
Mitigating Cowardice for Reinforcement Learning
Agents in Combat Scenarios
Steve Bakos

Ontario Tech University
Oshawa, Canada

steven.bakos@ontariotechu.net

Heidar Davoudi
Ontario Tech University

Oshawa, Canada
heidar.davoudi@ontariotechu.ca

Abstract—A common approach in reinforcement learning (RL)
is to give the agent a static reward for successfully completing
the task or punishing it for failing. However, this approach leads
to a behaviour similar to fear in combat scenarios. It learns a
sub-optimal policy improving over time while retaining elements
of cowardice in updating the policy. Cowardice can be avoided by
removing static rewards given to the agent at the terminal state,
but this lack of reward can negatively affect performance. This
paper presents a novel approach to solve these issues by decaying
this reward or punishment based on the agent’s performance at
the terminal state and evaluates the proposed method across three
separate games of varying levels of complexity—The Legend of
Zelda, Megaman X, and M.U.G.E.N. All three games are based
on combat scenarios where the goal is to defeat the opponent
by reducing its health to zero. In all environments, the agents
receiving decayed reward and punishment are more stable when
training, achieve higher win rates, and require fewer actions per
game than their statically rewarded counterparts.

Index Terms—reinforcement learning, fighting game AI, retro
game AI, reward shaping

I. INTRODUCTION

The goal of a reinforcement learning (RL) agent in its
environment is to maximize its reward. This typically involves
giving the agent small amounts of reward or punishment
during the episode to encourage a desired behaviour, ultimately
leading to a goal. In combat scenarios, the goal is to defeat an
enemy in a fight—the agent must reduce its opponent’s health
to zero by inflicting damage. At the terminal state, when either
the agent or its opponent has died, the agent receives a reward
or punishment for success or failure.

We define cowardice to be a situation where an RL agent
avoids its opponent’s actions to an exaggerated degree. Run-
ning and hiding unnecessarily are examples of cowardice.
This differs from the intended behaviour of dealing with the
opponent using the fewest actions possible while maximizing
reward. Although some environments may require the agent
to run and hide, they may benefit from discarding these
behaviours as quickly as possible when not needed.

When looking at the average number of timesteps per game
for an agent or duration of an episode, cowardice can cause
large spikes, as the agent develops a sub-optimal strategy
out of fearing the punishment from dying. Depending upon
the complexity of the environment, a strategy developed via
cowardice can cause effects similar to catastrophic forgetting
as the agent’s strategy no longer works and it must develop a

new one. If the agent learns to lessen the fear of punishment,
cowardice doesn’t manifest in its play style and it can more
rapidly master its environment.

We propose a method that the punishment and reward
decays based on a measure of the agent’s performance. If the
agent was close to winning but still lost, its punishment is
less than if it was nowhere near winning. Similarly, reward
decays based on the agent’s performance. If the agent wins,
how “good” was that win? Depending upon our definition of
mastery (i.e., the parameter controlling the reward decay), wins
may not be equal. An aggressive agent performs well if it ends
a match in 5 seconds instead of 20. In the first case, the agent
gets a large reward at the terminal state, while it gets a smaller
reward in the second. If the agent is defensive, then ending
the match with full life yields a larger reward at the terminal
state than ending it with half of its life remaining.

In the combat scenarios we test these agents in, the goal is
to win. Because this requires the agent depleting its opponent’s
health, using this as the parameter to decay punishment means
not all losses are equal. Regardless of the reward parameter
used to define mastery, the agent receives a smaller punishment
if the opponent has less health remaining at the terminal state
than if it had more health. This decay of punishment reduces
cowardice and encourages the agent to fight through its losses.

The common alternative to this approach is to give the agent
a static reward. Regardless of the state at which the game ends,
the agent receives a reward (e.g., +10) for winning or a reward
(e.g., -10) for losing. This lack of distinction between one win
from another or one loss from another is what our proposed
method addresses. It’s in this lack of distinction of one loss to
another that cowardice emerges as the agent only learns to fear
loss for its punishment, not that it can lessen that punishment
by getting closer to achieving a win.

The summary of contributions of the paper is as follows:

• We show when applying the predominate method of re-
warding success and punishing failure via static rewards,
the agent can struggle to learn and master its environment
depending upon its complexity, leading to cowardice.

