhances RL-basic with both

relative value technique and expected reward technique.
To evaluate those models, we also designed a Search model
using normal search and pruning algorithms based on rules. It
first searches for the tiles that need to be replaced between
Legal hands and the private hands after performing each
legal action, then calculate the probability of obtaining these
tiles based on the number of tiles remaining, and uses their
cumulative product as the probability to Hu of each legal
action. The estimated value of each legal action is obtained
by multiplying the probability mentioned above by the score
of Legal hands. The search model outputs the action with the
highest estimated value.

4) Results: In the Simplified Mahjong, we play the above
model against the Search model in the other two positions
as fixed opponents. The model with the best performance in
the last 2,000 iterations is chosen as the final model. Fig. 5
reports the performance of the model above against Search
models in the Simplified Mahjong. Table II summarizes the
AF and WR improvements over the RL-basic of each model.
Compared with RL-basic, RL-1 improves AF by 6.94% and
WR by 3.96%. RL-2 improves AF by 4.1% and WR by 1.43%
with no improvement in convergence speed. It shows that
the enhancement of RL-1 is more vital than that of RL-2,
mainly because the reward signal first affects the estimation
of value and then indirectly guides the improvement of the
strategy. Hence, the direct improvement of the value loss
function makes the estimation more accurate from the global
perspective and has a more significant improvement effect.



Fig. 7. A case study obtained from Botzone. The agent learns to draw 1Bamboo to compose a Pure Straight (a type of Official hands) and win more Fans.
Note that the opponent’s cards are hidden in the real game and shown here for better visualization

RL-3 improves AF by 7.46% and WR by 4.91%, which is
more effective than RL-1 and RL-2.

C. Experiments in Chinese Standard Mahjong

1) Offline Experiments: In the Chinese Standard Mahjong,
we play the RL-basic, RL-1, and RL-2 model against the
Search model in the other three positions as fixed opponents.
Fig. 6 report the performance curve of the model above against
Search models in the Chinese Standard Mahjong. Table II
summarizes the AF and WR improvements over the RL-basic
of each model. Like the experimental results in the Simplified
Mahjong, RL-1 improves AF by 5.22% and WR by 6.34%.
As shown in Table II, RL-2 improves AF by 3.81% and WR
by 2.1% with faster convergence of the model. The difference
in convergence effect between the Simplified Mahjong and the
Chinese Standard Mahjong is mainly because the number of
Official hands types is less in the former than in the latter. Most
Legal hands are normal hands rather than Official hands, so
that the final score difference between players is not apparent.

2) Online Experiments: Because of the extensive resources
required for model training, we do not test the ability of the
RL-3 model on the Chinese Standard Mahjong environment
in this paper, but through the online platform Botzone [30].
Botzone is a general AI competition platform founded by
Peking University. It aims to measure the level of AI programs
through game competition and evaluate their ability by ELO
scoring system. The platform is currently open to various game
modes such as Gluttony, Go, Landlord, and Chinese Standard
Mahjong. In 2020, the Botzone platform and the International
Joint Conference on Artificial Intelligence (IJCAI) held the
IJCAI 2020 Mahjong AI Competition, whose finalists are
basically at the level of advanced players. However, there
is still a big gap between them and the top players. In this
paper, we compare our Mahjong AI’s ELO score in Tianti
Leaderboard with the top 16 finalists (among which the top 3
models are not added to the Tianti Leaderboard). Our Mahjong
AI ranked 4th and beat 62.5% of the top 16 players.

3) Verification of variance reduction on offline Mahjong
data: To verify whether the relative value network reduces
the variance of value, we selected three models, including RL-
basic, RL-global, and RL-1, and calculated their variance on
offline Mahjong data. The RL-global mentioned above is the
RL agent that enhances RL-basic with the global information,
including both private information and hidden information [7].
The only difference between RL-global and RL-1 is that the
value network of the former has 1 output for his own, and the
latter has 4 outputs for all players. We selected 10,000 rounds
of match data and calculated the variance as (3).

variance =
1

N

N∑
i=1

(vi −Ri)
2 (3)

The variance of the three models RL-basic, RL-global, and
RL-1 is 6.36, 5.59, and 4.44, respectively. It shows that the
variance of RL-global is smaller than that of RL-basic, and
the variance of RL-1 is further reduced than that of RL-global.
This result verifies that the relative value network reduces the
value variance compared with global information.

4) Case Study: We conduct case studies to understand the
decisions made by our Mahjong AI. As shown in Fig. 7, since
the number of 3Dot and 3Bamboo remaining in the wall is
the same, the probabilities of choosing 1Dot, 2Dot, 3Dot, and
1Bamboo, 2Bamboo, 3Bamboo to Draw are equal. However,
2Dot and 2Bamboo can compose more straights than 1Dot
and 1Bamboo, so 1Dot and 1Bamboo should be drawn in
this round. Our AI chooses to draw 1Bamboo because it can
compose a Pure Straight (a type of Official hands containing
tiles of the same suit from 1 to 9 sequences and is worth 16
Fans), while 1Bamboo cannot compose any Official hands.

D. Discussions

To solve the randomness problem in Mahjong games, we
introduce the expected reward network. However, the Mahjong
game’s randomness does not only exist in the last round
but also in every round of the game, especially in the first
round when each player is dealt with 13 tiles. It affects the



direction of the game to a great extent. Therefore, better
reward signals should be designed to remove the effect of these
randomnesses. We will leave this problem to future research.

VI. CONCLUSIONS AND FUTURE WORK

This work has presented a training-efficiency Mahjong AI
by introducing reward variance reduction into a new self-
play deep reinforcement learning algorithm. It is realized in a
deep architecture with relative value network and expected
reward network to reduce variance and randomness in the
gaming process of Mahjong. Extensive experimental results
have verified that the proposed RVR model significantly re-
duces the variance in Mahjong AI training and improves the
model performance over competing baselines. Compared with
the state-of-the-art Mahjong AIs, RVR consumes much fewer
training resources with satisfactory gaming performances. In
future work, we plan to perform deep analyses of the model
policy evolutionary process and further improve the training
efficiency by incorporating model parallel learning via dis-
tributed parallel computing.
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