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Abstract—Deep Reinforcement Learning has been very suc-
cessful recently with various works on complex domains. Most
works are concerned with learning a single policy that solves
the target task, but is fixed in the sense that if the environment
changes the agent is unable to adapt to it. Successor Features
(SFs) proposes a mechanism that allows learning policies that
are not tied to any particular reward function. In this work we
investigate how SFs may be pre-trained without observing any
reward in a custom environment that features resource collection,
traps and crafting. After pre-training we expose the SF agents to
various target tasks and see how well they can transfer to new
tasks. Transferring is done without any further training on the SF
agents, instead just by providing a task vector. For training the
SFs we propose a task relabelling method which greatly improves
the agent’s performance.

Index Terms—Reinforcement Learning, Successor Features,
Multi-task Learning, Transfer Learning

I. INTRODUCTION

The combination of Reinforcement Learning (RL) with
Deep Neural Networks have shown great progress on many
challenging domains [1]-[3]. Most of the success comes from
problems where the goal is clearly defined, such as achieving a
high-score. Many state-of-the-art work require a large amount
of compute just to produce an agent that performs well on a
particular task with little concern about potential changes at
test time. Most works assume that the testing domain is the
same as the training. Small changes to the test environment
can completely break the agent’s policy and fine tuning is often
more challenging than retraining the agent from scratch.

Generalisation [4] is important for using Reinforcement
Learning agents for most real-world applications. Ideally, we
would like to develop agents that can quickly adapt to changes
in the environment with little or no further training. In this
work we are interested in a specific type of transfer where
only the task (reward function) changes in the environment; the
states, observations and dynamics of the environment remain
unchanged. Each reward function induces a new RL objective
that requires the agent to change its policy. One approach to
this transfer problem is to use Goal Conditioned RL where
the agent gets additional information about the objective of
the task. Defining the goal signal is not trivial and often leads
to generalisation problems when a previously unseen goal
signal is provided to the agent. Successor Features (SFs) learn
what state features (events) the agent expects to visit under its
policy. Goals can be expressed in the form of task vectors that
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define the importance of the features. Another way to look at
SFs is that the agent predicts the availability of an event and
the task vector defines the desirability of such events [5].

There are many cases where transferring to new tasks is
required within an environment. One of the main use cases
is during game development. As the game is developed RL
agents may be used to automatically find bugs [6], [7]. For
game testing an agent should be able to quickly evaluate
changes in the game without running a full training from
scratch for each change. Another use-case is using RL for
Non-Player Characters (NPCs). Some games are open-ended
without a clear objective (Minecraft [8]). Designing a reward
function that covers the behaviours that we expect from an
agent is not trivial. Reward shaping is commonly used to shape
the agent’s policy, but it requires a lot of effort from humans to
find the right reward function. Evaluating each reward function
requires training an agent which might take days. Using SFs
the agent can quickly adapt its policy to new reward functions.

Our contribution is the proposal of two novel task rela-
belling techniques for training SFs. We compare how well
SFs can transfer to new tasks with different pre-training
configurations and their performance when they get trained
directly on the target task. Transferring to new tasks is done
zero-shot, without any further training, just by providing the
agents the task vector for the target task.

The rest of the paper gives a short introduction to Reinforce-
ment Learning and Successor Features in Section II, followed
by some related work in Section III. Section IV explains the
methods used in this paper. Section V describes the types
of reward functions and the environment that we use in this
paper. The pre-training experiments are shown in Section VI
followed by the target training experiments (Section VII) and
the transfer experiments (Section VIII). Finally, we give a
conclusion and directions for future work in Section IX.

II. BACKGROUND
A. Reinforcement Learning

Reinforcement Learning [9] is often modelled as a Markov
Decision Process (MDP). An MDP is represented as a tuple
of M = (S,A,R,T,p), where S is the state space, A is the
action space, R is the reward function, T is the transition
function and p is the set of initial states. The agent’s objective
is to learn a policy 7 : S — A, a mapping from state to action
that maximises the return ch ~r; (cumulative discounted



reward) given a discount factor v € [0,1] when following
the policy.