• We demonstrate that reducing this fear by decaying
the punishment the agent receives at the terminal state
leads to an increase in the agent’s performance, stability,
reduction in training time.



• We use three separate environments to compare and
evaluate the effects of giving the agent a static reward
to decaying this value by some measure of the agent’s
performance.

This paper’s remaining order is section 2 discussing related
work for applying RL to retro and fighting games, as well
as agents developing cowardice and overcoming it. Section 3
details the proposed method, applying it to each environment,
as well as the environment specifics. Section 4 discusses the
reasoning for choosing Proximal Policy Optimization (PPO)
[1] for training the agents. Section 5 discusses network ar-
chitectures used. Section 6 evaluates the results and discusses
findings, and section 7 draws conclusions from the findings.

II. RELATED WORK

Marwala and Hurwitz [2] trained agents to play Lerpa. Their
agent AIden became afraid of punishment, as during the initial
stages of its training, it lost a few times and decided it was
better not to play at all. They solve this by forcing the agents
to play the first 200 hands they receive regardless of fear.
In The Legend of Zelda, Megaman X, and M.U.G.E.N—not
playing isn’t an option. The environments force the agents
to fight against their opponents. The opponents within our
environments are not as dynamic as [2]’s as they’re not
learning agents—their scripted behaviour contains varying
degrees of randomness, but they do not actively develop new
strategies and behaviours.

Fighting games are an application for RL which commonly
use static rewards as its terminal states. Oh et al. [3], Kim,
Park, and Yang [4], Mendonça, Bernardino, and Neto [5] are
examples of using this technique—the agent wins, it receives a
static positive reward, and a static negative reward for losing.
Agents trained in [4] without a reward at the terminal state
are much more volatile than those that have it, leading to
instability and frequent fluctuations in performance.

Both [3] and [4] influence their agents’ behaviours through
interim punishments. A constant ticking punishment in [4] en-
courages aggression in their agent, which results in the average
elapsed time per episode decreasing significantly compared to
their other agents which don’t use this punishment. In [3],
a variation of this idea creates aggressive, balanced, and de-
fensive archetypes. They achieve this via interim punishments
for a time penalty, HP ratio reward/penalty depending upon if
the agent has more health than its opponent, and a distance
penalty. The weights of these features change depending
upon the play style they’re trying to encourage. While these
punishments and rewards are useful in encouraging a desired
behaviour, these agents all use static rewards for their terminal
state rewards and likely suffered from cowardice at the start
of their training and perhaps even still have elements of it in
their behaviour.

In [6], agents trained on seven Atari 2600 games. For the
sake of generalizability, the punishments and rewards are static
and clipped to -1 and +1, respectively. The rewards are for
interim results and do not reflect the overall goal of completing
the task. As shown in [4], the lack of a terminal state reward

for success or failure caused fluctuations in both win rate and
the elapsed time in games. These fluctuations are present once
again in [6]’s results for Breakout and Seaquest when looking
at their average reward graphs. While Breakout has terminal
states for winning and losing and would likely benefit from
reward given at these states, Seaquest doesn’t have one for
winning, as the goal is to maximize score and this can go
on indefinitely. It’s likely that the instability present in their
reward graphs can, in part, be attributed to this lack of a
terminal state reward.

Another approach to address cowardice exists in Shao et al.
[7]. Using StarCraft as the environment, [7] trains a model to
handle controlling multiple agents in a variety of skirmishes.
They reward agents for doing damage, while punishing agents
for taking damage, dying, or moving away from other friendly
units or enemies. Fig. 7 in [7]’s work shows, for the first of
their experiments, the number of timesteps versus the number
of episodes trained. Right away, a large spike in timesteps
appears as the agents lose to their opponents and adopt a
strategy of cowardice by running. [7] limits the number of
actions the agents can take to 1000, which doesn’t address the
agents’ cowardice directly, but limits its impact.

An alternative reward function in [7] shows the results of
training these agents without punishing the agents for moving
away from each other or their opponents. [7]’s Fig. 6 shows
these results and shows that neither group of agents wins until
roughly 1400 episodes. Cowardice is on the decline at this
point as the number of timesteps per game is settling around
the 400 mark. It’s likely that a contributing factor to this
behaviour is each agent receives a static punishment of -10
when it dies, which doesn’t decay based on a result of the
agent’s performance. We address this issue via decaying the
punishment the agent receives when it loses via a metric of
its performance.

III. PROPOSED METHOD

Within the observation space of environments, the agent
observes parameters at each timestep to decide its next action.
These parameters can be things such as the agent’s health,
the opponent’s health, match time remaining, and many more.
These parameters play a vital role in defining failure, success,
and mastery. When the agent reaches zero health, it’s failed.
The opponent reaching zero health means the agent succeeded.
Mastery occurs when the agent succeeds and receives as little
punishment as possible.

In defeat, the agent receives punishment for its failure to
encourage a better choice of actions at the various states of
gameplay it saw during the episode. Over time, its decision
making improves and it can eventually learn to master its
environment. However, when defeated, the agent often made
correct decisions, but not enough of them to secure victory.
Instead of simply punishing the agent for failing, regardless
of how many correct decisions it made, we propose decaying
this punishment by a measure of its performance.

In The Legend of Zelda, Megaman X, and M.U.G.E.N, the
parameter in the observation space that is the difference be-



tween failure and success is the opponent’s remaining health.
At the agent’s defeat, the opponent’s remaining health reflects
the agent’s correct decision making. If the opponent has full
health, the agent made no correct decisions. However, if the
opponent’s health is not full, the agent made at least one
correct decision. Because the opponent’s health is finite and
known beforehand, we can use this as metric to judge how
correct the agent’s decision making and decay its punishment
accordingly while it’s attempting to transition from failing its
episodes to succeeding. This lets the agent understand one loss
from another and determine which is better as the punishment
at the end of the episode now adjusts instead of being constant.
With this understanding of one loss being better from another
based on the agent’s performance, it now becomes less afraid
to engage with the opponent.

To transition from success to mastery, we follow the same
approach. At the agent’s victory, the value of a parameter
within the observation space we’ll choose defines how well the
agent understands not only defeating its opponent, but doing
so convincingly, showing mastery. If we choose the agent’s
remaining health as the parameter, we can now say that an
episode that ends in victory with the agent at full health is
better than an episode where the agent ends with half of its
health remaining. Choosing the time remaining in the match
as this parameter, we now can say that an episode that ends
quickly is better than one that doesn’t. With this metric, we
can now decay the reward the agent receives at the end of
the episode to encourage a particular behaviour based on the
parameter chosen. Choosing the agent’s remaining health as
this parameter, the agent’s terminal reward now depends upon
its health and will become influenced to avoid damage. Using
the time remaining in the match, speed becomes important and
the agent will race to end the match as fast as possible. These
are examples of a defensive and aggressive behaviour.

To achieve this decay, we use (1). P represents the cho-
sen parameter from the observation space (e.g., agent health
remaining, opponent health remaining, match time remaining,
etc.). Pobs is the value this parameter has at the terminal state
and Pmax is the maximum value this parameter can take. Vter

is the static reward given at the terminal state, resulting in
Vnet given to the agent. Fig 1 shows this graphically. The
punishment curve uses the negative branch of (1) while reward
uses the positive branch. Pobs depends upon if the agent won
or lost. If the agent loses, Pobs is the value at the time of
defeat of the opponent’s remaining health. If the agent wins,
Pobs is the value at the time of victory of the chosen parameter
to define mastery.

Vnet = ±V
Pobs
Pmax
ter (1)

A. Legend of Zelda

The Legend of Zelda, Fig. 2, is a 2D adventure game, which
uses Open AI’s Gym Retro [8] for its implementation, where
the player controls Link in a grid world. The goal of the
game is to explore the world and defeat enemies. Link mainly

uses a sword, which, if he has full health, is a projectile. If
he has sustained any damage, his sword loses this projectile
functionality and becomes a close-range weapon. The agent
controls Link and trains against the boss of the first dungeon.
Cowardice is Link hiding in the doorway or behind blocks to
avoid fighting the boss.

1) State: In The Legend of Zelda, the environment pro-
duces a downsized grey-scaled image of size 84x84. These
images make a 4-frame stack with the newest being inserted at
every timestep and the oldest removed [9]. The agent receives
this stack as its observation. In this environment, the opponent
is the boss of the first dungeon. It has limited movement and
is only capable of back-and-forth motions in a restricted area
while attacking Link with fireballs from a distance. These
fireballs only travel in a single direction—away from the boss,
but the boss’ movement can be in either direction. Because of
this, stacking these last 4 frames allows the agent to see in
which direction the boss is moving, allowing it to approach
the boss and attack from a distance without colliding with it
and receiving damage.