Similarly to Barreto et al’s [5] setup, instead of working
with a single MDP we are using a set of MDPs M &
{M;, Ms,...M,}. All MDPs share the same dynamics and
visuals, only their reward function differs. A task in this work
is defined by a particular reward function (i.e: task: “collect
wood” gives 1 reward when a wood is collected by the agent 0
otherwise). An objective of this work is to transfer knowledge
between tasks, for which we propose to have a pre-training
phase where no rewards observed (r(s) == 0;Vs € S). The
pre-training phase can be modelled by an MDP where the
reward is zero for all states r(s) = 0Vs € S.

B. Successor Features

Successor Features (SFs) are based on Successor Repre-
sentation (SR), introduced by Dayan [10]. SR decomposes
the state-action value function into an expected future state-
occupancy M (s, s’) and a reward weight vector w. The state-
occupancy function is independent from the reward, but it
depends on the policy that was used to collect the data. The
weight vector determines the importance of the future states.
The linear combination of these factors results in the () values:

Q(s,a) = M(s,s') " w(s) ()

SR facilitates transfer to new tasks, just by supplying the
right task vector w. As the SR predicts the successor states
from the current state, it quickly becomes infeasible to use it
for complex environments. Barreto et al. [5] proposed to use
instead state features ¢, and since in most practical cases there
are only a few states where R(s)! = 0, it makes more sense to
only model the state features with ¢ that may be rewarding. To
use SFs, ¢ needs to extract the potentially rewarding states so
that we can recover the one-step reward function as the linear
combination of the state features and the task weight vector:

R(sy) = oL w )

The Successor Feature is the expected discounted future
state features:

U(s,a) = B> _7'é(s1)] 3)

The Q function can be recovered as the linear combination
of the SF and the task vector:

Q(s,a) = (s, a)"w 4)

Barreto et al. [5] have noted that a trained SF agent
can be quickly evaluated on any task vector just by taking
the linear combination of the predicted SFs with the task
vector (s, a)Tw, which they refer to as Generalised Policy
Evaluation (GPE). GPE is show in Equation 5 where W is
the set of task vectors. As the SF depend on the policy used
to collect the experience, [5] also proposed to keep multiple
policies and use the Generalised Policy Improvement (GPI)
to predict all SFs for all policies and pick the action that
results in the highest Q value when combined with the current

task vector w. Equation 6 shows the GPI process where n
represents the number of policies.

Q(s,alw) = Y(s,a) wi; Yw; € W ()

a = argmax max ¢ (s, a)Tw (6)

To learn the SF we may use Temporal Difference Learning:

Lsrp(¥]0) = Elps, +v0(ds,,,,a") — (s, ar)]  (T)

where @’ = argmaz,(ds,,,,a)"w and 6 represents
the parameters of the Neural Network. To train the reward
predictor we can use Supervised Learning:

Lyew(w) = (R(s) — 1 w)? ®)

Transferring to new tasks may be done without any further
training just by giving the agent the right task vector w (zero-
shot). If the task vector is not known then it can be learnt
by fixing the SF’s parameters and minimising the reward
prediction loss. Learning the task vector is much faster than
relearning the policy as it is a Supervised Learning problem,
observing a few rewards should be enough to learn the true
task vector (few-shot learning).

III. RELATED WORK

Dayan [10] proposed the idea of Successor Representation
for transfer by breaking down the Q function into an expected
future state occupancy and a reward weight function. Kulkarni
et al. [11] proposed a method to approximate the SR using
Neural Networks. Later Barreto et al. [5] noted that there is
no point representing all states if only a small subset of states
are rewarding and proposed to use state-features ¢ instead.