2) Action: In this environment, the agent only has access to
Link’s sword, which functions as a projectile when Link has
full health and a close-range weapon when not. Mapping the
agent’s actions to the buttons of the controller, it uses these to
interact with the game. Up, Down, Left, Right are directional
inputs which control the movement of the agent. The A action
corresponds to the same button on the controller. This button
uses Link’s sword and makes the agent attack when selected.
The agent also has the choice of not pressing any button. The
No Op value gives this ability to the agent. Table I lists these
actions. The agent must choose a single action from each row
in the table, giving the agent a multi-discrete output. E.g.,
the agent may choose Up from the first row, Right from the
second, and No Op from the third to move towards the upper
right corner of the game in a single output.

3) Reward: The agent receives a reward of +1 for doing
damage to the boss and punishment equal to the health it lost.
The agent can get a punishment of -0.5 if hit by a fireball, or -1

Fig. 1: Vter is the value to be decayed. The reward and
punishment parameters are chosen to encourage mastery and
mitigate cowardice respectively. Their Pmax values are the
maximum value these parameters can take with Pobs being a
position on the x-axis depending on win or loss.



Fig. 2: The Legend of Zelda, the first dungeon boss.

if colliding with the boss. Closing the distance between itself
and the boss rewards the agent with +0.001, while making
this distance larger punishes it with -0.001. These distance
rewards and punishments encourage Link to move towards the
boss, which is required when the agent’s sword is no longer
a projectile.

There are three terminal states in this environment. The
agent leaving the room results in a punishment of -10 as this is
not a valid option for this scenario. Defeating the boss results
in +10 given as a reward and dying to the boss gives -10 as
punishment.

One agent receives these terminal state rewards as static
values, while the other receives them decayed for dying to
or defeating the boss. Using the boss’ remaining health as
the punishment parameter allows the agent to overcome its
cowardice through learning that doing damage reduces its pun-
ishment at the terminal state. Reward decays via its remaining
health as the reward parameter to encourage mastery, which
leads to killing the boss while taking as minor damage as
possible.

At the terminal states, we calculate reward and punishment
using (1). For punishment, its value depends upon the boss’
health remaining at the time the agent dies. The potential
values are the punishment curve of Fig. 1. This lets the
agent learn that doing damage to the boss will cause smaller
punishment when it dies. Similarly, the reward value depends
upon the agent’s remaining health at the time the boss dies.
The potential values of this reward is the reward curve in Fig.
1. With this, the agent can now tell one loss apart from another
to understand dying while doing damage is better than dying
without. The same applies to winning—the agent now can tell
one win apart from another to understand winning with full
health remaining is better than winning with health missing.

Actions
1 Up Down No Op
2 Left Right No Op
3 A No Op

TABLE I: Link’s Actions.

Fig. 3: Megaman X, X vs Chill Penguin.

B. Megaman X

Megaman X, Fig. 3, is a 2D side-scrolling shoot ‘em up
action game, which uses [8] for its implementation, where
the player controls X. The goals are to explore and complete
levels which requires combat. The player character, X, attacks
his opponents with a projectile he always has available. The
agent controls X and fights against a boss during one of the
earlier stages of the game. The agent must learn to avoid its
attacks and successfully defeat the boss. Cowardice in this
environment is hiding in the top corners of the screen to avoid
the boss.

1) State: This environment follows the same approach as
the Legend of Zelda’s environment for its observations. Images
are grey-scaled and downsized to 84x84 and used to make a
4-frame stack. Inserting the newest frame into the stack while
removing the oldest—this stack becomes the observation.
Since both the agent and the boss move frequently and at
differing speeds, depending on which actions they take, the
agent needs to be aware of the velocity of elements within the
environment.

2) Action: In this environment, the agent has access to X’s
arm cannon to attack. This shoots projectiles and is always
available to the agent. We map this attack to the controller’s Y
button and give the agent the ability to use it. X can jump using
the controller’s B button, as well as dash with the A button. We
give these mappings to the agent and allow it to interact with
the game through these. We map the controller’s directional
input buttons to Up, Down, Left, and Right. These actions
allow the agent to move in those corresponding directions.

The agent must choose a single action from each row in
Table II, giving the agent a multi-discrete output. E.g., the
agent may choose Up from the first row, Right from the
second, A from the third, B from the fourth, and Y from the
last to jump dash to the right while attacking in a single output.

3) Reward: The agent receives +1 for every point of
damage it does to the boss. Similarly, it receives -1 for every
point of damage it takes. Both the agent and boss are capable
of dealing multiple points of damage in a single hit. At
the terminal state, the static reward variant receives +10 for
winning or -10 for losing. The decay-based variant uses (1)



Fig. 4: M.U.G.E.N, a fighting-game engine made by Elecbyte.

to decay reward and punishment. Using the curves in Fig.
1 again, the reward parameter is X’s remaining health and
punishment parameter is the boss’ remaining health.

C. M.U.G.E.N

M.U.G.E.N, Fig. 4, is a fighting-game engine made by
Elecbyte. Implemented using Open AI Gym [10], the goal is to
attack your opponent and reduces its health to zero. Like Fig.
3, the players are on a 2D stage. In this environment, hiding
and inaction are not viable options. The agent must learn to
avoid its opponent’s attacks and deny it the ability to attack
by controlling space and applying pressure. Characters can
perform combos and special moves by inputting a sequence of
actions within a strict time limit, resulting in doing significant
damage to their opponent. Cowardice in this environment is
constantly walking and running away from the opponent.

1) State: Unlike The Legend of Zelda and Megaman
X, M.U.G.E.N doesn’t use image data. Instead, we either
calculate the observation space features or read them from
game memory. The agent’s last 15 actions are components of
its observations, allowing it to perform combos and special
moves. Table III shows features in the observation space
related to the agent.

The opponent’s features included in the observation space
are in Table IV. Two distinct differences between this table
and Table III is the lack of Last N Actions and Time-stop
Meter. We prevented the agent from knowing its opponent’s
inputs, as this is akin to cheating and gives the agent an unfair
advantage. Time-stop Meter is a feature unique to the agent’s
character. Table V holds the rest of the remaining features in
the observation space. These are features that are calculated

Actions
1 Up Down No Op
2 Left Right No Op
3 A No Op
4 B No Op
5 Y No Op

TABLE II: Megaman X’s Actions.

from the agent and opponent’s features or are from the match
itself.

2) Action: In this environment, the agent doesn’t have a
multi-discrete action space. Instead, it must choose one from
a list of actions, as seen in Table VI. Down, Back, Forward,
and Up are the directional inputs accepted by the game. Unlike
Tables I and II, this agent has their Left and Right directional
inputs replaced with Forward and Back.

In most fighting games, if a player presses Right on the con-
troller, this action is a forward motion towards the opponent if
the player is on the left side of the screen. If the player is on
the right side of the screen, this is a backward motion moving
away from the opponent. The Left button functions similarly.

In M.U.G.E.N, the characters have special abilities and
combos which require directional inputs of Forward and
Back, regardless of what side of the screen they’re on. We
simplify the action space by allowing the environment to
handle whether Right or Left is Forward or Back. To do this,
we compare the x-coordinates of the agent with its opponent’s.
If the agent’s x-coordinate is smaller, then it’s on the left side
of the screen. If it’s larger, then it’s on the right side. This
means that when the agent selects Forward as its directional
input, we can know if the agent needs to move right or left
towards its opponent, depending on which side of the screen
it’s on.

The remaining actions map to the various attacks the agent
is capable of. X is a punch attack the agent has, while A, B, C
are all different kicks. The agent can hold certain buttons listed
in Table VI instead of press them. Within M.U.G.E.N, holding
specific buttons performs certain actions. E.g., holding Back
will block the opponent’s attacks and deal reduced damage to
the agent. We give the agent the option to hold these buttons
instead of pressing them repeatedly because of the controller
library used, and the specific requirements of the game. The

Feature Norm. Value True Value Size
Health 0 ∼1 0 ∼1000 1
Meter 0 ∼1 0 ∼5000 1
Time-stop Meter 0 ∼1 0 ∼1000 1
State 0 ∼1 0 ∼5120 1
X Position 0 ∼1 -1350 ∼1350 1
Y Position 0 ∼1 -1000 ∼0 1
Is In Corner 0 or 1 0 or 1 1
Last N Actions 0 ∼1 0 ∼16 15