The Option-Keyboard [12] combines a Hierarchical RL
architecture with SFs, where SFs are used to express low-
level policies and a controller is trained on top that selects
task vectors as actions (action abstraction). VISR [13] learns
the state features ¢ and the SF v together in an unsupervised
way based on the behavioural mutual information. Filos et
al. [14] combine SFs with Inverse Reinforcement Learning
to learn the SFs from a dataset of various demonstrators.
Machado et al [15] proposed to use the magnitude of the SF
for exploration. There is evidence that the human brain might
work similarly to the Successor Representation [16]

Transferring in this setup is related to Goal-conditioned
RL such as Universal Value Function Approximators
(UVFAs) [17] and Hindsight Experience Replay (HER) [18]).
Borsa et al. [19] have proposed to combine UVFAs and SFs
as both methods provide different generalisation capabilities.
In the goal-conditioned RL setup the goal is pre-defined and
transferring to new goals is challenging as they are outside
the agent’s distribution. Many works use goals that are a
subset of the state space, which might be ambiguous in many
environments (for example: when the task is to chop a tree,
after completing it, the final observation might not show the
tree at all, so how does the agent know what the goal is?).



In this work we used goal conditioned RL agents as baselines
for the settings where the goal changed between episodes. The
relabelling techniques proposed in this paper are inspired by
the way HER relabels goals during training, but in our case
relabelling is done on the task vector. SFs may be considered
as goal conditioned agents where the goal is expressed in the
form of a task vector that defines the desirability of state-
features.

IV. METHOD

When learning the Successor Features there are a few design
decisions to make, which are discussed in this section.

A. Pre-training

The SF depends on the policy that was used to collect
the experience as it predicts the expected discounted future
state features under the behaviour policy. In this sense the SF
depends on the task it was trained on. If the target tasks are
too different from the training tasks then we cannot expect to
successfully transfer. To improve the possibility of successful
transfer as pre-training we propose to try to maximise each
feature individually instead of training on a set of training
tasks. Since ¢¢ is a d-dimensional vector we can construct d
pre-training tasks by constructing one-hot vectors where each
task represents a dimension in the feature space.

For example if the feature space is 2-dimensional, feature 1
is picking up item A and feature 2 is picking up item B, we
can construct 2 pre-training tasks: 1, Collect A by setting the
task [1, 0] and collect B as [0, 1]. An advantage of pre-training
in this form is that it is not limited to only collecting items:
any “event” can be defined as a feature.

B. Number of policies

Using a single policy might be insufficient to cover many
tasks. If an SF agent is trained in a single task, it might be
unable to transfer to tasks where the gap between the target
task and the training tasks is large. Using multiple policies
allows us to learn a larger set of SFs. If a new task is presented
it may be more relevant to one of the policies that we have
trained already. Using SFs we can also apply GPI + GPE to
decide which policy is the most relevant to the current task.

The approach that we follow in this work is to use as many
policies as the number of state features n = |¢|, which allows
us to train a policy to maximise the expectation over each
feature. Using many policies allows us to apply GPI (choose
the most relevant policy to the task) and GPE (quickly evaluate
the task vectors) as done in previous works [20].

In practice, we could use separate networks to count on a set
of policies, but this would become impractical as the number
of features |¢| increases. Instead, we use a shared network that
outputs the predictions for each policy (n x | A| output). In this
work we only use either n policies or 1, but in practice one
could use an arbitrary number of policies, but during training
a clear objective (i.e: a target task that the policies is trained
to accomplish) should be set for all of them.

C. Task Relabelling

During training the agent is given a task in the form of a task
vector w and tries to maximise the occurrence of the features
relevant to that task. In many cases, especially early in the
training process, the agent might observe state features ¢ that
are not relevant to the current task, but are useful to others.
We propose two methods that reuse these observed features
during training in order to improve the SF’s performance:

1) Hindsight Task Replacement (HTR): Similarly to Hind-
sight Experience Replay [18], we can replace these task vec-
tors as if the observed features were the task. When sampling
from the Replay Memory instead of taking the task vector w
that was used to collect the experience, we search for the next
event the agent has observed (max(¢) # 0) and use it as the
task vector. If the episode ends before finding such feature
then we use the original task used for the episode.

Events in this setup are one-hot vectors as events are
mutually exclusive (only one event may happen in a single
step). As both state features and task vectors are one-hot
vectors during pre-training, we can use the state features as
the task vector: w < ¢(s¢).

2) Task Replacement (TR): When training SFs with more
than 1 policy we can set different objectives for them. As we
are interested in pre-training agents that do well in all possible
target tasks, one option is to train as many policies as the
dimension of our state-features n = |¢| and make each policy
responsible to maximise the occurrence of a feature. During
training, acting with respect to a particular task often leads to
observing features irrelevant to the current task. In this case
we can use that trajectory to not just update the current policy
but all of them. For this setting we propose to relabel the task
vectors during training to the policy’s objective and update
all of them with the sampled mini-batches. Using multiple
policies also allows the use of GPE+GPI during evaluation
which might help in transferring to new tasks.

When optimising the SF we can replace the task vector w
that was used during the experience collection by the policy’s
objective. Since we use as many policies as features (n ==
|¢|) we can replace the task vector by a one-hot version of the
policy’s objective.

V. EXPERIMENTS
A. MiniCrafter

MiniCrafter is a game designed to test how SFs handle
different scenarios. MiniCrafter was inspired by Crafter [21].
The game features 5 object types, 3 resources, 1 crafting
table and 1 trap. The agent has an inventory that shows how
many resources it has collected from each type. An example
state is shown in Figure 1 and the state-features are shown
with an example task vector in Figure 2. The code for the
environment along with the implementation of SFs can be
found on Github !

The game is grid based 12 x 12 with randomly generated
levels at each episode. The game is egocentric (agent is

Uhttps://github.com/martinballa/SF-TR



Fig. 1: MiniCrafter environment: Example state from the
environment. The water represents the traps, the 3 resource
types wood, iron, coal are present and a single crafting table.

oo ={ B 0 R

Fig. 2: The state features ¢ used in this work. An example
task vector w = [0.5,0,0, 1, —1] (used in the zero-shot transfer
experiments for craft_staff). The example task vector means
that the agent gets 0.5 reward for collecting a tree, 1 reward
for getting to the crafting table and —1 for moving into the
water and gets no reward for the other features.

always in the centre) and toroidal (the environment is warped,
meaning that when the agent moves out on the top it comes
back in the bottom). The agent has 4 actions representing
moves in the cardinal directions. The maximum time step an
episode can take is 300. Moving into a trap ends the episode
right away and returns —1 as reward (only in the setups with
a reward function, during pre-training it ends the episode but
the agent does not get the —1 reward for it).

To make this environment interesting for transfer learning
we set-up a few challenging scenarios in 3 categories:

1) Stationary reward function: one_item, two_item: The
agent has to collect fixed resource type(s) which remains the
same throughout the training (wood for one_item and wood
and iron for two_item). Picking-up the wrong resource type
gives a penalty of —1 reward, but does not end the episode.

2) Non-stationary reward function: random, random_pen:
A random resource type is sampled at the beginning of each
episode. The agent has to get as much of that resource as
possible. In the random task, if the agent picks up the wrong
resource it gets 0 as reward. In random_pen, if this happens
the reward is set to —1, as penalty. As the goal changes from
episode to episode the agents take the goal vector as input.

3) Stationary reward function: craft_staff, craft_sword,
craft_bow: In this setting the agent has to collect resources
and use them to craft items. To craft a staff the agent only

requires wood, for sword it requires wood and iron while for
bow it requires all 3 resources. After collecting the required
resources, the target item can be crafted by navigating to the
crafting table which gives a +1 reward. Once the agent gets
to the crafting table it disappears and a new table spawns
at a randomly chosen location in the environment. Note that
the agent only gets the 41 reward when it has the required
resources for the target item O otherwise.

These tasks present various challenges: (1) can be presented
as a standard RL problem as the target is always stationary. In
(2), as the task changes from episode to episode, the agent’s
policy needs to be conditioned on the goal for the current
episode (this is the goal Conditioned RL case). (3) breaks
the linearity assumption that SF makes (Equation 2) since
the task cannot be expressed by a single task vector w. The
problem is that the agent only gets rewarded when it has all the
pre-requisite resources and gets to the crafting table. Picking-
up the pre-requisites does not give any reward to the agent,
so optimising the reward prediction loss can not make the
association for collecting the pre-requisite resources.