TABLE III: M.U.G.E.N Agent Features

Feature Norm. Value True Value
Health 0 ∼1 0 ∼1000
State 0 ∼1 0 ∼5120
X Position 0 ∼1 -1350 ∼1350
Y Position 0 ∼1 -1000 ∼0
Is In Corner 0 or 1 0 or 1

TABLE IV: M.U.G.E.N Opponent Features



Feature Norm. Value True Value
Relative X Distance 0 ∼1 0 ∼1160
Relative Y Distance 0 ∼1 0 ∼1160
Full Screen Apart 0 or 1 0 or 1
Match Time Remaining 0 ∼1 0 ∼5999

TABLE V: M.U.G.E.N Misc Features

X button gives the agent’s character the ability to charge a
resource meter, which allows it to teleport or perform some
special moves. This resource builds while the agent is holding
this button.

Buttons in the hold column of Table VI behave differently
than those in the press column do. Pressing a button causes
the agent to hold the button briefly before releasing it. This
behaviour caused issues with the agent being able to block
its opponent effectively, which we resolve through giving the
agent the ability to hold a button. When the agent holds a
button, it doesn’t release it until the agent chooses a different
action. For example, if the agent chooses hold back, the agent
will hold this button. If the next action is again hold back,
nothing will happen as the agent is already holding back.
However, if the next action is to hold forward, we release
the hold back command on the controller and execute hold
forward. Similarly, if the agent chooses a hold command that
isn’t followed by that same action, we release the previous
hold. We do this to prevent the controller from releasing the
agent’s block command early via repeatedly pressing back to
block, which lets off the button at the end of the action.

We give combinations of directional input to the agent by
combining directions together. In Table VI, these take the form
of a direction + direction. We do this to further simplify the
action space for the agent to perform special moves. E.g.,
the agent has a special move which shoots a rocket at its
opponent. To do this, the agent must press in sequence and on a
strict timer: Down, Down + Forward, Forward, C. M.U.G.E.N
enforces this input sequence, as well as several others. These
moves are essential in the agent defeating its opponent as they
do significantly more damage than any of the standard attacks
the agent is capable of.

3) Reward: Several agents trained in this environment with
differing reward and punishment sources. Doing and receiving
damage is common to all. A scaling factor of 0.0025 multiplies
the health difference between the current state and the previous
state. If the agent did damage, this as a reward. If it took
damage, this is a punishment. An interim punishment source
that one agent received mimics [3] and [4], where the agent
receives constant ticking punishment to encourage aggressive
behaviour and ending matches quickly.

Two agents trained receiving static rewards of +10 for
winning and -10 for losing. Of these two, one agent also
had the ticking time penalty. Three other agents trained and
received this static reward decayed using (1). All three used
the opponent’s health remaining as the punishment parameter
to discourage cowardice. The reward parameter was different

Press Hold Misc
1 Down Down

No Op

2 Back Back
3 Forward Forward
4 Up

X

5 Down + Forward
6 Down + Back
7 Up + Forward
8 Up + Back
9 X
10 A
11 B
12 C

TABLE VI: M.U.G.E.N Actions.

across the three agents. One used the match time remaining,
another used its remaining health, and the third used a simple
average of the two. These parameters caused aggressive,
defensive, and balanced play styles, respectively. Aggressive
and defensive’s reward and punishment curves mirror Fig. 1
while balanced uses Fig. 5 for its reward decay.

The balanced agent’s reward decay is an average of the ag-
gressive and defensive variant’s rewards, which are calculated
with match time remaining and agent health remaining as the
reward parameters in Fig. 1, respectively. Fig. 5 shows the
potential rewards the agent can receive depending on how the
match ends.

Fig. 5: Vter is the static reward value to be decayed. At
the terminal state, we calculate the aggressive (y-axis) and
defensive (x-axis) variant’s rewards using (1). The balanced
decay variant’s reward is then a simple average of these two
reward values. This leads to multiple ways of obtaining the
same value for balanced’s terminal state reward.