B. Agents

In our experiments we have 5 different ways to train the
SF agents. We train DQN and PPO as baselines. The trained
agents are indicated in this paper as follows:

e SF-1, SF-n: normal SF training method with 1 and n

policies

e SF-HTR-1, SF-HTR-n: SF with Hindsight Task Replace-
ment trained with 1 and n policies respectively

o SF-TR-n: SF with policy objective based task replace-
ment, this method is only available for n policies.

« DQN, PPO: standard RL setting except on the non-
stationary goal setting where their policies are condi-
tioned on the task vector w.

Our experiments can be organised into 3 main categories:

o Pre-training: The agent assumes that no reward is pro-
vided by the environment (r(s) = 0) for all state s € S.
The agent’s objective is to acquire knowledge that may
be reusable when a target environment is presented.

o Target training: Normal RL setup, a reward function is
provided and the agent’s objective is to learn the policy
that maximises the return.

o Transfer: After training we evaluate how well the SF
agents translate their knowledge to new target tasks
without any further training (zero-shot).

C. Experimental Setup

For baselines we used two standard RL agents: DQN [1],
which is a sample-efficient off-policy agent that predicts the
state-action value function (Q-values); and Proximal Policy
Optimisation (PPO) [22] which is a on-policy, actor-critic
method, the actor predicts an action distribution and the critic
predicts a value function.

We ran hyper-parameter sweep for all agents. For all agents
we tried various learning rates (1E~3 to 1E%), batch size
(32 to 256), replay memory size (10° to 10%) and number
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Fig. 3: Comparison of different SF pre-training experiments. HTR means Hindsight Task Replacement, TR means Task
Replacement, n and 1 mean whether we used as many policies as features or a single one. The plots show the cumulative task
competition on each task during training: Collect wood, Collect iron, Collect string and Collect table.

of units in the fully connected layers (32 to 256). For PPO
we also tuned the replay frequency (100 to 4000) and the
number of epochs to optimise on a minibatch (10 to 80). The
best found parameters were 0.0001 for learning rate, for PPO
we found that 20 epochs per update with 4000 steps between
updates worked the best. DQNs were performing similarly,
but SF was a bit more sensitive to the learning rate. For the
experiments we used 100k for replay memory, but increasing
it did not seem to make any difference across agents. All
the experiments were run on 3 random seeds. A limit of 5
million agent-environment interactions per task was used in all
experiments. For pre-training, the training interaction budget
is equally distributed across tasks.

As some tasks require knowing the inventory counts of
the objects we provide agents the inventory in the form of
a vector. For the goal conditioned agents the task vector
w 1is also provided (used in “random” and “random_pen”).
All agents used the same Neural Network architecture. The
observations are 12 x 12 x 5 with each dimension representing
a different object type. The observation is processed by a
convolutional layer with 8 filters, kernel size 3 and stride 1.
The inventory and the task vectors in the case of the goal-
conditioned tasks are processed by a Fully Connected (FC)
layer with 64 units. The output of the conv layer and the FC
layers get concatenated before fed into another FC layer with
64 units. In the case of DQN and PPO the final layer is another
FC layer with |A| outputs. In the case of PPO there is also a
head for the critic with a single unit. For SFs there are two
final layers, the first with 64 units while the final layer has
n X |¢| x |A| outputs where n is the number of policies used.

The plots shown in this paper all show the evaluation
performance during training. Evaluations were performed after
every 20000 training steps. The shaded areas show the standard
error. Table I shows the evaluation/transfer performance after
the policies have been trained.

VI. PRE-TRAINING RESULTS

In the pre-training experiments we are comparing how well
the agents learn to maximise each features individually. Note
that SF is a single agent while the other agents learn a new
set of parameters for each task. The tasks are defined over the
feature space ¢ in the form of one-hot vectors.

The results of the different training methods to train SF
are shown in Figure 3 and comparing the best SF variant to
the other baselines is shown in Figure 4. Note that the final
feature was moving into a trap which ended the episode as
soon as it was achieved. Since this task was much easier than
others we omitted it from the plots (all agents have quickly
converged to the maximum reward 1). During pre-training
(Figure 3) SF-TR-n is noticeably better at maximising each
feature individually than the other SF training approaches.
Comparing to the baselines (Figure 4), DQN has a similar
final performance as SF, but for pre-training we have to train
n separate DQNs while for SF we only have a single network.

VII. TARGET TRAINING RESULTS

When training on a target environment the environment
returns the true reward function for the task. The agent’s
objective is to get the highest return on the target task. When
training SFs on the target environments, we optimised both
its parameters 6 and the task vector w simultaneously. For the
stationary linear reward functions, SF could learn the exact
task vector in less than a 100, 000 interactions (less than 2%
of the training) on average when minimising the combined
loss function Lgp + Ly¢y (sum of Equation 7 and 8).

A. Stationary Goal

Standard RL algorithms, SF optimises both its parameters
0 and learns the task vector w. Figure 5 shows the results
for the tasks one_item and two_item. When training on the
target environments directly the benefits of the various SF
training methods diminish. In the stationary reward function
setting the SF without any task relabelling was the best
with both 1 and n policies, but it was still below PPO’s
performance. We hypothesise that using Task-relabelling lead
to non-optimal policies on this setting as it forces the SF to
learn a representation that helps it to solve other tasks not just
the one presented as the target task.

B. Non-stationary Goal

In this setting a task vector is uniform randomly sampled
at the beginning of the episode. Since the agent’s objective
changes from episode to episode all agents are given the true
task vector w as input. Both SF and DQN are goal conditioned



pre-train: collect wood

pre-train: collect iron

pre-train: collect coal pre-train: collect table

2 3 2 3
steps steps

2 3 2 3
steps steps

Fig. 4: Pre-training experiments. Comparison of the best SF (Task Replacement with n policies) against baselines. The plots
show the cumulative task completion on each task during training: Collect wood, Collect iron, Collect string and Collect table.
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Fig. 5: Left side shows the performance of the best SF (standard SF with n policies in this case) compared to the baselines
on the task “one_item”. Middle shows the comparison of all SF training methods. Right side shows the comparison of all SF

and baselines on the task “two_item”.

in this setting (a = 7 (s, g)). SF only learns its parameters 6
and takes the task vector w as input.

The results for these experiments are shown in Figure 6. SFs
were overall much better than the goal conditioned agents.
The random_pen setting was especially challenging for the
baselines, we hypothesise that due to the large amount of
negative reinforcement and the non-stationary nature of the
environment they were unable to learn a policy that would
pick-up the correct items instead they learned a policy to
avoid all items. Among the SF agents SF-TR-n has quickly
learned how to collect the right features and remained stable
throughout the training.

C. Stationary non-linear

The task throughout training does not change, but it is inex-
pressible by a single task vector w, meaning that Equation 2
does not hold. SF learns its parameters 6 and the task vector
w, other baselines are standard RL algorithms.

The results in this setting are shown in Figure 7. This
setting was designed against SFs, which is clearly visible on
the plots. SFs were unable to learn the correct task vectors,
which resulted in significantly lower performances than the
baseline agents. On the non-linear reward functions (crafting
scenarios) we observed that the agent learned very early on
that the trap gives a —1 penalty, but since picking up the pre-
requisite resources did not give any reward it could not bind
the rewards with the resources. The agent has managed to learn
that getting to the crafting table sometimes give a +1 reward,
but could not associate it to the resources. An example final
vector was [0,0,0,0.15, —1].

VIII. TRANSFER RESULTS

Zero-shot transfer: The target task vector w is provided to
the agent and the agent’s performance is evaluated on the
target task without any further training. For the linear reward
functions the true task vector is provided, but since it does not
exist for the non-linear cases a handcrafted task vector was
used. The results of these experiments are shown in Table L.
We evaluate how SFs transfer from pre-training and also from
target environments.