IV. REINFORCEMENT LEARNING ALGORITHM

This paper uses PPO [1] provided by Stable-Baselines3 [11]
as the algorithm for training its agents. We chose PPO because
of a few factors; all agents across all games have a discrete
action space, which narrowed the choice to a Q-Learning algo-
rithm, Advantage Actor Critic (A2C), or one of its derivatives.
We required parallelization, as the agents needed to develop



their cowardice and then needed many games to resolve it to
varying degrees. As recommended by [11], PPO and A2C are
the best choices for discrete actions spaces and parallelized
environments. Kim, Park, and Yang [4] used PPO as well for
their agents in the FightingICE environment and one of the
static valued variants trained in the M.U.G.E.N environment
is based on their reward function. Also, the recent use of PPO
by Open AI to beat world champions at Dota 2 [12] showed
its potential to solve complicated tasks. These factors led to
our use of it for these environments.

Table VII shows the hyper parameters used across all 3
environments. During the initial stages of development, we
found that the PPO’s built-in clipping wasn’t enough to create
stability in M.U.G.E.N agents. We further restricted the policy
updates the agent could perform via a target KL of 0.03.

V. NETWORK ARCHITECTURE

A. The Legend of Zelda and Megaman X

The network architecture for both environments is the same.
Using the defaults provided by [11] for the ‘CnnPolicy’, the
architecture is that found in [9]—three convolutional layers
with ReLU activation functions. Flattening this output, it then
passes into a fully connected layer of 512 nodes.

B. M.U.G.E.N

The agent in the M.U.G.E.N environment uses the defaults
provided by [11] for their ‘MlpPolicy’, with the architecture
from [4]. This is three fully connected layers with ReLU
activation functions comprising 330, 330, and 165 nodes. This
then splits into the actor and critic branches with 165 and 80
nodes, respectively.

VI. RESULTS AND DISCUSSION

We measure all agents across all environments based on
the averaged results of a game-set where the set comprises
games across all parallelized environments that share the same
index (i.e., it averages the Nth game across all environments.)
The Legend of Zelda’s data is an average of 12 environments,
Megaman X’s is 32, and M.U.G.E.N’s is 4. We ran each agent
in The Legend of Zelda environment for 3 days, Megaman X
for 4 days, and M.U.G.E.N. for 14 days.

The metrics we judge the agents on are the number of
timesteps in a set and win rates in a pre-defined set of games.
Both Megaman and M.U.G.E.N use 1024 games for this, while
The Legend of Zelda uses a set of 300 games. We show these
results in Fig. 6.

Hyper Parameter Value
Learning Rate 1e-4

N Steps 2048
Batch Size 64

Gamma 0.99
Target KL 0.03

TABLE VII: Agent Hyper Parameters

A. The Legend of Zelda

In Fig. 6, we see both agents figure out the environment
quickly. Decay learns how to deal with the boss much faster
than static, but both ultimately defeat their opponent and show
mastery. The notable findings in this environment are that the
static variant has a large spike in the number of timesteps at
the start of its training, while decay’s spike is much smaller.
Decay’s win rate also grows much faster than statics’s as it
requires far fewer actions per game, showing that it isn’t afraid
to engage with the boss. Static shows cowardice via the much
higher number of timesteps required, and this causes its slow
increase in win rate compared to the decay-based variant. At
the end of their training, decay achieved a best win rate of
99.7% while static achieved a best win rate of 98.0%.

B. Megaman X

The agents take a little longer than in the last environment
to understand this encounter, as the boss’ attack patterns have
some randomness to them. Fig. 6 shows that cowardice is
present once again in the static variant as it requires signifi-
cantly more actions per game to end its matches. Cowardice
leads the static agent to develop a strategy in which it hides in
the top corners of the screen and attacks the boss only when
given the chance. This works early on, but it’s far from the
optimal way to fight this boss. Decay engages with the boss
much more frequently and doesn’t develop this behaviour of
hiding in the top corners of the screen. Instead, it learns to
dodge attacks and jump over the boss to give itself distance.
Mastering this behaviour leads to decay overtaking static’s
win rate and showing an upward trend even at the end of
its training. Decay’s win rate doesn’t grow as fast as static’s
at first because it puts itself in more danger than static, but it
overtakes static around the 15th set and outperforms static by
a good margin. At their bests, decay achieved a 95.5% win
rate while static achieved an 84.8% win rate.