Table 1 shows the evaluation scores in three categories:
SF transfer from pre-training, SF transfer from training on a
target environment, and baseline agents trained directly on the
target environment. The transfer results show that agent trained
directly on the target environments reach higher scores than
the agents transferred from other tasks. The only setting where
SFs were clearly better than the standard RL agents was on the
non-stationary reward functions where the standard RL agents
had to learn how to interpret the task vector. Comparing the
transfers from a target environment to other environments we
can observe that SF-TR-n is the most reliable method. One
advantage of the Task relabelling methods is the possibility
of transferring to tasks that require features that were unused
during training. A good example is one_item where the
agent’s objective during training was only to pick-up a single
type of resource, so with normal SF it never learns about the
other resources or the crafting table. Agents that were trained
in the pre-training setup seem to learn more general SFs that
helps in transferring, but just giving it the true task vector does
not lead to as good performance as if the agent was directly
trained on that task. Interestingly, in the case of the non-linear
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Fig. 6: Experiments on the “random” and “random_pen” targets. The plots show the running mean reward and the standard
error (shaded area) during training. From left to right, the first and the third plots show the comparison of the best SF agent
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training methods used in this paper.

"craft_staff" rewards "craft_staff" rewards

— DON
— PPO
— SFn
— sF1
—— SFTRn
—— SF-HTR-n
SF-HTR-1

— sFn
— sF1

— SFTRn
— SF-HTR-n
SF-HTR-1

rewards

"craft_sword" rewards "craft_bow" rewards

— DON
— PPO
— sFn
— sF1
— SFTRn
— SFHTRn
6 SF-HTR-1

— DoN
— PPO
84— sFn
— 51
— SFTRN
— SF-HTRN
SF-HTR-1

rewards

o 1 2 3 4 5 0 1 2 3 4 5

steps 1e6 steps

2 3 2 3
steps steps

Fig. 7: Left side shows the comparison of all SF training settings on the task “craft_staff”’. The other plots show all SFs

compared to the baselines on all the crafting tasks.

reward functions hand-crafted task vectors were given to the
agents which outperformed even the baselines.

We ran a few experiments where we fixed the SF agents
parameters 6 after training and only learned the task vector w
using the loss function (Equation 8). We noticed that the agent
could learn the exact reward function for the stationary linear
cases in a few dozen episodes resulting in similar performance
to the zero-shot transfer experiments in Table I.

IX. CONCLUSION AND FUTURE WORK

In this paper we have presented 2 relabelling methods that
could be used to train SFs for better performance. Unfor-
tunately, Hindsight Task Relabelling (HTR) did not show
a great improvement, but Task Replacement (TR) with n
policies has shown much better performance for both training
and transferring in most settings. We compared the benefits
of using 1 vs n policies and got to the conclusion that
using 1 policy rarely results in better performance. We have
investigated how the training task for SF results in transfer
to tasks across 3 types of target reward functions. Overall,
our proposed agent SF-TR-n performs the best among the SF
agents. Although they do not get better results than standard
RL agents trained specifically on the target tasks, the biggest
advantage of SFs is that they can easily transfer to new tasks
without any further training (or little training if task vector
needs to be learned), while for the baseline agents we need to
do a full training for each variant.

SFs have great potential to be used when various behaviours
are required from a single agent. In this work one of the
biggest limitations was the non-linear reward function. To
overcome this limitation we may redesign the state features

¢(s) in a way that Equation 2 holds (it remains linear), in the
crafting environments defining the feature when the agent gets
to the crafting table to only return 1 when it has all the pre-
requisites could solve this issue, but it requires engineering
all features that may come up in the target problems. If the
optimal policy is not required, reward shaping after training is
also an option by manually crafting task vectors and evaluation
the agent on them which could be enough in some cases (for
example automated playtesting).

As future work using the training methods presented in this
work could be combined with Hierarchical RL such as the
Option-Keyboard [12] setup which could facilitate transferring
to non-linear target reward functions as we could alternate
between different task vectors. Another improvement could be
during the pre-training phase, when task vectors are uniformly
selected at random. This procedure could be replaced by a
method that selects task vectors with the right difficulty based
on the agent’s learning progress.
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