C. M.U.G.E.N

Three decay-based agents trained in this environment. All
used the opponent’s remaining health as their punishment
parameter to control its decay. Aggressive used match time
remaining and defensive used the agent’s health remaining as
their reward parameters. Balanced used Fig. 5 to determine its
terminal state rewards. Of the two static variants, one received
a constant ticking time penalty to encourage the agent to
become aggressive. This agent’s reward function is based on
[4]’s work, while the other is the same as the static variants
for The Legend of Zelda and Megaman X.

In Fig. 6, cowardice is visible in both static variants as
the number of timesteps per game set fluctuates wildly, while
all decay-based variants steadily decrease their action count
per game set. An interesting observation is that the aggressive
and defensive decay variants both achieve similar results even
though the defensive variant doesn’t use time to influence its
reward and developed a different play style.

Cowardice negatively affects the static variants as their win
rates fluctuate throughout their training. The opponent in this



The Legend of Zelda Megaman X M.U.G.E.N

Fig. 6: Results for win rates and timestep counts across The Legend of Zelda, Megaman X, and M.U.G.E.N environments.

environment has multiple strategies for attacking the agent
and simply running away won’t work. Both static variants
developed this strategy and attacked the opponent only when it
presented an opportunity instead of making their own. Decay-
based variants applied pressure and forced openings in the
opponent’s strategy, which put it on the defensive. Fig. 6
shows this with the decreasing actions per game set count.
The best win rates achieved by these agents are 99.9% for
Aggressive Decay, 99.2% for Balanced Decay, 99.0% for
Defensive Decay, 74.2% for Static Value W/O Time Penalty,
and 43.2% for Static Value W/ Time Penalty.

VII. CONCLUSION

Cowardice develops when an agent fears dying—it takes
every action, many of them unnecessary, it can to avoid this.
This fear causes it to develop strategies that can work, but
do not scale well with the complexity of the environment.
Moreso, in environments where cowardice isn’t fatal to the
agent’s performance, removing its hinderance via decaying the
terminal state rewards leads to better performance in terms of
win rates, average number of timesteps, and stability. This
approach also provides a method of defining what mastery
means for each agent—allowing creating different play styles
for agents through decaying reward via different parameters
or combinations.

REFERENCES

[1] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” 2017.

[4] D.-W. Kim, S. Park, and S.-i. Yang, “Mastering fighting game using
deep reinforcement learning with self-play,” in 2020 IEEE Conference
on Games (CoG), 2020, pp. 576–583.

[2] T. Marwala and E. Hurwitz, A Multi-Agent Approach to Bluffing, 01
2009.

[3] I. Oh, S. Rho, S. Moon, S. Son, H. Lee, and J. Chung, “Creating pro-
level ai for a real-time fighting game using deep reinforcement learning,”
2020.

[5] M. Mendonça, H. Bernardino, and R. Fonseca Neto, “Simulating human
behavior in fighting games using reinforcement learning and artificial
neural networks,” 11 2015.

[6] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” 2013.

[7] K. Shao, Y. Zhu, and D. Zhao, “Starcraft micromanagement with
reinforcement learning and curriculum transfer learning,” 2018.
[Online]. Available: https://arxiv.org/abs/1804.00810

[8] A. Nichol, V. Pfau, C. Hesse, O. Klimov, and J. Schulman, “Gotta
learn fast: A new benchmark for generalization in rl,” arXiv preprint
arXiv:1804.03720, 2018.

[9] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533,
Feb. 2015. [Online]. Available: http://dx.doi.org/10.1038/nature14236

[10] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “Openai gym,” 2016.

[11] A. Raffin, A. Hill, M. Ernestus, A. Gleave, A. Kanervisto, and
N. Dormann, “Stable baselines3,” https://github.com/DLR-RM/stable-
baselines3, 2019.

[12] OpenAI, :, C. Berner, G. Brockman, B. Chan, V. Cheung, P. Dębiak,
C. Dennison, D. Farhi, Q. Fischer, S. Hashme, C. Hesse, R. Józefowicz,
S. Gray, C. Olsson, J. Pachocki, M. Petrov, H. P. d. O. Pinto, J. Raiman,
T. Salimans, J. Schlatter, J. Schneider, S. Sidor, I. Sutskever, J. Tang,
F. Wolski, and S. Zhang, “Dota 2 with large scale deep reinforcement
learning,” 2019.


